稀土Pr和Nd对SnAgCu无铅钎料组织与性能影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子封装技术的发展以及无铅化进程的推进,无铅钎料的研究已经成为电子封装领域的重要课题之一。SnAgCu系钎料合金由于其较优的综合性能,被认为是电子行业中最具潜力替代SnPb钎料的无铅钎料之一,但其润湿性能、凝固特性以及服役过程中的组织稳定性等仍存在一些不足,SnAgCu钎料的高Sn含量、较高钎焊温度使得其焊点内部金属间化合物的生长相比SnPb钎料要复杂得多。微量元素合金化是获得高性能无铅钎料的有效途径之一,本论文通过添加微量的稀土Pr和Nd元素来改善Sn3.8Ag0.7Cu无铅钎料的不足之处,系统地研究了不同含量(0~0.5wt.%)Pr和Nd的添加对SnAgCu钎料性能以及组织的影响,并对Pr和Nd元素的作用机制进行了探讨。
     采用润湿平衡法研究了不同含量Pr和Nd的添加对SnAgCu钎料润湿性能的影响。研究结果表明,适量稀土元素Pr和Nd的添加可以明显改善SnAgCu钎料的润湿性能,当稀土元素Pr和Nd的添加量分别为0.05wt.%时,钎料具有最佳的润湿性能,250℃试验条件下,SnAgCu-0.05Pr以及SnAgCu-0.05Nd钎料相比SnAgCu钎料润湿力分别提高了6.7%以及5.5%,润湿时间分别降低了14.5%以及10.0%。由于Pr和Nd为表面活性元素,适量添加可以降低液态钎料表面张力,改善钎料的润湿性能;但添加过量则会由于稀土元素的氧化恶化钎料的润湿性能。
     研究了SnAgCu-xRE(x=0,0.05,0.50wt.%)钎料的熔化温度以及凝固所需过冷度,微量Pr和Nd的添加对SnAgCu钎料的熔化温度没有明显的影响,但可以显著降低SnAgCu钎料的凝固过冷度,SnAgCu、SnAgCu-0.05Pr以及SnAgCu-0.5Pr钎料的凝固过冷度分别为20.6℃、5.0℃以及5.5℃,因而可以降低SnAgCu焊点中初晶Ag3Sn的形成几率。凝固过程中,Pr和Nd可以优先与Sn反应,以Sn-RE化合物形式优先析出,为钎料的凝固提供形核质点,促进钎料的凝固。当稀土元素Pr和Nd的含量在0.05wt.%左右时,SnAgCu钎料基体组织得到最大程度的优化,当含量超过0.1wt.%时,钎料中会出现少量的稀土相RESn3相。
     采用纳米压痕试验方法对SnAgCu-xRE(x=0,0.05,0.50wt.%)钎料室温条件下的蠕变应力指数n进行了研究。SnAgCu、SnAgCu-0.05Pr、SnAgCu-0.5Pr、SnAgCu-0.05Nd以及SnAgCu-0.5Nd的蠕变应力指数值n分别为8.79、10.19、9.26、10.97以及9.84,Pr和Nd的添加使得SnAgCu钎料的蠕变应力指数n值明显增加,表明Pr和Nd的添加可以显著增强SnAgCu钎料的抗蠕变能力,SnAgCu钎料抗蠕变能力的增强主要依赖于Ag3Sn粒子强化作用。
     研究发现,Pr或Nd的添加可以显著提高SnAgCu微焊点再流焊以及时效过程中力学性能,再流焊条件下,SnAgCu-0.05Pr以及SnAgCu-0.05Nd微焊点剪切力相比SnAgCu分别增加了19.4%以及23.6%;随着时效的进行,微焊点力学性能下降,但SnAgCu-0.05RE微焊点始终具有最高的力学性能,时效1440h后,SnAgCu-0.05Pr以及SnAgCu-0.05Nd微焊点力学性能相比SnAgCu焊点分别提高了37.3%以及46.0%。Pr和Nd的添加明显降低了SnAgCu/Cu焊点时效过程中界面化合物总厚度生长速率,有利于焊点力学性能的保持,但对焊点Cu3Sn界面层的生长没有明显的影响。部分稀土相在界面层Cu6Sn5表面形核并长大,部分Cu6Sn5/钎料界面由Cu6Sn5/RESn3界面所取代,抑制了Cu6Sn5/钎料界面处反应6Cu+5Sn→Cu6Sn5的进行,因而抑制了Cu6Sn5界面层的生长;当Pr和Nd的添加量过多时,裸露于空气中的稀土相由于氧化呈现脆性特征,稀土元素对焊点界面层生长抑制的有利效果被弱化。
     采用深腐蚀方法对焊点内部化合物三维形貌进行了研究分析。发现,Pr和Nd的添加可以降低SnAgCu焊点Cu6Sn5界面处初晶Ag3Sn的形成几率,初晶Ag3Sn具有较大的尺寸,对焊点力学性能整体性会产生不利的影响。时效条件下,界面层Cu6Sn5晶粒存在横向粗化以及纵向延长生长两种生长行为;初晶Ag3Sn化合物的形貌以及尺寸均发生了退化现象,焊点内部形成的纳米Ag3Sn粒子易于在初晶Ag3Sn表面吸附。Ag3Sn颗粒的存在对Cu6Sn5界面层向焊点内部迁移生长起到钉扎的效果,从而降低了Cu6Sn5界面层的迁移速率,Pr和Nd的添加可以使得SnAgCu焊点内部Ag3Sn颗粒的体积分数增加,因而可以降低焊点界面层的迁移速率。
     SnAgCu钎料中过量Pr和Nd的添加会引发稀土相表面Sn须的生长,SnAgCu-0.1RE合金置于室温条件下时效6个月后,稀土相表面未见有可见尺寸Sn须的生长现象;SnAgCu-0.5RE以及Sn-RE合金室温时效24h后,表面就会出现明显的Sn须生长现象。稀土相表面Sn须的生长主要是由于裸露于空气中的稀土相氧化所导致,氧化过程过程中产生的内应力以及释放的自由Sn原子为Sn须的生长提供驱动力以及生长源。Sn须生长主要受稀土元素含量、稀土相表面微裂纹形貌以及Sn须根部微区应力的共同影响。
As fast development of electronic packaging technology and the inevitable trend of lead-freesoldering, the research focusing on lead-free solder alloys becomes more and more important in theelectronic industry. SnAgCu solder is considered as the best one to substitute for Pb-containingsolders because of their acceptable comprehensive property. However, they still have some problemsfor widely industrial application compare to conventional SnPb alloy, such as microstructural stability,insufficient wettability and large solidification undercooling. Moreover, the growth of intermetalliccompounds in the SnAgCu solder joints is more complicated than that of SnPb due to the higher Sncontent and soldering temperature of SnAgCu alloys. Microalloying is an effective way to improvethe properties of the solder alloys. To improve these drawbacks, rare-earth elements RE (RE=Pr, Nd)were selected to improve the properties and microstructures of Sn3.8Ag0.7Cu solder alloy. Thisdissertation systematically studied the effects of different amounts (0~0.5wt.%) of Pr and Ndadditions on the microstructures and properties of Sn3.8Ag0.7Cu alloy. Moreover, the mechanism ofthe effects of Pr and Nd on the microstructures and properties of SnAgCu solder was also discussed.
     The wetting balance method was used to evaluate the wettability of Sn3.8Ag0.7Cu-xRE solders,and the results indicated that trace amount of Pr and Nd addition could obviously improve thewettability of the SnAgCu solder, which the optimal wettability was achieved as the RE content isabout0.05wt.%due to the lower surface tension caused by RE elements. When measured at250℃,the wetting force of of SnAgCu solder was increased by6.7%and5.5%with0.05%Pr or0.05%Ndand the wetting time of SnAgCu solder was descreased by14.5%and10.0%, respectively under thesame condition. However, an excessive amount of RE addition into the solder would deteriorate thewettability due to the oxidization of the RE elements.
     The effects of RE additions on the melting and solidification behavior of SnAgCu solder wereinvestigated and the melting point of SnAgCu alloy changed little with the incorporation of REelements. However, the RE additions reduced the amount of solidification undercooling of SnAgCusolder thus reduced the probability of primary Ag3Sn phase formation. The undercooling of SnAgCu,SnAgCu-0.05Pr and SnAgCu-0.5Pr solder was20.6,5.0and5.5℃, respectively. During solidification,Pr and Nd atoms preferentially reacted with Sn atoms to form RESn3compound, the primary RESn3compounds played a role as the nucleation sites thus promoted the solidification of the solder alloy.The microstructure of SnAgCu-0.05RE alloy was finer and more uniform compared with that of other solder alloys. However, RESn3compounds were found in the solder as RE was added up to0.1wt.%.
     Nanoindentation was adapted to characterize the creep stress exponent n of SnAgCu-xRE solderalloys. Both RE bearing solders exhibited larger n than that of SnAgCu solder, with a creep stressexponent8.79for SnAgCu,10.19for SnAgCu-0.05Pr,9.26for SnAgCu-0.5Pr,10.97forSnAgCu-0.05Nd and9.84for SnAgCu-0.5Nd. It can be concluded that RE-bearing solder alloysperform better creep resistance than SnAgCu solder, which can be atttributed to the strengthen effectof Ag3Sn particles.
     The results showed that the mechanical property of SnAgCu solder joint were improved with Prand Nd addition, the maxium shear force was obtained with about0.05%Pr or Nd addition andexhibited a19.4%and23.6%increase compare with that of SnAgCu solder joint, respectively. Duringthermal aging process, the shear strength of all solder joints decreased with the increase of aging time,the SnAgCu-0.05RE solder joint exhibited the highest shear force all through the aging process. Afteraging for1440h, the shear force of SnAgCu-0.05Pr and SnAgCu-0.05Nd were37.3%and46.0%higher than that of SnAgCu solder joint. Trace amounts of Pr and Nd additions suppressed the growthof Cu6Sn5layer, but had little influence on Cu3Sn layer. Part of the Cu6Sn5/solder interface wasreplaced by Cu6Sn5/RESn3interface, the existence of RESn3compounds at the interface would inhibitthe reaction of6Cu+5Sn→Cu6Sn5that take place at Cu6Sn5/solder interface thus restrain the growthof Cu6Sn5layer. With an excessive amount of RE addition, the RESn3phase exposed in room ambienttransformed into brittle oxide. Consequently, the beneficial effect due to the suppression of interfaciallayer compounds was weakened.
     Three-dimensional morphology of the intermetallic compounds (IMCs) in the solder joints wasstudied by deep etching method. The results showed that the Pr and Nd addition could reduce theprobability of primary Ag3Sn phase formation in the SnAgCu solder joint, the existence of primaryAg3Sn plates with large size had an adverse influence on the mechanical property of the joint. Duringaging process, the Cu6Sn5grains at the interface showed both horizontal coarsening and longitudinalgrowth. After aging, the feature distinctions of primary Ag3Sn compound were inclined to be vague,Ag3Sn nano-particles adsorbed on the primary Ag3Sn compound would retard the morphologyevalution of primary Ag3Sn compound. It could be considered as that the presence of Ag3Sn particlesat the surface of Cu6Sn5layer could retard the migration of Cu6Sn5layer. The addition of Pr and Ndwould increase the volume fraction of Ag3Sn particles in the solder joint thus inhibit the growth of theinterfacial layer.
     When an excessive amount of RE was added in SnAgCu solder alloy, the risk of forming Sn whisker was greatly increased due to the induced compressive stress and released Sn atoms caused byoxidation of RESn3compound. It was found that there was no Sn whisker with visible size growthoccurred on the surface of SnAgCu-0.1RE samples after room temperature storage for six months.However, SnAgCu-0.5RE and Sn-RE alloys showed obvious Sn whisker growth after roomtemperature storage for24h. It can be concluded that the growth of Sn whisker was mainly resulted inthe RE amount, the micro-cracks shape and the local stress filed in Sn whisker root area.
引文
[1]张启运.钎焊手册[M].北京:机械工业出版社,2008.
    [2] Sheng G T T, Hu C F, Choi W J, et al. Tin Whiskers Studied by Focused Ion Beam Imaging andTransmission Electron Microscopy[J]. Journal of Applied Physics,2002,92(1):64~69.
    [3] Official Journal of The European Union, Directive2011/65/EU of The European Parliament andof The Council of8June2011: on The Restriction of The Use of Certain Hazardous Substancesin Electrical and Electronic Equipment (Recast).
    [4] Wilson J R. Lead-Free RoHS on Military Electronics Procurement[J]. Military&AerospaceElectronics,2009,20(4):24~29.
    [5] Mei Z Q, Holder H. A Thermal Fatigue Failure Mechanism of58Bi-42Sn Solder Joints[J].Journal of Electronic Packaging,1996,118(2):62~66.
    [6]胡丽,曾明,张业明,等. Ag对Sn-Bi无铅钎料压入蠕变性能及显微组织的影响[J].西华大学学报(自然科学版),2010,29(4):72~74.
    [7] NCMS, Lead-Free Solder Project Final Report, in Report0401RE96.1997, National Center forManufacturing Sciences.
    [8] Kariya Y, Williams N, Gagg C, et al. Tin Pest In Sn-0.5wt.%Cu Lead-Free Solder[J]. JOM,Journal of The Minerals, Metals and Materials Society,2001,53(6):39~41.
    [9] Kim K S, Huh S H, Suganuma K. Effects of Fourth Alloying Additive on Microstructures andTensile Properties of Sn-Ag-Cu Alloy and Joints with Cu[J]. Microelectronics Reliability,2003,43(2):259~267.
    [10] Bradley E. Lead-Free Solder Assembly: Impact and Opportunity[C].53rd ElectronicComponents Technology Conference2003Proceedings,2003:41~46.
    [11] Kim K S, Huh S H, Suganuma K. Effects of Intermetallic Compounds on Properties ofSn-Ag-Cu Lead-Free Soldered Joints[J]. Journal of Alloys and Compounds,2003,352(1-2):226~236.
    [12] Lee J H, Yu A M, Kim J H, et al. Reaction Properties and Interfacial Intermetallics forSn-xAg-0.5Cu Solders as a Function of Ag Content[J]. Metals and Materials International,2008,14(5):649~654.
    [13]王俭辛.稀土Ce对Sn-Ag-Cu和Sn-Cu-Ni钎料性能及焊点可靠性影响的研究,[博士学位论文].南京航空航天大学,2009.
    [14] Moser Z, Fima P, Bukat K, et al. Investigation of The Effect of Indium Addition on Wettabilityof Sn-Ag-Cu Solders[J]. Soldering&Surface Mount Technology,2011,23(1):22~29.
    [15] Sopou ek J í, Palcut M, HodúLová E, et al. Thermal Analysis of The Sn-Ag-Cu-In SolderAlloy[J]. Journal of Electronic Materials,2010,39(3):312~317.
    [16] Sebo P, Moser Z, Svec P, et al. Effect of Indium on The Microstructure of The InterfaceBetween Sn3.13Ag0.74CuIn Solder and Cu Substrate[J]. Journal of Alloys and Compounds,2009,480(2):409~415.
    [17] Moser Z, Sebo P, Gasior W, et al. Effect of Indium on Wettability of Sn-Ag-Cu Solders.Experiment Vs. Modeling, Part I [J]. Calphad-Computer Coupling of Phase Diagrams andThermochemistry,2009,33(1):63~68.
    [18] Kanlayasiri K, Mongkolwongrojn M, Ariga T. Influence of Indium Addition on Characteristicsof Sn-0.3Ag-0.7Cu Solder Alloy[J]. Journal of Alloys and Compounds,2009,485(1-2):225~230.
    [19] Yu A M, Lee C W, Kim M S, et al. The Effect of The Addition of In on The Reaction andMechanical Properties of Sn-1.0Ag-0.5Cu Solder Alloy[J]. Metals and Materials International,2007,13(6):517~520.
    [20] Sharif A, Chan Y C. Effect of Indium Addition in Sn-Rich Solder on The Dissolution of CuMetallization[J]. Journal of Alloys and Compounds,2005,390(1-2):67~73.
    [21]迟成宇,程从前,赵杰. Bi对Sn-3Ag-0.5Cu/Cu无铅钎焊接头剪切强度的影响[J].金属学报,2008,44(4):473~477.
    [22] Zhang X P, Yin L M, Yu C B. Thermal Creep and Fracture Behaviors of The Lead-FreeSn-Ag-Cu-Bi Solder Interconnections Under Different Stress Levels[J]. Journal of MaterialsScience: Materials In Electronics,2008,19(4):393~398.
    [23] He M, Ekpenuma S N, Acoff V L. Microstructure and Creep Deformation of Sn-Ag-Cu-Bi/CuSolder Joints[J]. Journal of Electronic Materials,2008,37(3):300~306.
    [24] Zhao J, Qi L, Wang X M, et al. Influence of Bi on Microstructures Evolution and MechanicalProperties in Sn-Ag-Cu Lead-Free Solder[J]. Journal of Alloys and Compounds,2004,375(1-2):196~201.
    [25] Li G Y, Bi X D, Chen Q, et al. Influence of Dopant on Growth of Intermetallic Layers inSn-Ag-Cu Solder Joints[J]. Journal of Electronic Materials,2011,40(2):165~175.
    [26] Park Y S, Kwon Y M, Son H Y, et al. Effect of Sb Addition In Sn-Ag-Cu Solder Balls on TheDrop Test Reliability of BGA Packages with Electroless Nickel Immersion Gold (ENIG)Surface Finish[C].2007International Conference on Electronic Materials and Packaging,2007:317~321.
    [27] Li G Y, Chen B L, Shi X Q, et al. Effects of Sb Addition on Tensile Strength ofSn-3.5Ag-0.7Cu Solder Alloy and Joint[J]. Thin Solid Films,2006,504(1-2):421~425.
    [28] Chen B L, Li G Y. Influence of Sb on IMC Growth In Sn-Ag-Cu-Sb Pb-Free Solder Joints InReflow Process[J]. Thin Solid Films,2004,462-463:395~401.
    [29] Anderson I E, Cook B A, Harringa J L, et al. Sn-Ag-Cu Solders and Solder Joints: AlloyDevelopment, Microstructure, and Properties[J]. JOM, Journal of The Minerals, Metals andMaterials Society,2002,54(6):26~29.
    [30] Anderson I E, Foley J C, Cook B A, et al. Alloying Effects In Near-Eutectic Sn-Ag-Cu SolderAlloys for Improved Microstructural Stability[J]. Journal of Electronic Materials,2001,30(9):1050~1059.
    [31] Cheng F J, Nishikawa H, Takemoto T. Microstructural and Mechanical Properties of Sn-Ag-CuLead-Free Solders with Minor Addition of Ni and/or Co[J]. Journal of Materials Science,2008,43(10):3643~3648.
    [32] Wang Y W, Chang C C, Kao C R. Minimum Effective Ni Addition to SnAgCu Solders forRetarding Cu3Sn Growth[J]. Journal of Alloys and Compounds,2009,478(1-2): L1~L4.
    [33] Wang Y W, Lin Y W, Tu C T, et al. Effects of Minor Fe, Co, and Ni Additions on The ReactionBetween SnAgCu Solder and Cu[J]. Journal of Alloys and Compounds,2009,478(1-2):121~127.
    [34] Lin L W, Song J M, Lai Y S, et al. Alloying Modification of Sn-Ag-Cu Solders by Manganeseand Titanium[J]. Microelectronics Reliability,2009,49(3):235~241.
    [35] Ghosh M, Gunjan M K, Das S K, et al. Effect of Mn on Sn-Ag-Cu Ternary Lead Free SolderAlloy-Cu Assembly: A Comparative Study[J]. Materials Science and Technology,2010,26(5):610~614.
    [36] Lai Y S, Song J M, Chang H C, et al. Ball Impact Responses of Ni-or Ge-Doped Sn-Ag-CuSolder Joints[J]. Journal of Electronic Materials,2008,37(2):201~209.
    [37] Lu S, Wei C G. Effect of Mg on The Microstructure and Properties of Sn-Ag-Cu Lead-FreeSolder[C]. International Conference on Electronic Packaging Technology and High DensityPackaging2005:1~4.
    [38] Kang S, Shih D Y, Leonard D, et al. Controlling Ag3Sn Plate formation InNear-Ternary-Eutectic Sn-Ag-Cu Solder by Minor Zn Alloying[J]. JOM: Journal of TheMinerals, Metals and Materials Society,2004,56(6):34~38.
    [39] Kang S, Leonard D, Shih D Y, et al. Interfacial Reactions of Sn-Ag-Cu Solders Modified byMinor Zn Alloying Addition[J]. Journal of Electronic Materials,2006,35(3):479~485.
    [40] Wang F J, Gao F, Ma X, et al. Depressing Effect of0.2wt.%Zn Addition into Sn-3.0Ag-0.5CuSolder Alloy on The Intermetallic Growth with Cu Substrate During Isothermal Aging[J].Journal of Electronic Materials,2006,35(10):1818~1824.
    [41] Cho M G, Kang S K, Shih D Y, et al. Effects of Minor Additions of Zn on Interfacial Reactionsof Sn-Ag-Cu and Sn-Cu Solders with Various Cu Substrates During Thermal Aging[J]. Journalof Electronic Materials,2007,36(11):1501~1509.
    [42] Wang F J, Yu Z S, Qi K. Intermetallic Compound Formation at Sn-3.0Ag-0.5Cu-1.0ZnLead-Free Solder Alloy/Cu Interface During as-Soldered and as-Aged Conditions[J]. Journal ofAlloys and Compounds,2007,438(1-2):110~115.
    [43] Luo Z B, Zhao J, Gao Y J, et al. Revisiting Mechanisms to Inhibit Ag3Sn Plates In Sn-Ag-CuSolders with1.0Wt.%Zn Addition[J]. Journal of Alloys and Compounds,2010,500(1):39~45.
    [44] Lin K L, Hsiao C C, Chen K I. Microstructural Evolution of Sn-Ag-Cu-Al Solder with Respectto Al Content and Heat Treatment[J]. Journal of Materials Research,2002,17(9):2386~2393.
    [45] Chen Z G, Shi Y W, Xia Z D, et al. Study on The Microstructure of A Novel Lead-Free SolderAlloy SnAgCu-RE and Its Soldered Joints[J]. Journal of Electronic Materials,2002,31(10):1122~1128.
    [46] Wu C M L, Yu D Q, Law C M T, et al. Properties of Lead-Free Solder Alloys with Rare EarthElement Additions[J]. Materials Science and Engineering: R: Reports,2004,44(1):1~44.
    [47] Yu D Q, Zhao J, Wang L. Improvement on The Microstructure Stability, Mechanical andWetting Properties of Sn-Ag-Cu Lead-Free Solder with The Addition of Rare Earth Elements[J].Journal of Alloys and Compounds,2004,376(1-2):170~175.
    [48] Li B, Shi Y W, Lei Y P, et al. Effect of Rare Earth Element Addition on The Microstructure ofSn-Ag-Cu Solder Joint[J]. Journal of Electronic Materials,2005,34(3):217~224.
    [49] Law C M T, Wu C M L, Yu D Q, et al. Microstructure, Solderability, and Growth ofIntermetallic Compounds of Sn-Ag-Cu-RE Lead-Free Solder Alloys[J]. Journal of ElectronicMaterials,2006,35(1):89~93.
    [50] Li G D, Shi Y W, Hao H, et al. Effect of Rare Earth Addition on Shear Strength of SnAgCuLead-Free Solder Joints[J]. Journal of Materials Science: Materials In Electronics,2009,20(2):186~192.
    [51] Song J M, Liu Y R, Lai Y S, et al. Influence of Trace Alloying Elements on The Ball ImpactTest Reliability of SnAgCu Solder Joints[J]. Microelectronics Reliability,2012,52(1):180~189.
    [52] Wang J X, Xue S B, Han Z J, et al. Effects of Rare Earth Ce on Microstructures, Solderability ofSn-Ag-Cu and Sn-Cu-Ni Solders as Well as Mechanical Properties of Soldered Joints[J].Journal of Alloys and Compounds,2009,467(1-2):219~226.
    [53] Zhang L. Creep Behavior of SnAgCu Solders with Rare Earth Ce Doping[J]. Transactions ofNonferrous Metals Society of China,2010,20(3):412~417.
    [54] Dudek M A, Sidhu R, Chawla N, et al. Microstructure and Mechanical Behavior of Novel RareEarth-Containing Pb-Free Solders[J]. Journal of Electronic Materials,2006,35(12):2088~2097.
    [55] Dudek M A, Chawla N. Three-Dimensional (3D) Microstructure Visualization of LaSn3Intermetallics In A Novel Sn-Rich Rare-Earth-Containing Solder[J]. Materials Characterization,2008,59(9):1364~1368.
    [56] Dudek M A, Chawla N. Effect of Rare-Earth (La, Ce, and Y) Additions on The Microstructureand Mechanical Behavior of Sn-3.9Ag-0.7Cu Solder Alloy[J]. Metallurgical and MaterialsTransactions A,2010,41(3):610~620.
    [57] Hao H, Tian J, Shi Y W, et al. Properties of Sn3.8Ag0.7Cu Solder Alloy with Trace Rare EarthElement Y Additions[J]. Journal of Electronic Materials,2007,36(7):766~774.
    [58] Hao H, Shi Y W, Xia Z D, et al. Microstructure Evolution of SnAgCuEr Lead-Free SoldersUnder High Temperature Aging[J]. Journal of Electronic Materials,2008,37(1):2~8.
    [59] Shi Y W, Tian J, Hao H, et al. Effects of Small Amount Addition of Rare Earth Er onMicrostructure and Property of SnAgCu Solder[J]. Journal of Alloys and Compounds,2008,453(1-2):180~184.
    [60] Gao L L, Xue S B, Zhang L, et al. Effects of Trace Rare Earth Nd Addition on Microstructureand Properties of SnAgCu Solder[J]. Journal of Materials Science: Materials In Electronics,2010,21(7):643~648.
    [61] Gao L L, Xue S B, Zhang L A, et al. Effect of Praseodymium on The Microstructure andProperties of Sn3.8Ag0.7Cu Solder[J]. Journal of Materials Science: Materials In Electronics,2010,21(9):910~916.
    [62] Kao S T, Lin Y C, Dun J G. Controlling Intermetallic Compound Growth In SnAgCu/Ni-PSolder Joints by Nanosized Cu6Sn5Addition[J]. Journal of Electronic Materials,2006,35(3):486~493.
    [63] Tsao L C. Evolution of Nano-Ag3Sn Particle formation on Cu-Sn Intermetallic Compounds ofSn3.5Ag0.5Cu Composite Solder/Cu During Soldering[J]. Journal of Alloys and Compounds,2011,509(5):2326~2333.
    [64] Tay S, Haseeb A, Johan M R. Addition of Cobalt Nanoparticles into Sn-3.8Ag-0.7Cu Lead-FreeSolder by Paste Mixing[J]. Soldering&Surface Mount Technology,2011,23(1):10~14.
    [65] Gain A K, Fouzder T, Chan Y C, et al. The Influence of Addition of Al Nano-Particles on TheMicrostructure and Shear Strength of Eutectic Sn-Ag-Cu Solder on Au/Ni Metallized CuPads[J]. Journal of Alloys and Compounds,2010,506(1):216~223.
    [66] Haseeb A S M A, Arafat M M, Johan M R. Stability of Molybdenum Nanoparticles inSn-3.8Ag-0.7Cu Solder During Multiple Reflow and Their Influence on Interfacial IntermetallicCompounds[J]. Materials Characterization,2012,64(2):27~35.
    [67] Tsao L C. Suppressing Effect of0.5wt.%Nano-TiO2Addition into Sn-3.5Ag-0.5Cu SolderAlloy on The Intermetallic Growth with Cu Substrate During Isothermal Aging[J]. Journal ofAlloys and Compounds,2011,509(33):8441~8448.
    [68] Leong J C, Tsao L C, Fang C J, et al. Effect of Nano-Tio2Addition on The Microstructure andBonding Strengths of Sn3.5Ag0.5Cu Composite Solder BGA Packages with Immersion SnSurface Finish[J]. Journal of Materials Science: Materials In Electronics,2011,22(9):1443~1449.
    [69] Gain A K, Chan Y C, Yung W K C. Microstructure, Thermal Analysis and Hardness of ASn-Ag-Cu-1wt.%Nano-TiO2Composite Solder on Flexible Ball Grid Array Substrates[J].Microelectronics Reliability,2011,51(5):975~984.
    [70] Tsao L C, Chang S Y. Effects of Nano-TiO2Additions on Thermal Analysis, Microstructure andTensile Properties of Sn3.5Ag0.25Cu Solder[J]. Materials&Design,2010,31(2):990~993.
    [71] Kumar K M, Kripesh V, Tay A A O. Single-Wall Carbon Nanotube (SWCNT) FunctionalizedSn-Ag-Cu Lead-Free Composite Solders[J]. Journal of Alloys and Compounds,2008,450(1-2):229~237.
    [72] Nai S M L, Wei J, Gupta M. Lead-Free Solder Reinforced with Multiwalled CarbonNanotubes[J]. Journal of Electronic Materials,2006,35(7):1518~1522.
    [73] Fouzder T, Shafiq I, Chan Y C, et al. Influence of SrTiO3Nano-Particles on The Microstructureand Shear Strength of Sn-Ag-Cu Solder on Au/Ni Metallized Cu Pads[J]. Journal of Alloys andCompounds,2011,509(5):1885~1892.
    [74] Liu P, Yao P, Liu J. Effect of SiC Nanoparticle Additions on Microstructure and Microhardnessof Sn-Ag-Cu Solder Alloy[J]. Journal of Electronic Materials,2008,37(6):874~879.
    [75] Gain A K, Fouzder T, Chan Y C, et al. Microstructure, Kinetic Analysis and Hardness ofSn-Ag-Cu-1wt.%Nano-ZrO2Composite Solder on OSP-Cu Pads[J]. Journal of Alloys andCompounds,2011,509(7):3319~3325.
    [76] Tsao L C, Chang S Y, Lee C I, et al. Effects of Nano-Al2O3Additions on MicrostructureDevelopment and Hardness of Sn3.5Ag0.5Cu Solder[J]. Materials&Design,2010,31(10):4831~4835.
    [77] Chen Z G, Shi Y W, Xia Z D, et al. Properties of Lead-Free Solder SnAgCu Containing MinuteAmounts of Rare Earth[J]. Journal of Electronic Materials,2003,32(4):235~243.
    [78]王丽凤,孙凤莲,刘晓晶,等. Sn-Ag-Cu-Bi钎料合金设计与组织性能分析[J].焊接学报,2008,29(7):9~12.
    [79]胡文刚,孙凤莲,王丽凤,等. Sn-0.3Ag-0.7Cu-xBi低银无铅钎料的润湿性[J].电子元件与材料,2008,27(4):38~41.
    [80]王丽凤,申旭伟,孙凤莲,等.微量Ni对Sn-3.0Ag-0.5Cu钎料及焊点界面的影响[J].电子元件与材料,2008,27(9):65~68.
    [81] Chuang T H, Yen S F, Wu H M. Intermetallic Formation in Sn3Ag0.5Cu andSn3Ag0.5Cu0.06Ni0.01Ge Solder BGA Packages with Immersion Ag Surface Finish[J]. Journalof Electronic Materials,2006,35(2):310~318.
    [82] Law C M. Reliability and Interfacial Reaction of Lead-Free Solder Alloys Doped with RareEarth Elements,[Doctor of Philosophy]. Hong Kong: City University of Hong Kong,2004.
    [83] Zhou Y C, Pan Q L, He Y B, et al. Microstructures and Properties of Sn-Ag-Cu Lead-FreeSolder Alloys Containing La[J]. Transactions of Nonferrous Metals Society of China,2007,17(S1):1043~1048.
    [84] Dudek M A, Sidhu R S, Chawla N. Novel Rare-Earth-Containing Lead-Free Solders withEnhanced Ductility[J]. JOM, Journal of The Minerals, Metals and Materials Society,2006,58(6):57~62.
    [85] Yang L, Sun F L, Zhang H W, et al. Influence of Ag, Cu and Additive Bi Elements on TheThermal Property of Low-Ag SAC Solder Alloys. Strategic Technology (IFOST),20116thInternational forum,2011:72~75.
    [86] Matahir M, Chin L T, Tan K S, et al. Mechanical Strength and Its Variability in Bi-ModifiedSn-Ag-Cu Solder Alloy[J]. Journal of Achievements in Materials and ManufacturingEngineering,2011,46(1):50~56.
    [87] Chen G, Ma J S, Geng Z T. Fabrication and Properties of Lead-Free Sn-Ag-Cu-Ga SolderAlloy[J]. Materials Science forum,2005,475-479:1747~1750.
    [88] Walleser J. Microstructure Control of The Tin-Silver-Copper-X Solder Alloy System ThroughNucleation Catalysis of Tin. United States, Iowa: Iowa State University,2008.
    [89] Yu Y, Xia Z D, Guo F, et al. Effects of Rare-Earth Addition on Properties and Microstructureof Lead-Free Solder Balls[J]. Journal of Electronic Materials,2008,37(7):975~981.
    [90] Hidaka N, Nagano M, Shimoda M, et al. Creep Properties and Microstructure of TheSn-Ag-Cu-Ni-Ge Lead-Free Solder Alloy[J]. Advances in Electronic Packaging2005, Pts A-C,2005,1805~1810.
    [91] Dudek M A, Chawla N. Nanoindentation of Rare Earth-Sn Intermetallics in Pb-Free Solders[J].Intermetallics,2010,18(5):1016~1020.
    [92]陈志刚. SnAgCuRE钎焊接头蠕变行为的研究,[博士学位论文].北京:北京工业大学,2003.
    [93] Liang L, Wang Q, Zhao Z Q. Effect of Cerium Addition on Board Level Reliability ofSn-Ag-Cu Solder Joint[C]. ICEPT20078th International Conference on Electronics PackagingTechnology Proceedings,2007:1~4.
    [94] Ma X, Yoshida F. Interaction Relation in60Sn-Pb-0.05La Ternary Solder Alloy[J]. MaterialsLetters,2002,56(4):441~445.
    [95] Zeng K, Stierman R, Chiu T C, et al. Kirkendall Void formation in Eutectic SnPb Solder Jointson Bare Cu and Its Effect on Joint Reliability[J]. Journal of Applied Physics,2005,97(2):024508(8).
    [96] Zhao J, Cheng C Q, Qi L, et al. Kinetics of Intermetallic Compound Layers and Shear Strengthin Bi-Bearing SnAgCu/Cu Soldering Couples[J]. Journal of Alloys and Compounds,2009,473(1-2):382~388.
    [97] Wang F J, Gao F, Ma X, et al. Depressing Effect of0.2wt.%Zn Addition into Sn-3.0Ag-0.5CuSolder Alloy on The Intermetallic Growth with Cu Substrate During Isothermal Aging[J].Journal of Electronic Materials,2006,35(10):1818~1824.
    [98]迟成宇. Bi对Sn-3Ag-0.5Cu/Cu界面组织及接头剪切强度的影响,[硕士学位论文].大连:大连理工大学,2007.
    [99] Glazunova V K, Gorbunova K M. Spontaneous Growth of Whiskers From ElectrodepositedCoatings[J]. Journal of Crystal Growth,1971,10(1):85~90.
    [100] Http://Nepp.Nasa.Gov/Whisker/.
    [101] Galyon G T. A History of Tin Whisker Theory:1946to2004[C]. SMTA InternationalConference,2004:1~11.
    [102] Tu K N. Irreversible Processes of Spontaneous Whisker Growth in Bimetallic Cu-Sn Thin-FilmReactions[J]. Physical Review B,1994,49(3):2030~2034.
    [103] Chen K, Wilcox G D. Observations of The Spontaneous Growth of Tin Whiskers on Tin-Manganese Alloy Electrodeposits[J]. Physical Review Letters,2005,94(6):066104(4).
    [104] Moon K W, Johnson C E, Williams M E, et al. Observed Correlation of Sn Oxide Film to SnWhisker Growth in Sn-Cu Electrodeposit for Pb-Free Solders[J]. Journal of ElectronicMaterials,2005,34(9): L31~L33.
    [105]石红昌,冼爱平.镀层表面锡晶须自发生长现象的研究进展[J].中国有色金属学报,2011,21(5):1021~1030.
    [106] Chuang T H. Rapid Whisker Growth on The Surface of Sn-3Ag-0.5Cu-1.0Ce Solder Joints[J].Scripta Materialia,2006,55(11):983~986.
    [107] Chuang T H, Lin H J, Chi C C. Rapid Growth of Tin Whiskers on The Surface of Sn-6.6LuAlloy[J]. Scripta Materialia,2007,56(1):45~48.
    [108]刘萌,冼爱平.无铅镀层锡晶须问题的研究进展[J].材料科学与工程学报,2009,(2):314~323.
    [109] Wu C M L, Wong Y W. Rare-Earth Additions to Lead-Free Electronic Solders[J]. Journal ofMaterials Science: Materials in Electronics,2007,18(1):77~91.
    [110] Chuang T H, Yen S F. Abnormal Growth of Tin Whiskers in A Sn3Ag0.5Cu0.5Ce Solder BallGrid Array Package[J]. Journal of Electronic Materials,2006,35(8):1621~1627.
    [111] Chuang T H. Temperature Effects on The Whiskers in Rare-Earth Doped Sn-3Ag-0.5Cu-0.5CeSolder Joints[J]. Metallurgical and Materials Transactions A: Physical Metallurgy andMaterials Science,2007,38A(5):1048~1055.
    [112] Chuang T H, Lin H J. Size Effect of Rare-Earth Intermetallics in Sn-9Zn-0.5Ce andSn-3Ag-0.5Cu-0.5Ce Solders on The Growth of Tin Whiskers[J]. Metallurgical and MaterialsTransactions A: Physical Metallurgy and Materials Science,2008,39A(12):2862~2866.
    [113] Liu M, Xian A P. Tin Whisker Growth on Bulk Sn-Pb Eutectic Doping with Nd[J].Microelectronics Reliability,2009,49(6):667~672.
    [114] Chuang T H, Chi C C. Effect of Adding Ge on Rapid Whisker Growth of Sn-3Ag-0.5Cu-0.5CeAlloy[J]. Journal of Alloys and Compounds,2009,480(2):974~980.
    [115] Dudek M A, Chawla N. Mechanisms for Sn Whisker Growth in Rare Earth-Containing Pb-FreeSolders[J]. Acta Materialia,2009,57(15):4588~4599.
    [116]郝虎,李广东,史耀武,等.稀土Y加速Sn晶须生长规律[J].焊接学报,2009,30(3):41~44.
    [117] Hao H, Shi Y W, Xia Z D, et al. Oxidization-Induced Tin Whisker Growth on The Surface ofSn-3.8Ag-0.7Cu-1.0Er Alloy[J]. Metallurgical and Materials Transactions A: PhysicalMetallurgy and Materials Science,2009,40A(8):2016~2021.
    [118] Chuang T H, Jain C C. Morphology of The Tin Whiskers on The Surface of ASn-3Ag-0.5Cu-0.5Nd Alloy[J]. Metallurgical and Materials Transactions A: PhysicalMetallurgy and Materials Science,2011,42A(3):684~691.
    [119] Liu M, Xian A P. Tin Whisker Growth on The Surface of Sn-0.7Cu Lead-Free Solder with ARare Earth (Nd) Addition[J]. Journal of Electronic Materials,2009,38(11):2353~2361.
    [120] Ye H, Xue S B, Zhang L, et al. Sn Whisker Growth in Sn-9Zn-0.5Ga-0.7Pr Lead-Free Solder[J].Journal of Alloys and Compounds,2011,509(5): L52~L55.
    [121] Lin H J, Chuang T H. Interfacial Microstructure and Bonding Strength of Sn-3Ag-0.5Cu andSn-3Ag-0.5Cu-0.5Ce-xZn Solder BGA Packages with Immersion Ag Surface Finish[J].Microelectronics Reliability,2011,51(2):445~452.
    [122] Jain C C, Chen C L, Lai H J, et al. The Inhibition of Tin Whiskers on The Surface ofSn-8Zn-3Bi-0.5Ce Solders[J]. Journal of Materials Engineering and Performance,2011,20(6):1~6.
    [123]郝虎,史耀武,夏志东,等. Sn-3.8Ag-0.7Cu-1.0Er无铅钎料中Sn晶须变截面生长现象[J].金属学报,2009,45(2):199~203.
    [124] Zhang W, Schwager F. Effects of Lead on Tin Whisker Elimination: Efforts toward Lead-Freeand Whisker-Free Electrodeposition of Tin[J]. Journal of The Electrochemical Society,2006,153(5):337~343.
    [125] Chuang T H, Lin H J. Inhibition of Whisker Growth on The Surface of Sn-3Ag-0.5Cu-0.5CeSolder Alloyed with Zn[J]. Journal of Electronic Materials,2009,38(3):420~424.
    [126] Chuang T H. Temperature Effects on The Whiskers in Rare-Earth Doped Sn-3Ag-0.5Cu-0.5CeSolder Joints[J]. Metallurgical and Materials Transactions A,2007,38(5):1048~1055.
    [127] JEDEC. Environmental Acceptance Requirements for Tin Whisker Susceptibility of Tin andTin Alloy Surface Finishes, JEDEC Solid State Technology Association2005.
    [128] Luo Z B, Zhao J, Gao Y J, et al. Revisiting Mechanisms to Inhibit Ag3Sn Plates in Sn-Ag-CuSolders with1.0wt.%Zn Addition[J]. Journal of Alloys and Compounds,2010,500(1):39~45.
    [129] Lee N C. Reflow Soldering Processes and Troubleshooting: SMT, BGA, CSP, and Flip ChipTechnologies. Newnes,2002.
    [130] Lu W, Shi Y W, Lei Y P. Effect of Ag Content on Solidification Cracking Susceptibility ofSn-Ag-Cu Solder Joints[J]. Journal of Electronic Materials,2010,39(8):1298~1302.
    [131]张启运,郑朝贵,韩万书.稀土元素对Al-Si共晶合金的变质作用[J].金属学报,1981,17(2):130~136.
    [132]王春青,李明雨,田艳红,等. JIS Z3198无铅钎料试验方法简介与评述[J].电子工艺技术,2004,25(2):47~54.
    [133] Chen S W, Lin C C, Chen C M. Determination of The Melting and SolidificationCharacteristics of Solders Using Differential Scanning Calorimetry[J]. Metallurgical andMaterials Transactions A: Physical Metallurgy and Materials Science,1998,29(7):1965~1972.
    [134]王慧.微合金化对Sn-9Zn无铅钎料钎焊性能影响及润湿机理研究,[博士学位论文].南京:南京航空航天大学,2010.
    [135]潘金生.材料科学基础[M].北京:清华大学出版社,1998.
    [136]陈念贻.键参数函数及其应用[M].北京:科学出版社,1976.
    [137] Kang S, Shih D Y, Donald N Y, et al. Ag3Sn Plate formation in The Solidification ofNear-Ternary Eutectic Sn-Ag-Cu [J]. JOM, Journal of The Minerals, Metals and MaterialsSociety,2003,55(6):61~65.
    [138] ASM Handbook Volume3: Alloy Phase Diagrams.(H. Baker). ASM International,1992.
    [139] Anderson I, Walleser J, Harringa J. Observations of Nucleation Catalysis Effects DuringSolidification of SnAgCuX Solder Joints[J]. JOM, Journal of The Minerals, Metals andMaterials Society,2007,59(7):38~43.
    [140] Kim D H, Cho M G, Seo S K, et al. Effects of Co Addition on Bulk Properties of Sn-3.5AgSolder and Interfacial Reactions with Ni-P UBM[J]. Journal of Electronic Materials,2009,38(1):39~45.
    [141] Chen Z G, Shi Y W, Xia Z D. Constitutive Relations on Creep for SnAgCuRE Lead-FreeSolder Joints[J]. Journal of Electronic Materials,2004,33(9):964~971.
    [142] Che F X, Zhu W H, Poh E S W, et al. Creep Properties of Sn-1.0Ag-0.5Cu Lead-Free Solderwith Ni Addition[J]. Journal of Electronic Materials,2011,40(3):344~354.
    [143] Zhang N, Yang F Q, Shi Y W, et al. Compression Creep of63Sn37Pb Solder Balls[J]. ActaMaterialia,2011,59(8):3156~3163.
    [144] Liu C Z, Chen J. Nanoindentation of Lead-Free Solders in Microelectronic Packaging[J].Materials Science and Engineering A: Structural Materials Properties Microstructure andProcessing,2007,448(1-2):340~344.
    [145]陈吉,汪伟,卢磊,等.纳米压痕法测量Cu的室温蠕变速率敏感指数[J].金属学报,2001,37(11):1179~1183.
    [146] Yang P F, Lai Y S, Jian S R, et al. Nanoindentation Identifications of Mechanical Properties ofCu6Sn5, Cu3Sn, and Ni3Sn4Intermetallic Compounds Derived by Diffusion Couples[J].Materials Science and Engineering A: Structural Materials Properties Microstructure andProcessing,2008,485(1-2):305~310.
    [147] Deng X, Koopman M, Chawla N, et al. Young's Modulus of (Cu, Ag)-Sn IntermetallicsMeasured by Nanoindentation[J]. Materials Science and Engineering A: Structural MaterialsProperties Microstructure and Processing,2004,364(1-2):240~243.
    [148] Liu C Z, Chen J. Nanoindentation of Lead-Free Solders in Microelectronic Packaging[J].Materials Science and Engineering: A,2007,448(1-2):340~344.
    [149] Han Y D, Jing H Y, Nai S M L, et al. Temperature Dependence of Creep and Hardness ofSn-Ag-Cu Lead-Free Solder[J]. Journal of Electronic Materials,2010,39(2):223-229.
    [150] Sarraf-torbati A, Mahmudi R, Geranmayeh A R, et al. Creep of Lead-Free Sn-3.8Ag andSn-3.8Ag-0.7Cu Solder Alloy as Replacements of Sn-Pb Solder Used in MicroelectronicPackaging. Electronic Manufacturing Technology Symposium (IEMT),200833rd IEEE/CPMTInternational,2008:1~7.
    [151] Huang M L, Wu C M L, Wang L. Creep Resistance of Tin-Based Lead-Free Solder Alloys[J].Journal of Electronic Materials,2005,34(11):1373~1377.
    [152]祝清省,张黎,王中光,等.金属间化合物Ag3Sn对Sn3.8Ag0.7Cu焊料合金拉伸性能的影响[J].金属学报,2007,43(1):41~46.
    [153] Satyanarayan, Prabhu K N. Reactive Wetting, Evolution of Interfacial and Bulk Imcs and TheirEffect on Mechanical Properties of Eutectic Sn-Cu Solder Alloy[J]. Advances in Colloid andInterface Science,2011,166(1-2):87~118.
    [154] Gao F, Nishikawa H, Takemoto T. Intermetallics Evolution in Sn-3.5Ag Based Lead-FreeSolder Matrix on An OSP Cu Finish[J]. Journal of Electronic Materials,2007,36(12):1630~1634.
    [155] Lu H Y, Balkan H, Ng K Y S. Effect of Ag Content on The Microstructure Development ofSn-Ag-Cu Interconnects[J]. Journal of Materials Science: Materials in Electronics,2006,17(3):171~178.
    [156] Laurila T, Vuorinen V, Paulasto-Kr ckel M. Impurity and Alloying Effects on InterfacialReaction Layers in Pb-Free Soldering[J]. Materials Science and Engineering: R: Reports,2010,68(1-2):1~38.
    [157] Jiang N, Clum J A, Chromik R R, et al. Thermal Expansion of Several Sn-Based IntermetallicCompounds[J]. Scripta Materialia,1997,37(12):1851~1854.
    [158] Rao B S S C, Weng J, Shen L, et al. Morphology and Mechanical Properties of IntermetallicCompounds in SnAgCu Solder Joints[J]. MicroElectronic Engineering,2010,87(11):2416~2422.
    [159] Chromik R R, Vinci R P, Allen S L, et al. Nanoindentation Measurements on Cu-Sn and Ag-SnIntermetallics formed in Pb-Free Solder Joints[J]. Journal of Materials Research,2003,18(9):2251~2261.
    [160] Anderson I E, Harringa J L. Elevated Temperature Aging of Solder Joints Based on Sn-Ag-Cu:Effects on Joint Microstructure and Shear Strength[J]. Journal of Electronic Materials,2004,33(12):1485~1496.
    [161] Henderson D W, Gosselin T, Sarkhel A, et al. Ag3Sn Plate formation in The Solidification ofNear Ternary Eutectic Sn-Ag-Cu Alloys[J]. Journal of Materials Research,2002,17(11):2775~2778.
    [162] Vianco P T, Rejent J A, Hlava P F. Solid-State Intermetallic Compound Layer Growth BetweenCopper and95.5Sn-3.9Ag-0.6Cu Solder[J]. Journal of Electronic Materials,2004,33(9):991~1004.
    [163] Yu D Q, Wang L, Wu C M L, et al. The formation of Nano-Ag3Sn Particles on TheIntermetallic Compounds During Wetting Reaction[J]. Journal of Alloys and Compounds,2005,389(1-2):153~158.
    [164] Anderson I E, Harringa J L. Suppression of Void Coalescence in Thermal Aging ofTin-Silver-Copper-X Solder Joints[J]. Journal of Electronic Materials,2006,35(1):94~106.
    [165] Kim K S, Huh S H, Suganuma K. Effects of Cooling Speed on Microstructure and TensileProperties of Sn-Ag-Cu Alloys[J]. Materials Science and Engineering A: Structural MaterialsProperties Microstructure and Processing,2002,333(1-2):106~114.
    [166] Kang S K, Shih D Y, Leonard D, et al. Controlling Ag3Sn Plate formation, inNear-Ternary-Eutectic Sn-Ag-Cu Solder by Minor Zn Alloying[J]. JOM: Journal of TheMinerals, Metals and Materials Society,2004,56(6):34~38.
    [167] Tsao L C. Evolution of Nano-Ag3Sn Particle formation on Cu-Sn Intermetallic Compounds ofSn3.5Ag0.5Cu Composite Solder/Cu During Soldering[J]. Journal of Alloys and Compounds,2011,509(5):2326~2333.
    [168]西泽泰二.微观组织热力学.(郝士明).北京:化学工业出版社,2006:151~153.
    [169]朱颖,方洪渊,钱乙余. Sn-Pb-Ce-La钎料合金的显微组织分析[J].稀土,1994,15(1):57~59.
    [170] Zhang L, Xue S B, Gao L L, et al. Effects of Rare Earths on Properties and Microstructures ofLead-Free Solder Alloys[J]. Journal of Materials Science: Materials in Electronics,2009,20(8):685~694.
    [171]郝虎.稀土相加速Sn晶须生长及Sn晶须生长机制的研究,[博士学位论文].北京:北京工业大学,2009.
    [172] Dudek M A. Microstructure, Mechanical and Oxidation Behavior of RE-Containing Lead-FreeSolders,[3354457]. United States, Arizona: Arizona State University,2009.
    [173] Chuang T H, Chi C C, Lin H J. formation of Whiskers and Hillocks on The Surface ofSn-6.6RE Alloys[J]. Metallurgical and Materials Transactions A: Physical Metallurgy andMaterials Science,2008,39A(3):604~612.
    [174] Li C F, Liu Z Q, Shang P J, et al. In Situ Investigation on The Oxidation Behavior of A RESn3Film by Transmission Electron Microscopy[J]. Scripta Materialia,2011,65(12):1049~1052.
    [175] Jiang B, Xian A P. Discontinuous Growth of Tin Whiskers[J]. Philosophical Magazine Letters,2006,86(8):521~527.
    [176] Lebret J B, Norton M G. Electron Microscopy Study of Tin Whisker Growth[J]. Journal ofMaterials Research,2003,18(3):585~593.
    [177] Susan D, Michael J, Grant R, et al. Tin Whiskers: Electron Microscopy and EBSDCharacterization[J]. Microscopy and Microanalysis,2010,16(S2):792~793.
    [178] http://crystdb.nims.go.jp/crystdb.
    [179] Hao H, Xu G C, Song Y L, et al. A Model for Rapid Tin Whisker Growth on The Surface ofErSn3Phase[J]. Journal of Electronic Materials,2012,41(2):184~189.
    [180] Barsoum M W, Hoffman E N, Doherty R D, et al. Driving Force and Mechanism forSpontaneous Metal Whisker formation[J]. Physical Review Letters,2004,93(20):206104(4).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700