混流式水泵水轮机驼峰区数值模拟及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泵水轮机的泵工况特性曲线上存在驼峰区,对泵工况稳定运行造成不利影响。为此水泵水轮机用户在标书和合同上通常对泵工况特性的驼峰区安全裕度做出严格规定。为避免水泵水轮机泵工况运行进入驼峰区,有必要对水泵水轮机泵工况驼峰区特性进行深入研究。本文采用试验研究和数值模拟相结合的方法,对水泵水轮机在驼峰区运行时转轮内部流动以及对机组的影响进行了详细的研究。
     首先对水泵水轮机模型在泵工况下,取不同导叶开口进行了能量特性和驼峰区压力脉动试验。绘制出水泵水轮机泵工况能量特性曲线,获得了某开口泵工况在不同流量下转轮进口流态的特征,并对驼峰区工况下水泵水轮机蜗壳出口、导叶后转轮前、顶盖和转轮之间、锥管上游和锥管下游、肘管上游和肘管下游7个测点进行了压力脉动试验。
     而后,应用定常、不可压缩的三维Navier—Stokes方程以及RNG k-ε湍流模型对水泵水轮机泵工况进行了单流道和全流道的三维湍流流场计算与分析,预测了水泵水轮机泵工况的扬程,并与水泵水轮机泵工况在相关开口下的试验值进行了比较。分析结果指出:随着流量减小,水泵水轮机转轮出口靠近上冠处出现的流动分离、从导叶进口流向转轮出口的二次回流、尾水管直锥段靠近转轮进口处出现的正旋流动、转轮叶片负压面出口相对速度大小和方向的变化对水泵水轮机泵工况特性曲线驼峰区的形成有重要影响;若在水泵水轮机水力设计中对导叶和上冠型线进行优化设计、采取措施延迟或减小转轮进口回流的出现和发展,则有可能大大提高水泵水轮机泵工况在驼峰区的性能。
     本研究成果为进一步研究水泵水轮机泵工况驼峰区特性,改进水泵水轮机泵转轮水力特性提供了依据。
On the characteristic curve of the pump mode of pump-turbine there is a hump district,which will affect the stable operation of the pump mode.For this reason,in the pump-turbine tenders and contracts strict rules were usually made for the hump safety margin of the pump mode. In order to avoid the operation in the pump mode of pump-turbine getting into the hump zone,it is necessary to conduct an deep research on this.In this paper,experimental study and numerical simulation were used to make a detailed study for the internal flow of the runner as well as the effects to the unit when pump-turbine was operated at the hump zone.
     Firstly,energy characteristics and the pressure fluctuation test were made in pump mode of the pump-turbine at different openings of the guide vanes.The energy characteristic curve was drawn in pump mode of the pump-turbine,and the image of the flow pattern at the runner inlet was obtained at a certain guid vanes opening. Pressure fluctuation test was made at the outlet of the volute,between runner and guide vanes,between head cover and runner,at the upstream and downstream of cone, at the upstreamand downstream of the elbow when the pump-turbine was operated at hump zone.
     Secondly,three-dimensional turbulent flow field calculation and analysis of both one flow passage and whole flow passage in pump mode of pump-turbine were finished by using permanent and incompressible three-dimensional Navier-Stokes equations and the RNG k-εmodel,the delivery lift in pump mode of pump-turbine was predicted and was compared with the test results at relevant guide vanes openings. Analysis pointed out that:with the reducing of flow,the flow separation near the crown of the runner outlet of pump-trbine,the senondary flow from the inlet of guide vanes to the outlet of runner, the positive rotary at the cone of the draft tube near the runner inlet and the size and direction of relative velocity changes at the outlet of the suction surface of the runner blades had an important impact on the formation of the hump zone on the characteristic curve in the pump mode of pump-turbine.If the design of the molded line of the guide vanes and crown is optimized in the design of pump-turbine, at the same time, measures to delay or reduce the appearance and the development of the back flow at the inlet of the runner are taken, the performance in pump mode of the pump-turbine in the hump are may be greatly improved.
     The results of this study provided a basis for further research of hump area characteristics and improving the hydraulic characteristics of pump-turbine runner in pump mode.
引文
[1]陶喜群.做好技术储备迎接抽水蓄能电站建设高潮[J].东方电机,2007(2)
    [2]端润生.我国抽水蓄能电站建设及机组国产化进程[J].水利水电技术,2007(1)
    [3]端润生.我国的抽水蓄能电站建设和主机设备研制[J].水电站机电技术,2004(1)
    [4]周家骢,端润生.加快我国抽水蓄能机组国产化进程的思考[J].水力发电,2003(7)
    [5]陶喜群.抽水蓄能机组国产化的技术储备[J].东方电气评论,2007(6)
    [6]曹楚生.我国水利水电发展的新理念[J].水利水电技术,2007(1)
    [7]张乐福.抽水蓄能主要发电设备的市场状况[J].电力设备,2006(10)
    [8]梅祖彦编著.抽水蓄能发电技术[M].北京:机械工业出版社,2000.7
    [9]张克危主编.流体机械原理[M].北京:机械工业出版社,2000.5
    [10]栾鸿儒主编.水泵及水泵站[M].北京:水利电力出版社,1996.6
    [11]关醒凡编著.泵的理论及设计[M].北京:机械工业出版社,1987.2
    [12]袁寿其著.低比速离心泵理论及设计[M].北京:机械工业出版社,1997.5
    [13]Andreas S,刘诗琪译.可逆式水泵水轮机转轮更换的CDF设计方法.国外大电机,1999,(4):71—73
    [14]AelXandruB,胡清娟译.混流式水轮机和水泵水轮机转轮水力损失的试验研究.国外大电机,1994(11):62-65
    [15]Qi an Y,林琼译.采用区域技术对水泵水轮机进行三维不稳定流模拟的多叶道计算.国外大电机,2000,(4):79—82
    [16](瑞士)Klaus Eisele等.水泵水轮机流道内不稳定性试验和数值研究[J].国外大电机,2000(3)
    [17]Ciocan G D,赵越译.水泵水轮机转动部分一非转动部分联合作用的不稳定流分析与试验研究.国外大电机,2000,(2):60-64
    [18]Gabriel Dan CIOCAN,Jean Louis KUENY.Experimental Analysis of rotor-Stator Interaction in a Pump-Turbine.23rd IAHR symposium,Yokohama,October 2006.
    [19]Alex GUEDES,Jean-Louis KUENY, Gabriel Dan CIOCAN, Francois AVELLAN,UNSTEADY ROTOR-STATOR ANALYSIS OF HYDRAULIC PUMP-TURBINE-CFD AND EXPERIMENTAL APROACH. Proceedings of the ⅩⅪst IAHR Symposium on Hydraulic Machinery and Systems September 9-12, 2002, Lausanne.
    [20]R.Blanc-Coquand,S.Lavigne,JL.Deniau.Experimental and Numerical Study of Pressure Fluctuation in High Head Pump-Turbine.Hydraulic Machinery and Systems 20th IAHR Symposium.
    [21]姚志民.混流式水泵水轮机水轮机工况轴面水流的运动特性动力工程,1983.(1):40—46
    [22]张兰金.大型混流式水泵水轮机转轮的研究.中国农业大学,博士学位论文,2007.6
    [23]端润生,梅祖彦.混流可逆式水泵水轮机全特性[J].
    [24]徐宇,唐学林,吴玉林.水泵水轮机转轮内水泵工况紊流分析[J].水力发电学报,2000(3)
    [25]覃大清,张乐福.关于水泵水轮机最高扬程驼峰区安全裕度选取的建议[J].大电机技术,2006(3)
    [26]纪兴英,赵凌志,刘胜柱.混流式水泵水轮机三维湍流数值模拟[J].大电机技术,2008(1)
    [27]张兰金,纪兴英,常近时.水泵水轮机泵工况转轮流场分析[J].农业机械学报,2008(4)
    [28]冉红娟,许洪元,罗先武,刘树红.可逆式水轮机的数值模拟与性能分析[J].大电机技术,2008(4)
    [29]赵汉中主编,工程流体力学[M].武汉:华中科技大学出版社,2006.9
    [30](挪威)Kristin Pettersen,郭彦峰译.可逆式水泵水轮机(RPT)流动特性曲线急剧变化的解析[J]
    [31](瑞士)MiriamSick,陈浩亮译.水泵水轮机尾水管中涡带的研究[J].国外大电机,2006(1)
    [32]王国玉,左志钢,曹树良,赵令家,曹彬.水泵水轮机转轮内部三维紊流流场计算与性能分析[J].水利水电技术,2001(5)
    [33]杨琳,陈乃祥,樊红刚.水泵水轮机转轮全三维逆向设计方法[J].清华大学学报(自然科学版),2005(8)
    [34]杨琳,陈乃祥,樊红刚.水泵水轮机全流道双向流动三维数值模拟与性能预估[J].工程力学,2006(5)
    [35]王正伟,周凌九.RSI现象的不稳定流动模拟[J].清华大学学报(自然科学版)2001(10)
    [36]杨琳,红刚,陈乃祥.基于涡动力学的可逆转轮双向流动诊断及优化设计[J].清华大学学报(自然科学版),2007(5)
    [37]徐岚,崔桂香,许春晓,张兆顺,陈乃祥.可逆转轮单通道流动大涡模拟[J].水力发电学报,2007(4)
    [38]房玉亭,李胜兵,黄祖光.对水泵水轮机模型实验要求的认识[J].水力发电,2006(3)
    [39]徐广文,郑源,周晓艳.水泵水轮机_S_特性对机组水头低时发电影响及对策分析[J].西北水力发电,2007(2)
    [40]胡旭光.水泵水轮机不稳定运行的初步探讨[J].水电站机电技术,2001(2)
    [41]周嘉元,郑慧娟.水泵水轮机的“S”形特性及对机组性能的影响[J].水电能源科学,2006(4)
    [42]李胜兵.水泵水轮机模型验收试验的几点体会[J].水力发电,2002(1)
    [43]李莉萍.水泵—水轮机模型试验研究与实践.华中科技大学,硕士学位论文,2006.9
    [44]史宏超,李意民.离心泵进口回流及其控制的研究[J].水泵技术,2000(1)
    [45]刘甲凡.离心泵叶轮前的预旋与回流[J].水泵技术,1997(5)
    [46]刘甲凡.改善低比转数泵可靠性的途径[J].流体机械,1998(1)
    [47]Christophe Nicolet, Nicolas Ruchonnet*, Francois Avellan. One-Dimensional Modeling of Rotor Stator Interaction in Francis Pump-Turbine.23rd IAHR Symposium, Yokohama,October 2006.
    [48]Alireza Zobeiri*, Jean-Louis Kueny, Mohamed Farhat, Francois Avellan. Pump-Turbine Rotor-Stator Interactions in Generating Mode:Pressure Fluctuation in Distributor Channel.23rd IAHR Symposium,Yokohama,October 2006.
    [49]Gabriel Dan Ciocan*, Jean Louis Kueny. Experimental Analysis of Rotor-Stator Interaction in a Pump-Turbine.23rd IAHR Symposium,Yokohama,October 2006.
    [50]Michel Toussaint. Analysis of Unsteady Flow in a Centrifugal Pump at Off-Design Point Operation.23rd IAHR Symposium,Yokohama,October 2006.
    [51]R.K.Fisher,C.Powell,G.Frank.Contributions to the improved understanding of the dynamic behavior of pump turbines and use thereof in dynamic design.22nd IAHR Symposium on Hydraulic Machinery and Systems June 29-July 2,2004 Stockholm-Sweden
    [52]Bjarne BORRESEN jr,Sverre Dahl KNUTSEN.NUMERICAL COMPUTATION OF THE PUMP TURBINE CHARACTERISTICS. Proceedings of the ⅩⅪst IAHR Symposium on Hydraulic Machinery and Systems September 9-12,2002, Lausanne
    [53]Masamichi IINO,Kazuhiro TANKA,Kazuyoshi MIYAGAWA.NUMERICAL ANALYSIS OF UNSTABLE PHENOMENA IN A CENTRIFUGAL PUMP. Proceedings of the ⅩⅪst IAHR Symposium on Hydraulic Machinery and Systems September 9-12,2002, Lausanne
    [54]Jose Gonzalez, Carlos Santolaria. Unsteady Flow Structureand Global Variables in a Centrifugal Pump[J]. Journal of Fluids Engineering,2006(9)
    [55]S. O. Kraus, R. Flack, A. Habsieger, G. T. Gillies, K. Dullenkopf. Periodic Velocity Measurementsin a Wide and Large Radius Ratio Automotive Torque Converter atthe Pump/Turbine Interface[J]. Transactions of the ASME,2005(3)
    [56]G.V. Loganathan, C. Moore. Operating Policy for a Pumped Storage Hydropower System[J]. Watershed Management 2000,2004
    [57]JiFi Spidla'. New Conception of Performance Predictions of Hydraulic Machines[J]. Waterpower 1999
    [58]James E. Gilesl and Walter O. Wunderlich. HOURLY PUMPED-STORAGE MODELING WITH MICROCOMPUTER[J].
    [59]Katsuhiro Oshima', Juichiro Kawai', Shiro Otsuka', Toshiro Wada', Haruo Imario. Development of Pump-Turbine for Seawater Pumped Storage Power Plant[J]. Waterpower 1999
    [60]G. Caralis and A. Zervos. Analysis of the combined use of wind and pumpedstorage systems in autonomous Greek islands[J]. IET Renew Power Gener.,2007(1)
    [61]Bumsoo Han, R. J. Goldstein. A Numerical Study of Energy Separation in a Jet Flow[J]. Journal of Heat Transfer,2007(11)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700