带观测窗的高温高压生物培养釜结构分析与补强研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪,人类将进入海洋经济的时代。深海开发不仅对于海洋生物、微生物、海洋矿产以及其它资源的开发是必不可少的,而且对于地球结构和运动的地质研究是必须的。在海底热液环境与深海生物活动模拟实验研究中,支撑技术的的重要性是无可替代的。通过对极端环境模拟系统中培养釜的研制,将解决我国深海生物及其基因资源研究开发中一个重要技术瓶颈。同时,将提高我国极端环境重大装备开发的能力,积累从元部件到系统开发的原始创新能力。
     针对设计的培养釜必须具有以下功能:能够承受极端环境的高温(0~400℃)高压(0~60MPa);操作便捷,快速开启功能;密封安全可靠。论文结合ANSYS有限元分析方法对培养釜的两项关键技术进行了深入研究。
     首先研究分析了支撑环结构的接触压力分布,得出了三角形分布更为符合实际接触应力分布的结论。在此基础上,基于准等强度准则的分析设计方法,对支撑环结构进行了优化分析,使筒体各部分应力分布更加合理,安全裕度趋于一致,在保证培养釜安全可靠的情况下,同时也降低了设计制造成本。
     然后分别以圆形开孔补强结构和长椭圆形开孔补强结构为研究对象,研究了内压圆柱形容器不同开孔方式的应力分布和应力集中问题,得出一些有参考价值的结论,并将之应用于微生物培养釜的开孔结构设计中,取到了较好的应用效果。
     最后选取单釜平台系统进行了仿真分析,研究了深海极端环境模拟系统集成性能,为展开系统性能进一步的分析研究打下了基础。并完成了深海极端环境模拟系统的集成与调试工作,进一步考察系统的各种性能,完全达到了课题要求。
In the 21st century, mankind will enter the ocean economy era. The deep-sea development not only for marine organisms, microbes, marine mineral and other resource development is essential, but also for the Earth's geological structure and motion studies are necessary. In the deep-sea hydrothermal environment and simulation study of biological activity, the importance of supporting technology is no substitute. Through the development of extreme environment simulation system, important technical bottlenecks in the field of our deep-sea organisms and their genetic resources research & development will be resolved. New parts and components with international advanced level will be developed for deep-sea extreme environmental conditions, such as control valves, sensors, cultivating vessel, on-line inspection devices. Self-development capacity and basic industrial capacity in this area of our country will be promoted. At the same time, the capacity of China's developing major equipments for extreme environment will be enhanced. Also, from the components development to the systems development, the original innovation will be accumulated.
     For the design of the cultivating vessel must have the following features: the ability to withstand extreme environments of high temperature (0~400℃) high-voltage (0~60MPa); Operation of convenient, fast turning function; sealed safe and reliable. The thesis has developed two key technologies of cultivating vessel conducted in-depth study with ANSYS finite element analysis.
     First, the contact pressure distribution of the supporting ring structure was researched and analyzed; triangular distribution of contact stress distribution is more realistic conclusions. On this basis, based on the criteria of equal strength quasi-analysis and design methods, supporting ring structure was optimized, so that all parts of the stress distribution of cylinder is more reasonable and margin of safety are consistent. In ensuring safety and reliability of cultivating vessel, the cost of design and manufacturing was reduced.
     Then, taking respectively circular opening reinforcement structure and a long oval opening reinforcement structure as the research object to study the cylindrical pressure vessels of different methods of stress distribution and the hole stress concentration problem, drawing some reference value conclusions, and the using in open-cell structure design of microbial cultivation, better application effects was got.
     Finally, selecting the single reactor system for the simulation platform, in order to expand system performance for further analysis and study, the performance simulation of the deep-sea extreme environments system was analyzed and researched. And the deep-sea extreme environments simulation system integration and commissioning work were completed to examine a variety of system performance, fully meting the requirements of the subject.
引文
[1]Wu Shiying.The Hydrothermal Supine Resource at Sea Floor of the world[M].Beijing:Oceanic Press,2000.1-290.吴世迎.世界海底热液硫化物资源[M].北京:海洋出版社,2000.1-290.
    [2]Zeng Zhigang,Qin Yunshan.Contribution of ocean drilling to the study of seafloor hydrothermal activity[J].Advances in Earth science,2003,18(5):764-772.
    曾志刚,秦蕴珊.大洋钻探对海底热液活动研究的贡献[J].地球科学进展,2003,18(5):764-772.
    [3]Gotthilf Hempel.Ocean and Polar Sciences:Grand Challenges for Europe.Gustav fetcher werlag,1996.1-375.
    [4]Kuriyama Akira.Et AI.(Canon Inc).Purification and Recovery of Microorganism.Pub.No.:7-135962[JP7135962A].Application No.:05-307096[JP93307096].
    [5]Yokochi Toshihiro(Agency of Ind.Science & Technology).Separation of marine Bacterium.Pub.No.:200-060539[JP2000060539A].Application No.:10-241504[JP98241504].
    [6]]Anada Kuazhiko.Culture of Mineral oil-Derogative Microorganism.Pub.No.:2000-189153[JP2000189153A].Application No.:10-36476[JP98364763].
    [7]Kinoshita Teuro.Marine Plankton Culture Unit.Pub.No.:10-098973[JP10098973A].Application No.:08-292179[JP96292179]Yamagata Tamitoshi (Marubishi Baioenji Kk).Culture Apparatus For Deep-Sea Microorganism.Pub.No.:63-267262[JP63267262A].Application No.:62-102471[JP87102471].
    [8]Inada Tetsuya et al(Japan Marine Science and Technology Center Development of the continuous culturing system under high hydrostatic Pressure by using the Deep-sea Baro/ThemorPhile Collecting and Cultivating System.Kaiyo Kagaku Gijutsu Senat Shiken Kenkyu Hokoku(Report of Japan Marine Science and Technology Center),1997,35:57-64.
    [9]Yamagata Tamitoshi(Marubishi Baioenji Kk).Culture Apparatus for Deep-sea Microorganism.Pub.No.:63-267262[JP63267262A].
    [10]Kang Ding and William E.Seyfried Jr.Direct PH Measurement of NaCI-Bearing Fluid with an in Situ Sensor at 400℃ and 40 Megapascals Science 1996 June 14;272:1634-1636.
    [11]侯继伟.深海极端环境模拟平台电液比例压力控制技术研究.14-17.
    [12]李世伦,候继伟,叶树明等.深海极端环境模拟研究平台控制系统研究.浙江大学学报(工学版),2005,39(11):1769-1772.
    [13]蒋凯,叶树明,陈杭等.海底极端环境模拟装置及其远程监控.仪器仪表学报,2006,27(9):1095-1099.
    [14]叶树明,张建文,李世伦.高温高压传感器检测校正平台温度控制技术研究.测控技术,2003,22(12):34-44.
    [15]魏丽萍,李世伦,陈鹰.应用深海微生物高压流动培养系统采样的建模与仿真研究.液压与气动,2005,7:13-16.
    [16]姚玉峰,黄博,孙以泽.深海微生物培养装置研究.机床与液压,2006,2:124-125.
    [17]Yi Zhang,Kishore K Gangwani,Richard M Lemert.Sorption and swelling of block copolymers in the presence of supercritical fluid carbon dioxide Journal of Supercritical Fluids[J].Journal of Supercritical Fluids,1997,11:115 - 134.
    [18]Lewis J E,Biswas R,Robinson A G,et al.Local density augmentation in supercritical solvents:electronic shifts of anthracene derivatives[J].J.Phys.Chem.B,2001,105(16):3306.
    [19]Ronghua Zhang,Shumin Hu.Hydrothermal study using a new diamond anvil cell with in situ IR Sethia S,Squillante E.Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods.Int J Pharm.,2004 Mar 19;272(1-2):1-10.
    [20]Florence Pradillon,Bruce Shillito,Jean-Claude Chervin,et al.Pressure vessels for in vivo studies of deep-sea fauna.High Pressure Research,2004,24(2):237 - 246.
    [21]Peter R.Girguis,Raymond W.Lee.Thermal Preference and Tolerance of Alvinellids.Science,2006,312:231.
    [22]Alexander.Malahoff,Todd Gregory,Arnaud Bossuyt,et al.A Seamless System for the Collection and Cultivation of Extremophiles From Deep-Ocean Hydrothermal Vents.IEEE JOURNAL OF OCEANIC ENGINEERING,2002,27(4):862-869.
    [23]邵国华,魏兆灿等.超高压容器.化学工业出版社,2002.
    [24]琚定一.化工容器设计.湖北科学技术出版社,1985.
    [25]路甬祥等.中国材料工程大典.机械工业出版社,2000.
    [26]张康达,洪起超.压力容器手册[M1.北京:劳动人事出版社,1987.
    [27]朱国辉,郑津洋.新型绕带式压力容器.[M].北京:机械工业出版社,1995.
    [28]蔡世民.压力容器设计指南.[M].北京:化学工业出版社,1994.
    [29]安继儒.中外常用金属材料手册.[M].陕西:陕西科学技术出版社,2001.
    [30]《化工设备设计手册》编写组.高压设备.上海:上海人民出版社,1973
    [31]GB150-1998((钢制压力容器》
    [32]蒋伟华,陈志平.基于O形橡胶圈密封的高压容器设计和研究,2006.
    [33]LIU DongXue,J IANG XiaoDong.Extended full stress design of the nozzles of spherical vessels for space flight.Journal of Chemical Mechanics,1999,26(5):271-274(In Chinese)(刘东学,江晓东.宇航用球形容器接管部位广义满应力设计.化工机械,1999,2(5):271-274).
    [34]高炳军等:准等强度原则下压力容器不连续区的优化设计.
    [35]JB 4735-95《钢制压力容器-分析设计标准》
    [36]GB150-1998《钢制压力容器-标准释义》
    [37]《化工设备基础》,刁玉玮,王立业,喻健良编著,大连理工大学出版社
    [38]《钛制化工设备》,《化工设备设计全书》编辑委员会,黄嘉彪,应道宴等编,化学工业出版社
    [39]《美国压力容器规范分析-ASME Ⅷ1和Ⅷ-2》,丁伯民著,华东理工大学出版社
    [40]《ASME压力容器设计指南》第二版,[美]James R.Farr Maan H.Jawad著,郑津洋,徐平,方晓斌等译,化学工业出版社
    [41]《特殊压力容器》,郑津洋,陈志平编著,化学工业出版社
    [42]《机械设计手册》第五版
    [43]《ASME锅炉及压力容器规范国际性规范 规范案例(锅炉及压容器)(2004中文版)》
    [44]王新华魏源迁等水压传动技术发展的现状及其应用前景机床与液压2003(6):3
    [45]倪栋,段进,许久成等.通用有限元分析ANSYS7.0实例精解.电子工业出版社.2003.
    [46]尚晓江,邱峰,赵海峰等.ANSYS结构有限元高级分析方法与范例应用.中国水利电出版社.2003.
    [47]博嘉科技等.有限元分析-ANSYS融会与贯通.中国水利电出版社.2002.
    [48]刘涛,杨凤鹏等.精通ANSYS.清华大学出版社.2002.
    [49]Kyo Masanori(Japan Marine Science and Technology Center);TEZUKA HISAO (Mitsubishi Heavy Industries,Ltd.) Special issue:Deep sea." Deep sea microorganism experiment system,,.Kobe Shipyard and Engine Works Ran (Bulletin of the Kansai Society of Naval Architects),1994,22:14-18.
    [50]Yanagibayashi Miki et al(Japan Marine Science and Technology Center).Changes in bacterial community in Japan Trench sediment during cultivation without decompression.JAMSTEC Shinkai Kenkyu(JAMSTEC Journal of Deep Sea Research),1999,14:553-560.
    [51]KYO MASANORI Deep-sea floor microgram is sampled.Development of a pressure keeping type deep-sea floor microorganism sampler.JAMSTEC(Japan Mar Sci Techno Cent),1990,1:15-21.
    [52]朱国辉,郑津洋.新型绕带式压力容器.北京:机械工业出版社,1995
    [53]蔡仁良,顾伯勤,宋鹏云.过程装备密封技术.北京:化学工业出版社,2002
    [54]陈平,朱国辉.新型快拆单通道高压自紧密封机构.化工机械.1994,21(4).198-204
    [55]郑津洋,徐平,王乐勤等.新型全自紧式高压密封装置强度设计.化工机械.1994,21(3):149-153
    [56]A.F.George,A.Strozzi,J.I.Rich.Stress Fields in a Compressed Unconstrained Elastomeric 0-ring Seal and a Comparison of Computer Predictions and Experimental Results.Tribology International.1987,2005):237-247
    [57]Artur Karaszkiewicz.Geometry and Contact Pressure of an O-ring Mounted in a Seal Groove.Industrial & Engineering.Chemistry Research.1990,2900):2134-2137
    [58]Itzhak Green,Carpel English.Analysis of Elastomeric 0-ring Seals in Compression Using the Finite Element Method.Tribology Transactions.1992,35(1):83-88
    [59]A.N.Gent,W.Kim.Bulging of Rubber through Apertures.Rubber Chemistry and Technology.1991,64:813-821
    [60]胡殿印,王荣桥.橡胶0形圈密封结构的有限元分析.北京航空航天大学报.2005,31(2):255-260.
    [61]Manfred Achenbach.Service Life of Seals-numerical Simulation in Sealing Technology Enhances Prognoses.Computational Materials Science.2000,19:213-222.
    [62]Yu Suyuan,Liu Junjie,Zuo Weidong,He Shuyan.Sealing Behavior of theHTR-10 Pressure Flanges.Nuclear Engineering and Design.2002,216(7):247-253.
    [63]董志峰、李新萍等.基因工程与海洋药物研究.海洋科学.1998.1:16-20.
    [64]徐怀恕、张晓华.海洋微生物技术.青岛海洋大学学报.1998.25(4):574 581.
    [65]郭跃伟.欧洲海洋药物的研究现状及对我国海洋药物研究的启示.中国新药杂志.2001.10(2):81-84
    [66]刘宝庆,蒋家羚.浙江大学化机研究所.1995,14(2).65-69
    [67]刘林森深海微生物研究概况国外科技.1992(6)31-32
    [68]陈秀兰等(山东大学微生物技术国家重点实验室).深海微生物研究进展.海洋科学,2004,28(1):61-66.
    [69]张建文,高温高压模拟平台控制技术研究,浙江大学硕士学位论文,2004.2
    [70]魏丽萍,深海微生物培养系统流动体系的建模与仿真,2004.2.
    [71]秦华伟,海底表层样品低扰动取样原理及保真技术研究,2005.4.
    [72]许锐冰,高压釜有限元分析,2005.10.
    [73]蒋凯,高温高压极端环境模拟装置及其控制策略研究,2007.4.
    [74]姜学艳,GYF3000型超高压水晶釜筒体自增强处理有限元仿真与残余应力分析,2007.6.
    [75]张胜民.基于有限元软件ANSYS7.0的结构分析[M].北京:清华大学出版社.2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700