空化水射流声震效应促进煤层瓦斯解吸渗流机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤矿开采深度的越来越大,含瓦斯煤层微孔隙、低渗透性、高吸附的赋存特征越来越显现出来,在实施“先抽后采”的煤及煤层瓦斯井下双能源开采过程中,瓦斯难以抽采所导致的煤矿瓦斯事故、环境污染和能源浪费等问题是困扰煤矿生产的主要问题。
     国内外专家对煤层气开采激励技术进行了相当广泛的研究,其强化措施主要包括煤层造穴、水力压裂、注气和物理场激励等。声震法是一种有效的强化提高煤层气抽采率的技术,可控声震法在现场的应用工艺还不够成熟,难以推广。但是利用高压水射流割缝卸压技术在现场的应用已经比较成熟,现场应用较为广泛,这种淹没状态下的水射流往往会发生空化现象,空泡的溃灭会产生巨大的空化噪声,目前国内外对利用此空化效应所产生的噪声波促进煤层瓦斯解吸渗流的研究还处于空白。
     本文结合国内外在低透气性煤层强化煤层瓦斯抽采的研究现状,依托国家自然科学基金委员会专项创新群体基金项目“高压水射流破岩理论及其在地下工程中的应用基础研究”(项目编号:50621403,50921063),以西南地区煤矿为研究对象,运用实验研究、理论推导和数值模拟相结合的方法研究了空化水射流空化效应产生机理、空化噪声频谱特性、传播衰减和热效应,并进行了空化效应促进煤层瓦斯解吸渗流的实验研究,最后研究了空化水射流空化声震作用下煤层瓦斯解吸渗流机理和现场应用。
     本文所研究内容及获得的结论主要包括以下几个方面:
     ①对空化效应产生的可视化实验和数值模拟研究表明,空化水射流空泡云的发育过程都经历了空泡云的膨胀、压缩、再膨胀、压缩、溃灭的几个过程。缩放型喷嘴中空化产生点在喉管和扩散段边界层的位置,在有悬浮物的具有一定速度的淹没液中,空化则发生在与速度垂直的悬浮物两侧。上述两种方法所获得的空泡云与泵压、围压的关系是相吻合的:空泡的产生随射流泵压和围压而变化,泵压越大,空化效果越明显,围压对空泡的产生存在最佳值。
     ②通过对空泡溃灭的噪声波的频谱特性的研究,得到空化噪声波可以用单指数模型、双指数模型以及脉冲序列模型来表示,但脉冲序列模型能够更好的表示空化噪声波的特性。噪声波在煤层中传播将会导致煤层温度升高,从而促进煤层瓦斯解吸渗流。
     ③对空化水射流的空化振动测试实验表明,空化现象发生以后,气穴溃灭时噪声振动的频段很宽,在2000-10000Hz,说明空化腔中空化气泡半径在尺度上有很大差异,振动在5400-6800Hz之间出现了一段振动频率的峰值,说明气泡在此溃灭半径范围内的存在更加集中。振动频率越集中,对煤层瓦斯解吸渗流影响更加显著。
     ④对空化水射流的空化效应促进煤层瓦斯解吸的实验研究表明,空化效应的产生对煤层瓦斯解吸渗流都有促进作用。与未加空化效应的煤样解吸相比,当施加空化数为0.0038的空化声震时,煤样解吸时间缩短16.4%,解吸量增加率为22.6%。
     ⑤通过对煤层吸附瓦斯的微观特性和空化声震促进煤层瓦斯解吸渗流的机理研究表明,吸附势垒是由煤大分子结构和瓦斯气体的性质决定的,瓦斯分子的吸附势垒越深,脱附时需要的能量越大,吸附量就越大,而脱附所需要的能量由气体分子的碰撞或升高温度来提供,为了能够离开煤的表面,解吸成为自由气体,瓦斯气体分子必须至少获得吸附时损失的那部分能量才能脱离煤体的作用。空化声震主要是通过机械振动效应、热效应和致裂损伤效应来促进煤层瓦斯解吸渗流的。空化声震的施加,机械振动效应降低了煤层骨架应力,致裂损伤效应提高煤层的孔隙度,煤层系统温度的升高提供了煤层瓦斯解吸的活化能,它们共同作用强化了煤层瓦斯的解吸渗流。
     ⑥现场试验表明,利用高压水射流钻孔割缝及空化声震强化瓦斯解吸后,单孔最高瓦斯抽采浓度提高27.3倍,最高纯瓦斯抽放量提高15倍。与相同赋存条件下的石门揭煤工程相比,其瓦斯预抽时间降低45.27%。瓦斯预抽钻孔数量减少30.5%,钻孔进尺减少33.7%。
     本论文的主要创新之处在于:
     ①首次进行了高压水射流空化现象全过程的可视化研究,确定了泵压、围压对空化效应的影响规律,揭示了空泡云的孕育、发展、溃灭机理及聚能特征。
     ②创新性地提出将高压水射流空化声震效应用于强化煤层瓦斯解吸渗流进而提高煤层瓦斯抽采率的新思路,利用自行研制的空化声震促进煤层瓦斯解吸渗流实验装置,建立了空化水射流参数与煤层瓦斯解吸渗流之间的关系模型。
     ③确立了空化噪声波频谱特性优化描述模型及传播衰减规律,得出了空化噪声波温度效应的能量方程及机械振动效应的致裂损伤模型,揭示了空化水射流声震效应促进煤层瓦斯解吸渗流机理,为高压水射流空化效应促进煤层瓦斯解吸渗流的理论研究及工程应用奠定了理论和实验基础。
With the increasing depth of coal mining,the intrinsic properties of coal seams (micro-porosity, low permeability and high adsorption) become more apparent. It’s difficult to execute gas drainage in the process of coal-gas dual-energy mining, which often causes ethane explosion, environment pollution and energy wasting. So far, many techniques have been studied to improve gas drainage, such as caving, hydraulic fracture, CO2 injection and physical field excitation. Sonic vibrating method is deems as promising, it can increase the methane drainage rate efficiently; however, it is hard to further promote for it’s immature technical process. Thanks to the technology of water jet with high pressure, this problem can be solved effectively, because cavitation water jet in the situation of submergence can produce noise when bubble collapse, and this noise can promote methane desorption and seepage. No research has been reported about how sonic vibrating of cavitation water jet promotes methane desorption and seepage although this technology has been widely adopted in coal seams slotting.
     In the paper, the mechanism of cavitation, spectral characteristics of cavitation noise, propagation model and heat effect are researched by lab experiment, theoretic analysis and numerical simulation, then how cavitation promotes the methane desorption and seepage is studied via experiment.Finally, the mechanism of gas desorption and seepage under sonic vibrating of cavitation water jets and field test is studied theoretically., some conclusions are arrived as follows.
     ①The growth of bubble cloud includes swelling and compressing, reinflating and recompressing, collapsing and falling in the cavitation water jets. Cavitation develops on the boundary layer between throat and diffusion section of Convergent-divergent nozzle. In the submerged suspended-particulate, cavitation develops on both sides of suspended-solid at vertical speed orientation. The result of numerical simulation is close to that of experimental method: The cavitation bubble changes with pump pressure and confining pressure, larger the pump pressure is, cavitation develops more obviously; and suitable confining pressure could produce the perfect bubble.
     ②The noise of bubble collapse can be described by single index model, double exponential model or pulse sequence model, but the pulse sequence model can better express the characteristics of cavitation noise waves. Propagation of noise will raise coal temperature and promote methane desorption and seepage.
     ③The experiment of vibration of cavitation shows that the frequency band of cavatation vibration is wide, 2000-10000Hz, when bubble collapse, it means the size of bubble is variable. Additionally, there exists concentrated bubble diameter at the frequency from 5400 to 6800Hz. Vibration frequency of the more concentrated impact on the coal seam gas desorption flow is more significant.
     ④The experiments show that cavitation can effectively promote the methane desorption and seepage. Compared with the situation of no cavitation, desorption time of coal gas shortens by 16.4% and desorption quantity increases by 22.6% when cavitation number is 0.0038.
     ⑤Adsorption barrier is decided by macromolecular structure of coal and components of gas, the deeper adsorption barrier is, the more energy is needed when desorption, and absorption mount is larger. The energy of desorption is provided by collisions of gas molecules or temperature rising. And it must be larger than wasted energy when absorption if methane molecules escapes from coal. The mechanism of gas desorption and seepage under sonic vibrating of cavitation water jets through the effects of mechanical vibration, thermal effects and the effects of hydraulic fracturing and damage to the promotion of coal seam gas desorption and seepage is studied theoretically. Imposed cavitation sonic vibrating, mechanical vibration effects reduce the coal skeleton stress, fracturing damage effect to improve the porosity of coal, coal bed system temperature for the coal seam gas desorption, together strengthen desorption and seepage of coal seam gas.
     ⑥Field tests show that using high pressure water jet cutting drilling and cavitation sonic vibrating, the highest single hole concentration of gas extraction increased by 27.3 times, the highest pure gas drainage rate by 15 times. Under the same conditions with the occurrence of coal projects crosscut than expected time to reduce 45.27%. Reduce the number of pre-drilling holes 30.5%, 33.7% reduction of drilling footage.
     Three Main innovation points of the dissertation are:
     ①The first time a high-pressure water jet cavitation visualization experiment of the entire process to determine the pump pressure, confining pressure on the cavitation effects, reveal the mechanism of bubble cloud breeding, development, and collapse and shaped features, is carried out.
     ②Sonic vibrating of cavitation water jet is firstly moved to promote methane desorption, seepage and methane drainage rate, using self-developed cavitation sonic vibrating for coal gas desorption flow experimental equipment, and the relationship model between cavitation water jet parameters and coal gas desorption flow is set up.
     ③The cavitation noise spectrum optimization model, attenuation law, noise wave energy equation and model of mechanical vibration induced crack damage is established, and the mechanism of sonic vibrating of cavitation water jet to promote methane desorption and seepage is revealed. It is the fundamental basic of theory and experiment for its engineering application.
引文
[1]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].煤炭工业出版社,1999.
    [2]于不凡.煤矿瓦斯灾害防治及利用技术手册[M].煤炭工业出版社,2000.
    [3]重庆市煤炭学会.重庆地区煤与瓦斯突出防治技术[M].煤炭工业出版社,2005.
    [4]胡光龙,杨思敬.煤层气开发技术和前景[J].煤矿安全,2003(增):64-67.
    [5]徐龙君,鲜学福,李晓红.交变电场下白皎煤介电常数的实验研究[J].重庆大学学报,1998,21(3):6-10.
    [6]徐龙君,鲜学福,刘成伦.恒电场作用下煤吸附甲烷特征的研究[J].煤炭转化, 1999,22(4):68-70.
    [7]王宏图,杜百贵,鲜学福.地电场对煤中瓦斯渗流特性的影响[J].重庆大学学报, 2000,23(增):22-24.
    [8]刘保县.延迟突出煤的物理力学特征和煤延迟突出机理研究[D].重庆大学博士学位论文,2000.
    [9]刘保县,鲜学福,徐龙君.地球物理场对煤吸附瓦斯特性的影响[J].重庆大学学报,2000,23(5):78-81.
    [10]易俊,姜永东,鲜学福.在交变电场声场作用下煤解吸吸附瓦斯特性分析[J].中国矿业,2004,14(5):70-73.
    [11] Li xiao-hong, Zhou dong-ping, Lu yi-yu. Dynamic effects of high-pressure pulsed water jet in low-permeability coal seams[J]. JOURNAL OF COAL SCIENCE & ENGINEERING, 2009,15(3):PP284-288.
    [12] REYNOLDS O. The cause of the racing of the engines of screw steamers investigated theoretically and by experiment[J]. Trans Inst Naval Arch, 1873, 14: 56-67.
    [13] PARSONS C A. The steam turbine on land and at sea[C]. Lecture to the Royal Institution,London, 1906.
    [14] YOUNG F R. Cavitation[M]. London:Imperial College Press,1999.
    [15] Johson V.E. Conn A.F. The Development of Structured Cavitating Jet for Deephole Bits, SPE 11060, 1982.
    [16] Rockwell D. Prediction of Oscillation Frequencies for Unstable Flow Past Cavities. ASME, Journal of Fluids Engineering, 1977,Vol.99,:294-300.
    [17] Rockwell D, Audascher E. Review: Self-sustaining Oscillations of Flow Past Cavities. ASME, Journal of Fluids Engineering, Vol.100, 1978:152-165.
    [18] Wallace W. Martin E. Audascher E. Fluid-dynamic Excitation Involving Flow Instability, Pro.AMCE, J. of the Hydraulics, Division 5,1975.
    [19] Johnson V E, Conn A F. Self-resonating Cavitating Jets[C]. The 6th Int. Symp. on Jet Cutting Tech. BHRA, 1982.
    [20]李福新,邓飞等.回转体头部噪声特性的实验研究[J].流体力学实验与测量,2002,16(2): 42-46.
    [21]戚定满,鲁传敬,何友声.空化噪声谱特性研究[J],振动与冲击,1999,18(3):32-37.
    [22]张凤华,廖振方等.空化水射流的化学效应[J].重庆大学学报,2004,27(1):32-35.
    [23]卢义玉,左伟芹,李晓红等.空化水射流-双氧水处理苯酚废水的机理分析[J].重庆大学学报,2008,31(10):1164-1168.
    [24]卢义玉,冯欣艳,李晓红等.高压空化水射流的试验分析[J].重庆大学学报,2006,29(5):88-91.
    [25]王萍辉.空化水射流清洗的实验研究[J].中国矿业,2004,13(5):43-46.
    [26] C. S. Martin, H. Medlarz, D. C. Wiggert. Cavitation inception in spool valve. Journal of fluidengineering, Transaction of the ASME, 1981, 103: 564-574.
    [27] C. S. Martin and P R. Veerabhardra. Application of signal analysis to cavitation. Transaction of theASME, 1984, 106: 342-346.
    [28] H.A.Heron. The control of cavitation in valve.The 7th international fluid power symposium, Sept16-18, 1986, England, 275-283.
    [29] S. Oshima, T. Ichikawa. Cavitation phenomena and performance of oil hydraulic poppet valve (lrd report, Mechanism of generation of cavitation and flow performance). Bulletin of JSME, 1985, 28(244): 2264-2271.
    [30] S. Oshima, T. Ichikawa. Cavitation phenomena and performance of oil hydraulic poppet valve (2ed report, influence of the chamfer length of the seat and the flow performance). Bulletin of JSME, 1985,28 (244): 2272-2279.
    [31] S. Oshima, T Ichikawa. Cavitation phenomena and performance of oil hydraulic poppet valve (3rd report, influence of the poppet angel and oil temperature on the flow performance). Bulletin of JSME,1986, 29 (249): 743-750.
    [32] S. Oshima, T Ichikawa. Cavitation phenomena and performance of oil hydraulic poppet valve (5rd report, influence of the dimensions of valve on the thrust force characteristics). Bulletin ofJSME, 1986,29 (251): 1427-1433.
    [33] S. Oshima, T Leino, M. Linjama, et al. Effect of cavitation in water hydraulic poppet valves.International journal offluid power, 2001, 2(3): 5-13.
    [34] K. Horinouchi, T Yonekawa, I. Shigo, et al. Numerical Study of Flow Cavitation. SAE Transactions,1990, 99 (6): 1133-1140.
    [35] H. Ueno, A. Okajima, H. Tanaka, etal. Noise Measurement and Numerical Simulation of OilFlow inPressure Control Valves. JSME International Journal, series B, 1994. 37 (2): 336-341.
    [36] T. Tetsuhiro, S. Hirokazu, S. Takashi and S. Takehiko. Flow visulazation in hydraulic holding valve.Proceedings of the Third JNPS International Symposium on Fluid Power, Yokohama, 4-6 Nov. 1996:437-441.
    [37]陈寿限,金朝铭,陈卓如.圆管阻尼器的气穴研究[J].机床与液压,1998, 4:24-25.
    [38]高红,傅新,杨华勇,粱地撤浩.锥阀阀口气穴流场的数值模拟与试验研究[J].机械程学报,2002,38 (8):27-30.
    [39] G. Hong, F. Xin, Y Huayong, T. Tsukiji. Numerical investigation of cavitating flow behind the cone of a popoet valve in water hydraulic system.[J]. Journal of Zhejiang University SCIENCE, 2002, 3 (4):395-400.
    [40]冀宏,傅新,杨华勇,王庆丰.非全周开口滑阀压力分布测量研究[J].机械工程学报,2004, 40 (4): 99-102.
    [41]冀宏,傅新,杨华勇,王庆丰.节流槽型阀口噪声特性试验研究[J].机械工程学报,2004, 40 (11):42-46.
    [42]雷小乔.煤层气成分影响因素分析.中国煤田地质,2002.
    [43] Gregg S J,Sing K S. Adsorption surface area and Porosity[M]. London Academic press,1982.
    [44]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2001: 42-84.
    [45]陈昌国,鲜晓红,张代钧等.温度对煤和炭吸附甲烷的影响[J].煤炭转化,1995,18(3).
    [46] McLennan J D, Schafer P S, Pratt T J. A guide to determining coalbed gas cont-ent. Chicago: US Gas Research Institute, 1995.
    [47] Gasser P H.金属的化学吸附和催化作用.赵壁英译.北京:北京大学出版社,1991.
    [48]朱步瑶,赵振国.界面化学.北京:化学工业出版社,1996.
    [49]赵志根,唐修义.对煤吸附甲烷Langmuir方程的讨论.焦作工学院学报(自然科学版),2002.
    [50] Harpalani S, Pariti U M.Study of coal sorption isotherm using a multicomponent gas mixture, 1993 International Coalbed Methane Symposium, 1993.
    [51] Chaback J J,Morgan D, Yee D.Sorption irreversibities and mixture compositional behavior during enhanced coal bed methane recovery processes. SPE35622. Gas technology conference,1996.
    [52]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1).
    [53]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,11(3).
    [54] Saghafi.A.煤层瓦斯流动的计算机模拟及其在预测瓦斯涌出和抽放瓦斯中的应用[A].第22届国际采矿安全会议论文集.北京:煤炭工业出版社,1987.
    [55]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4).
    [56] Sun Pei de. Study of the Dynamic Models for Coal Gas Dynamics (part1)[J].Min.Sci. Technol.1991,12(1).
    [57] Harpalain.S. Gas Flow Through Stressed Coal [D].Univ.of California Berkeley,Ph.D.thesis, 1985.
    [58] Gawuga.J. Flow of Gas Through Stressed Carboniferous Strata [D].Univ.of Nottingham, Ph.D.thesis, 1979.
    [59] Khodot.V.V..Roleof Methane in The Stress State of a Coal Seam [J].Fiziko_Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh.1980,(5).
    [60] Somerton.W.H. Effect of Stress on Permeability of Coal [J].Int.J.Rock Meck.Mech.Min.Sci. &Geomech.Abstr.,1975,12(2).
    [61]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业学院学报,1986,15(3).
    [62]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报,1987,16(1).
    [63]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业学院学报,1988,17(2).
    [64]何学秋,周世宁.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,19(2).
    [65]许江,鲜学福.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993,16(5).
    [66]杜云贵.地球物理场中煤层瓦斯吸附、渗流特性研究[D].重庆大学博士学位论文,1993.
    [67]程瑞端.煤层瓦斯涌出规律及其深部开采预测的研究[D].重庆大学博士学位论文,1995.
    [68]徐龙君.突出区煤的超细结构、电性质、吸附特征及其应用的研究[D].重庆大学博士学位论文,1996.
    [69]孙培德.煤层气越流的固气耦合理论及其计算机模拟研究[D].重庆大学博士学位论文,1998.
    [70]刘保县.延迟突出煤的物理力学特征和煤延迟突出机理研究[D].重庆大学博士学位论文,2000.
    [71]鲜学福.地电场对煤层中瓦斯渗流影响的研究[A].国家自然科学基金资助项目科学技术研究报告,1993.
    [72]余楚新.煤层中瓦斯富集运移的基础与应用研究[D].重庆:重庆大学,1993.
    [73]张代钧.煤结构与煤孔隙性、弹性强度和吸附特征关系的研究[D].重庆:重庆大学,1990.
    [74]张广洋.煤结构与煤的瓦斯吸附、渗流特性研究[D].重庆:重庆大学,1995.
    [75]易俊.声震法提高煤层气抽采率的机理及技术原理研究[D].重庆:重庆大学,1995.
    [76] G L Chahine, K M Kalumuck. Swirling fluid jet cavitation method and system for efficientdecontamination of liquids[P]. US Patent 6221260, 2001, 3.
    [77] G L Chahine, K M Kalumuck. Fluid jet cavitation method and system for efficient decontamination of liquids[P]. US Patent 6200486, 2001, 3.
    [78] G L Chahine, K M Kalumuck. The Use of Cavitating Jets to Oxidize Organic Compounds in Water[J]. Journal of Fluids Engineering, 2000, 122(3): 465-470.
    [79] LUBETKIN S D, BLACKWELL M. The nucleation of bubbles in supersaturated solutions[J]. Journal of Colloid Interface of Science, 1988, 26: 610.
    [80] KELLER A P, Investigations concerning scale effects of the inception of cavitation. Proc. I. Mech. E. Conf. on Cavitation, 1974, 109-117.
    [81] JONES S F, EVANS G M, GALVIN K P. Bubble nucleation from gas cavities-areview[J]. Advances in Colloid and Interface Science, 1999, 80: 27-50.
    [82] FOX F E, HERZFELD K F. Gas bubble with organic skin as cavitation nuclei[J]. Journal of Acoustic Social American, 1954, 26: 984-989.
    [83] CHRISTOPHER EARLS BRENNEN. Cavitation And Bubble Dynamics[M]. Oxford University Press,1995.
    [84] CHRISTOPHER EARLS BRENNEN. Cavitation And Bubble Dynamics[M]. Oxford University Press. 1995.
    [85] ANTHONY A ATCHLEY, ANDREA PROSPERETTI. The crevice model of bubble nucleation[J]. J Acoust Soc Am,1995, 86(3): 1065-1084.
    [86] C. E. Brennen. Cavitation and bubble dynamics. Oxford University Press, 1995.
    [87] R. E. A. Amdt. Cavitation in fluid machinery and hydraulic structures. Ann. Rev Fluid Mech., 1981(13): 273-328.
    [88] D. Chatterjee and V H. Arakeri. Towards the concept of hydrodynamic cavitation control. J. Fluid Mech., 1997, 332: 377-394.
    [89]夏维洪,水质对空化初生的影响[J],水利学报,1993年11月,pp48-55.
    [90]夏维洪.“国际水工建筑物及水力机械空化、空蚀学术讨论会”论文内容综述河海科技进展第12卷第4期,1992年12月,PP54-61.
    [91] Kelley A P. Chinese-German Comparative Cavitation Tests in Different Test Facilities on Models of Interest for Hydraulic Civil Engneering[A] , Berichte des Lehrstuls and derVersuchusanstalt fur Wasserbau and Wasserwirtschaft, 1991(66).
    [92]杨志明,初生空化的对比试验一中德合作研究项[J],水动力学研究与进展,1994,7(2):96-103.
    [93] ThomasJ. Labus,Proceedings of the 6th American Water Jet Conference, Water Jet Technology Association,1991.
    [94]黄继汤.空化与空蚀的原理及应用,清华大学出版社,1991.
    [95] Vijay M.M. Some Aspects of High Speed Cavitating Water Jets, Proceeding of Water Jet Cutting Technology, Beijin, 1987.
    [96] Kztasuga Yanaida, Water Jet Cavitation of Submerged Horn Shaped Nozzles, Proceeding of the 3rd American Water Jet Conference. 1985.
    [97] Lichtarowicz A. Experiments with Cavitating Jets, Proc. 2nd Int. Symp. on Jet Cutting Technology, BHRA, 1974.
    [98] R. Kobayashi Y. Masuki Water Jet Nozzle Geometry and Its Effect on Erosion Process of Metallic Material, Proceeding of the 5th American Water Jet Conference. 1995.
    [99] Vijay M.M. Study of a Nozzle Device for Generating Cavitating and Pulsed Water Jets, Proc. 13th Int. Symp. on Jet Cutting Technology, BHRA, 1996.
    [100]王献孚.空化泡和超空泡流动理论及应用[M].国防工业出版,2006.
    [101]傅慧萍,鲁传敬,吴磊.回转体空泡流特性研究[J],水动力学研究与进展,2005Vol. 20, No1,pp84-89.
    [102] Ingber M S& Hallev C.E, Numerical modeling of cavities on axisvmmetric bodies at zero and non-zero angle of attack[J].Tnt.J.for Numerical Methods in Fluids,1992, Vol.l5: pp251-271.
    [103]路甬祥.液压气动技术手册[M].机械工业出版社,2002.
    [104]黄继汤,空化与空蚀的原理及应用[M].清华大学出版社,1991.
    [105] C. E. Brennen. Cavitation and bubble dynamics. Oxford University Press, 1995.
    [106] Ross D.水下噪声原理[M].海洋出版社, 1983.
    [107]戚定满,鲁传敬,何友声.空化噪声特性研究[J].振动与冲击,1999,18(3):32-36.
    [108]汤渭霖.水下噪声学[M].哈尔滨船舶工程学院, 1984.
    [109] BlaikM , Christian E A. Near surface measurements of deep explosion . energy spectra of small charges J.A. S. A. 38, 1965, 50-56.
    [110] Mellen R H. Ultrasonic spectrum of cavitation noise in water, J. Acoust. Soc. Am. 26, 1954, 326- 330.
    [111] Buist J. On the origin and acoustical behaviour of cloud cavitation, Ph. D Dessertat ion, 1991.
    [112]杜功焕,朱哲发,龚秀芬.基础声学(下册)[M].上海科学技术出版社,1981.
    [113]王冠贵.声波测井理论基础及其应用[M].石油工业出版社,1988.
    [114]《超声波探伤》编组.超声波探伤[M].电力工业出版社,1980.
    [115]赵福兴.控制爆破工程学[M].西安交通大学出版社,1988:58-60.
    [116]马大猷,沈嚎.参考声学手册[M].科学出版社,2004.
    [117]李根生,沈忠厚.自振空化射流理论与应用[M].中国石油大学出版社,2008.
    [118] Amosnur(美)著,许云译.双相介质中波的传播[M].石油工业出版社,1986.
    [119]唐巨鹏.煤层气赋存运移的核磁共振成像理论和实验研究[D].辽宁工程技术大学博士学位论文,2006.
    [120] A.E.薛定谬(奥).多孔介质中的渗流物理[M].1982. 8.
    [121] F.A.L.DULLIEN著,范玉平,赵东伟等译.现代渗流物理学[M].石油工业出版利,2001.4.
    [122]王明德.压缩因子与气体可压缩性[J].化学通报,2002,5:358-360.
    [123]淡慕华,黄蕴元.表面物理化学[M].中国建筑工业出版社.1995.9.
    [124]程传煊.表面物理化学[M].1985.12.
    [125]天津大学物理化学教研室编.物理化学(上册),第四版[M].2001.12.
    [126]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学[M].中国矿业大学出版社,1995.5.
    [127]陈昌国,辜敏,鲜学福.煤的原子分子结构及吸附甲烷机理研究进展[J].煤炭转化,2003,26(4):5-10.
    [128]聂百胜,段一明.煤吸附瓦斯的本质[J].太原理工大学学报,1998,29(4):417-421.
    [129]陈昌国,鲜学福,张代钧.微孔填充理论研究无烟煤和炭对甲烷的吸附特性[J].重庆大学学报,1998,21(2):75-79.
    [130]聂百胜,何学秋,王恩元.瓦斯气体在煤层中的扩散机理及模式[J].中国安全科学学报,2000,10(6).
    [131]陈昌国,鲜学福,杜云贵.煤吸附与解吸甲烷的动力学规律[J].煤炭转化,1996,19(1).
    [132]何学秋,周世宁.煤和瓦斯突出机理的流变假说.中国矿业大学学报,1990,19(2):1-9.
    [133]周世宁.电子计算机在研究煤层瓦斯流动理论中的应用[J].煤炭学报,1983,8(2):36-41.
    [134] ckenstein, E., Vaidyanathan, A.S., Youngquist, G.R., Sorption by solids with bidisperse pore structures[J]. Chem. Eng. Sci. 1971,26: 1305-1318.
    [135] R. Clarkson, R.M. Bustin.The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study.2. Adsorption rate modeling[J]. Fuel 1999,78:1345-1362.
    [136] Peter J. Crosdale,B. Basil Beamish,Marjorie Valix.Coalbed methane sorption related to coal composition[J]. International Journal of Coal Geology 1998,35:147-158.
    [137] moffat. D H.,Weale. K. E., Sorption by coal of methane at high Pressures[J], Fuel, 1955, 34:. 449-462.
    [138] Czaplinshi, A.,Holda, S., Simultaneous testing of kinetics of expansion and sorption in coal of carbon dioxide[J], Archivwum Gornickwa, 1982, 16: 227-231.
    [139] Lama R D,Bodziony J. Management of outburst in underground coal mines[J]. Int. J. Coal Geology,1998,35(1):83-115.
    [140] Mahajan, O. P., Coal porosity[M], in Coal structure, Meyers. R. A. (Ed.) Academic press, New York, NY, USA, 1982:51-86.
    [141] Reucroft, P.J.and Patel, K. B., Surface area and swell ability of coal[J], Fuel, 1983,62: 279-284.
    [142] Reucroft, P. J. and Patel, K. B., Gas-induced swelling in coal[J]l. Fuel, 1986, 65:816-820.
    [143] Gray. I., Reservoir engineering in coal seams: part l:The physical process of gas storage and movement in coal seams[J]. SPE Reservoir Engineering, 1987,2:28-34.
    [144] Sethuraman, A. R., Gas and vapor induced coal swelling[J], American Chemical Society, 1987,. 32:259-264.
    [145] Stefanska, C. G., Influence of carbon dioxide and methane on changes of Sorption and dilatometric properties of bituminous coals[J], Archiwum Gornictwa, 1990,35:105-113.
    [146] Harpalani, S., Permeability changes resulting from gas desorption[M], Quarterly Review of Methane from coal seams technology,1989: 58-61.
    [147] Milewska-Duda. J, Cegarska-Stefanska.G, Duda, J., A comparison of theoretical and empirical expansion of coals In the high-pressure sorption of methane,Fuel, 1994, 73: 971-974.
    [148] Seidle, J. P. and Huitt. L. G., Experimental mesurement of coal matrix shrinkage due to gas desorption and implications for cleat permeability increases[C], Paper SPE 30010, Proceedings of the international meeting on petroleum engineering, Beijing, China, 1995:575-582.
    [149] Levine J R. Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs[J]. Geological Society Publication, 1996, (199): 197-212.
    [150] Harpalani, S., and Chen, G., Effects of gas production on porosity and permeability of coal, Symposium on coalbed methane research and development in Australia[M], Beamish, B. B. and Gamson P. D. (eds.), James cook University of North Queensland, Townsville, Australia,1992,: 67-79.
    [151] George,J.D.St.,Barakat,M.A., The change in effective stress associated with shrinkage from gas desorption in coal[J], International Journal of Coal Geology, 2001, 45 (2):105-113.
    [152] Chikatamarala, L., Xiaojun, C. and Bustin. R. M., Implications of volumetric swelling/ shrinkage of coal in sequestration of acid gases, international coal bed methane symposium, 2004, paper No.435, Tuscaloosa, Alabama USA.
    [153]姜德义,有效应力对煤层气渗透率影响的研究[J],重庆大学学报,1997.5(20):22-25
    [154]谭学术,鲜学福,张广洋.煤的渗透性研究,西安矿业学报学报,1994(1).
    [155]程瑞端,陈海焱,鲜学福.温度对煤样渗透系数影响的实验研究[J].煤炭工程师,1998(1).
    [156]王宏图,李晓红,鲜学福.地电场作用下煤中甲烷气体渗流性质的实验研究[J].岩石力学与工程学报,2004,22(2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700