可控柔性密封的机理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可控柔性密封主要用于润滑性较差、低粘度、高杂质含量的流体介质密封中,其目的是防止介质泄漏,从而节约能源、减小污染、保护环境。
     论文首先对柔性密封的发展历史、研究现状进行了综述。在对密封工作领域分析、总结和归纳基础上,分析概括出了可控柔性密封的一般性特征。阐述了进行柔性密封研究的流体力学、工程力学和柔性密封理论基础,为密封流场和应力场的研究提供了理论方法。
     采用橡胶材料试验数据拟合与预测的方法,研究了可控柔性密封胶芯的力学行为评价方法。指出Ogden模型和Mooney-Rivlin模型不适合柔性密封结构模拟;Arruda-Boyce模型和Yeoh模型可用于结构模拟并可作为结果的上下界来考虑;Marlow模型所给出的拟合和预测结果较为合理。修正A-B模型对密封橡胶在多个环境温度下的单向拉伸力学行为的预测结果均与实际试验数据吻合很好。
     根据带压作业闸板防喷器中可控柔性密封的工作要求,提出了采用聚合物材料与高弹性橡胶组合构成可控柔性密封组件的设计思想。聚合物材料与管柱外圆周接触,承担接触压力并配合橡胶实现密封,这样可大大减少密封橡胶的磨损量,从而延长密封胶芯的工作寿命。结合密封工作原理进行胶芯受力分析,推导出密封接触压力计算模型,为闸板防喷器可控柔性密封的设计与控制提供了基础。
     建立了可控柔性密封液压控制系统的数学模型,并应用MATLAB软件进行了仿真分析,明确了可控柔性密封可以在常规工况下稳定。
     研制了带压作业可控柔性密封模拟试验系统,可以按照带压作业现场的实际工况进行完整的作业流程的试验,并利用该试验系统对带压作业可控柔性密封装置进行了密封性能试验、密封控制试验、密封驱动压力试验、密封副变形试验、密封副摩擦学试验等基础性和应用型试验;为进一步开发新型密封副及其配套装置提供了良好的试验平台。通过跟踪11口带压作业现场试验情况,可以证明:新研制闸板防喷器可控柔性密封能够很好的实现21MPa工作介质的滑动密封;大大提高了带压作业密封胶芯的可靠性和使用寿命,具有推广应用前景。
On-off flexible seal system is being used for fluid medium which is impurity, low lubricating and low viscosity. It can save energy and protect the environment by sealing the high pressure fluid in the well.
     The summary on the development history and current research situation is implemented. The characteristics of the controllable flexible sealing are put forward based on analysis, summary and generalization of the sealing areas. The hydrodynamics principle, mechanics principle and flexible sealing principle are introduced to study the flexible sealing, which provides some theory methods for researching the sealing flow and pressure field.
     The estimating method of mechanics performance of the flexible seal system is investigated by means of fitting and predicting the rubber material experimental data. The Ogden model and the Mooney-Rivlin model can not be used in computation simulation on the flexible seal system. The Arruda-Boyce model and the Yeoh model can be respectively considered as the computation simulation result upper limit and lower limit. The Marlow model can show reasonable computation simulation results, and the modified Arruda-Boyce model can fit the experimental data of uniaxial tension under different temperature condition and give better prediction about mechanics performance.
     According to process features and control methods of the controllable flexible sealing in ram BOP in snubbing service, a new flexible sealing composed of polymer and elasticity rubber is being used. The polymer contacts with the pipe and bears the pressure and implements the assistant sealing in order to decrease the abrasion and prolong the lifespan of the sealing rubber. The force acting on the sealing rubber is analyzed based on the sealing operating principle. The mechanics model of sealing contact pressure is deduced. The foundation of design and control the controllable flexible sealing in the ram BOP in snubbing service is established.
     The mathematics model of the hydraulic control system of the controllable flexible sealing is created, and its simulation analysis is performed by means of MATLAB software. The result shows that the dynamic performance of the controllable flexible sealing can meet design request under the general condition.
     The On-off flexible sealing experiment system has been developed, which can perform the operating process and control program simulation according to the real working condition in snubbing service in oil field. Base on the experimental system, the basis test and engineering experiment can be implemented, such as the sealing performance test, the sealing control test, the sealing driving pressure test, the sealing deformation test, the sealing tribology test, and so on. It provides a benefit test condition for developing the novel controllable flexible sealing and necessary assistant device. 11 water injection wells field test under high pressure in snubbing service have proved that the on-off flexible sealing developed in paper can be used under 21MPa sealing condition with good performance. The security and lifespan of the flexible sealing in snubbing service have been greatly improved, and it will have a good popularized prospects.
引文
[1]李照成.密封件非线性变形与轴承密封性能研究[D].中国海洋大学硕士学位论文,2004,6:7.
    [2]贺杰,杨敏嘉.关于柔性旋转密封[J].石油机械,1990,18(5):46-51.
    [3]陈家庆.刘录,赵艳铃.流体动压柔性径向密封技的研究与应用[J].石油化工高等学校学报,2003, 16(3):43-48.
    [4]陈家庆,徐林林,许宏奇.流体动压密封技术及其在石油矿场机械中的应用[J].石油机械,2002, 30(3):8-11.
    [5] Kaki M S, Fazekas G A. FessibiGty study of a slanted "O-Ring" as high pressure rotary seal[R]. ASME paper72-WA/AE-14, 1972.
    [6] Kaki M S. Hydrodynamic lubricant seal for drill bits [P]. U.S. Patant 4610319.
    [7] Kalsi M S. Elastohydrodynamic lubrication of offset o-ring notary seal[J]. Journal of Lubrication Technology, Transactions ASME, v 103, n 3, Jul, 1981. 414-27.
    [8] Wolf A, Muller H K. Pressure undulated rotary shaft seals[A]. The 11s' international conference on fluid sealing[C]. B.H.R, Cranfield, England:1987.
    [9] Kalsi M S. Development of a new high pressure rotary seal for abrasive environment[A]. Papers presented at the International Conference on Fluid Sealing[C]. 1989. 396.408.
    [10]陈家庆,刘录,赵艳铃.流体动压柔性径向密封技术的研究与应用[J].石油化工高等学校学报,2003,16(1):43-47.
    [11]彭成允,邓明,陈元芳,伍光风.新型弹簧动态密封研究[J].中国制造业信息化, 2004, 33 (11): 117-118.
    [12] Kaneta, M.; Yamagata, Y. Nishikawa, H. etc. Stribeck curve of flexible seals for reciprocating motion[A]. Proceedings of the 17th International Conference on Fluid Sealing [C] .2003: 203-216.
    [13]温诗铸.从弹流润滑到薄膜润滑—润滑理论研究的新领域[J].润滑与密封, 1993, (6) :48-53.
    [14]雒建斌,温诗铸,黄平等.润滑理论的新进展-薄膜润滑[J].润滑与密封,1995,(6):48-53.
    [15] John son K L. Contact Mechanics[M ]. Cambridge Press, 1985. 61-90.
    [16] [英]弗雷克利K,佩恩P K.橡胶在工程中应用的理论与实践[M] .杜承泽,唐宝华,罗东山,等译.北京:化学工业出版社,1985.
    [17] PAULSTRA公司.橡胶支座产品介绍[ Z] .法:PAULSTRA公司,1998.
    [18] [英]特雷劳尔L R G.橡胶弹性物理力学[M] .王梦蛟,王培国,薛广智译.北京:化学工业出版社,1982.
    [19]易太连.不可压缩弹性体静态性能分析[J] .海军工程大学学报,2002 ,14 (1) :76 - 80.
    [20] Rivlin R S , Saunders D W. Large elastic deformations of isotropic materials (Ⅶ) . Strain Dist ribution around a hole in a sheet [J] . Philosophy Transaction of Royal Society , 1951 , A243 : 289-298.
    [21] Fired I, Johonson A R. Nonlinear computation of axisymmetric solid rubber deformation [J]. Computer Methods in Applied Mechanics and Engineering , 1988,67: 241-253.
    [22]何平笙,杨海洋,朱平平.橡胶高弹性大形变的唯象理论[J].化学通报, 2006 (1):70-73.
    [23]杨开云,李玉河,凌志飞等.橡胶圆筒的大应变接触问题分析[J].水利水电技术,2004,35 (5):30-32.
    [24]李洪升,张小朋,杨全生.橡胶大变形力学常数测试研究[J] .大连理工大学报,1989 ,29 (6) : 629 - 634.
    [25] [美] A N Gent主编,张立群,田明,刘力,冯予星译.橡胶工程[M].北京:化学工业出版社, 2002.
    [26] O H Yeoh. Some forms of the strain energy function for rubber [J]. Rubber Chemistry and Technology, 1993, 66 ( 5) : 754-771.
    [27] O H Yeoh. Characterization of elastic properties of carbon black filled rubber vulcanizates [J]. Rubber Chemistry and Technology, 1990, 63 (5) : 792-805.
    [28] G.R. Naghieh, Z.M. Jin, H. Rahnejat, Contact characteristics of. viscoelastic bonded layers[J]. J. Appl. Math. Model. 22 1998: 569-581.
    [29] G.R. Naghieh, Z.M. Jin, H. Rahnejat, Contact mechanics analysis for layered elastic, elasto-plastic and viscoelastic coatings[C]. Proc.Nordtrib 98, Vol. 1, Ebeltoft, Denmark, 1998, pp. 95–104.
    [30] G.R. Naghieh, H. Rahnejat , Z.M. Jin. Characteristics of frictionless contact of bonded elastic and viscoelastic layered solids [J]. WEAR,1999: 243-249.
    [31] Alan Riga. Failure analysis and quality control automotive elastomeric seals by thermal analytical techniques [J]. Thermochimica acta.2000:217-223.
    [32]李冬伟,白鸿柏,杨建春,唐伟.金属橡胶弹性元件实验建模研究[J].兵器材料科学与工程,2005,28(3):7-10.
    [33]马艳红,郭宝亭,朱梓根.金属橡胶材料静态特性的研究[J].航空动力学报, 2004,19(3): 327-331.
    [34] H. Kaga, K. Okamoto, Y Tozawa. Stress analysis of a tire under vertical load by a finite element method [J]. Tire Science and Technology, TSTCA, Vol.5, No.2, 1977:102-118.
    [35] R. A. Ridha. Computation of Stresses, Strains and Deformations of Tires [J]. Rubber Chemistry and Technology, 1980,(53):849-902.
    [36] Noor A K , Tanner A . Advances and trends in the development of computational model for tires [J]. Computers and Structures, 1988, 20 (3): 517-533.
    [37] Nakajima Y, Padovan J. Numerical simulation of tire sliding events involving impacts with holes and bumper [J]. Tire Science and Technology, 1986, 14 (2): 126.136.
    [38] T seng N T , Satyamu rthy K, Chang J P. Non linear finite element analysis of rubber based products [A]. Presented at the 131st Meeting of the Rubber Division [C]. ACS,Mont real, Quebec, Canada, 1987, 24: 27-29.
    [39] Yamagish i K, Togash iM , Furuya S. A study on the contour of the radial tires: rolling contour optimization theory 2RCOT [J]. Tire Science and Technology, 1987, 15 (1) : 3-29.
    [40] Sarkar K, Kwom Y D, P revosek D C. A new approach for the thermo mechanical analysis of tires by the finite element method [J], Tire Science and Technology, 1987, 15 (4) : 261-275.
    [41] Rother H, Idelberger H, Jacobi W. On the finite element solution of three dimension tire contact problem [J ]. Nuclear Engineering and Design, 1988, 78: 363-375.
    [42] Sun C T , L i S J. Three dimensional effective elastic constants for thick laminates [J]. Journal of Composite Materials, 1988, 22: 629-639.
    [43] Chang J P, Satyamurthy K, Tseng N T. An effect approach for the three dimensional finite element analysis of tires [J]. T ire Science and Technology , 1988, 16 (4) : 249-273.
    [44] Tseng N T , Pelle R G, Chang J P. Finite element simulation of tire rim interface [J]. Tire Science and Technology , 1989, 17 (4) : 306.325.
    [45] Eskinazi J D, Ishihare K, Volk H, Warholic T C. Towards predicting relative belt edge endurance with the finite element method [J]. Tire Science and Technology, 1990, 18 (4) : 216 -235.
    [46] Ogawa H S, Furuya H, Koseki H, Lida H. A study on the contour of the truck and bus radial tire [J].Tire Science and Technology , 1990, 18 (4) : 237-261.
    [47] Wu Baoguo, Du Xingwen. Finite element formulation of radial tires with variable constraint conditions [J]. Computers and Structures, 1995,55 (5) : 871-875.
    [48] Nakajima Y, Kamegawa T , A be A. Theory of optimum tire contour and its application [J]. Tire Science and Technology , 1996, 24 (3) : 184-203.
    [49] Alan. N. Gent. Engineering with Rubber-How to Design Rubber Components [M]. Hanser publishers,2001.
    [50]张宝生,蒋力培.有限元分析软件Marc及在橡胶材料分析中的应用[J].橡胶工业, 2002, 23 (2) :9-14.
    [51] Marc Analysis Research Corporation. Nonlinear finite element analysis of elastomers [A]. Marc用户论文集[ C] . Shanghai : Marc Analysis Research Corporation , 1996.
    [52]戚震华,方永明,张定贤.橡胶弹簧非线性刚度的有限元解[J] .上海力学,1994 ,15 (4) : 33- 41.
    [53]王勖成.有限单元法[M] .北京:清华大学出版社,2002.
    [54]吕和祥.橡皮轴对称大变形分析[J] .大连工学院学报,1984 , (3) :17-23.
    [55]叶珍霞,叶利民,朱海潮.密封结构中超弹性接触问题的有限元分析[J].海军工程大学学报, 2005, 17(1):109-112.
    [56]闫相桥.橡胶复合材料结构大变形有限元分析[J].计算力学学报,2002, 19(4): 477-481.
    [57]殷有泉.固体力学非线性有限元引论[M].北京:北京大学出版社, 1987:160-201.
    [58]郑明军,谢基龙.压缩状态下橡胶件大变形有限元分析[J].北方交通大学学报, 2001, 25(1): 77-79.
    [59]杨晓翔.非线性橡胶材料的有限单元法[M] .北京:石油出版社,1999.
    [60] Lee B S ,Rivin E I. Finite Element Analysis of Load Deflection and Characteristics of Compressed Rubber Components for Vibration Control Devices[J] . Journal of Mechani- cal Design ,1996 ,118 :328 - 335.
    [61]于建华,魏泳涛.不可压缩超弹性材料的有限元应力分析[J].西安交通大学学报,1998, 33 (1) :41 - 45.
    [62]范仁德.高新技术在橡胶工业中的应用(一).中国橡胶工业协会,2001.
    [63]黄文龙,杨卫民,聂秋海等.基于Windows平台的子午线轮胎CAD系统[J].轮胎工业, 2000 27(4):99-102.
    [64]万德安,李修文,赵建才. Passat B5车门密封条大变形非线性有限元分析[J].机械工程师, 2004,(2): 34-36.
    [65] MARC Analysis Research Corporation Volume A: Theory and User Information, Version K7, Palo Alto, CA 94306,U SA , 1997.
    [66]王勖成等.有限单元法基本原理和数值方法[M].北京:清华大学出版社, 1997.
    [67]陈国定, Haiser H, Haas W , Lechner G. O形密封圈的有限元力学分析[J].机械科学与技术, 2000, 19(5):740-741,744.
    [68]沈锋钢,颜永年,吴任东等.O形橡胶密封圈静密封应力分析及密封性能研究[J].机械加工工艺与装备,2007,(1):22-24.
    [69]周志鸿,张康雷,李静,等. O形橡胶密封圈应力与接触压力的有限元分析[J].润滑与密封, 2006 ( 4) : 86 -88.
    [70]周恩涛,李建勋,林君哲.液压缸活塞密封性能的有限元分析[J].润滑与密封, 2006 (4) : 84- 85.
    [71]刘占军,邓忠林. X形变截面橡胶密封圈应力有限元分析[J].润滑与密封, 2007,32(2): 127-129.
    [72]江汉石油管理局采油工艺研究所.封隔器理论基础与应用[M] .北京:石油工业出版社,1983,11 : 4-421.
    [73] Andersen J N. Full - Scale High - Pressure Stripper/Packer Testing with Wellhead Pressure to 15000 psi. SPE , 60699 , April 2000.
    [74] Mustafa Onur. Integrated Nonlinear Regression Analysis of Multiprobe Wireline Formation Tester Packer and Probe Pressures and Flow Rate Measurements. SPE, 56616, October 1999.
    [75]范家齐.非线性有限元混合法分析油井封隔器胶筒[J] .西南石油学院学报,1991,(1) : 129-1381.
    [76]刘清友,黄云,湛精华,张祥来.井下封隔器接触有限元模型研究[J].钻采工艺,2005,(3): 58-60,67.
    [77]李晓芳,杨晓翔,王洪涛.封隔器胶筒接触应力的有限元分析[J].润滑与密封, 2005,(9): 90-92.
    [78]练章华等.封隔器坐封过程有限元分析[J].石油机械,2007,35(9):19-21.
    [79]张宝生,陈家庆.新型闸板防喷器封井过程数值模拟[J].计算机辅助工程,2006,15(增刊):428-430.
    [80]钟汝琳,陈次昌,关剑峰.机械密封环温度场及密封腔内流场分析[J].四川工业学院学报,2004,23(增刊): 186.187.
    [81]赵伟国,徐擎天,孙建平.基于CFD的水轮机密封内部流场的研究[J].江西电力, 2006,30 ,(4):1-3.
    [82]姜继海,马文琦,张东泉.旋转对称密封缝隙流场的有限元分析[J]..中国机械工程,1999,10(5):507-508.
    [83]叶旭初,胡道和.CFD技术与工程应用[J].中国水泥,2003,(2):29-32.
    [84]刘晓波,华祖林,何国建.计算流体力学的科学计算可视化研究进展[J].水动力学研究与进展,2004,19(1):120-125.
    [85]姚征,陈康民.CFD通用软件综述[J].上海理工大学学报.2002,24(2):137-144.
    [86]钟英杰,都晋燕,张雪梅.CFD技术及在现代工业中的应用[J].浙江工业大学学报.2003,31(3):284-289.
    [87]王世安,尹贵鲁.CFD在飞机设计中的应用[J].航空科学技术,2002,6:33-36.
    [88]张国玉,徐熙平等.材料高温变形激光扫描测量方法[J].兵工学报,2003,24(1):118-120.
    [89] Weng Y M,Fan Z N,Zong X F. Luminescence studies on porous silicon[J]. Sppl Phys Lett, 1993,63(2):168.
    [90]颜成慧.光电跟踪式垂线坐标仪在东风水电站大坝变形观测中的应用[J].贵州水力发电,2001,15(2):21-24.
    [91]赵新宇.光电跟踪控制技术在精密车床上的应用[J].光电子技术,2002,22(4):237-238.
    [92]于承新,宋传增等.数字摄影技术测量结构变形的应用探索[J].勘察科学技术,2001: 49-53.
    [93]林磊,叶列平等.数字摄影技术在结构实验变形测量中的应用[J].实验技术与管理, 2003,20(1):34-38.
    [94]张政,何世平.自动网格形状测试技术[J].中国科学技术大学学报,1997,27(2):137-143.
    [95] Obata M ,Shimada H and Kawasaki A .Fine-grid Mechod for Large-strain Analysis Near a Notch Tip[J].Experiment Mechanics,1983:147-151.
    [96]梁庄丽,丁海曙.新型导电橡胶在协调接触压力测量中的应用[J].传感技术学报,1999 (4): 279-283.
    [97]金观昌,周书敏.导电橡胶动态接触压力分布测量系统[J].传感器技术,1997(3):31-36.
    [98]彭旭东,顾永泉.机械密封的新思想-可控机械密封[J].润滑与密封,1995,(4):7-9.
    [99]张跃,张树人.密封技术的新突破-可调节密封[J].液压气动与密封,1999,(6):42-43.
    [100]崔岚.液压闸板防喷器胶心的封井机理与结构参数设计[J].石油机械,1994,(3): 37-42.
    [101]林军,崔岚,黄天兵.闸板防喷器胶心偏心距取值范围计算[J].石油机械,1994,(7): 7-11.
    [102]李明枢等.液压防喷器电-液控制装置的研制[J].石油机械,1996,(4): 6.11.
    [103]张宝生,陈家庆.可变径闸板防喷器结构研究[J].北京石油化工学院学报,2005,13(3): 57-60.
    [104]孙振纯,王守谦.井控设备[M] .北京:石油工业出版社,1997:19.
    [105]苏尚文,许宏奇.我国防喷器技术进展及发展方向[J].石油机械,2001,29 (增刊) :101- 103,107.
    [106]孙祖臣,魏明扬170MPa液压防喷器胶芯的研究[J ] .石油机械,1995 ,23 (2) :9-14.
    [107] Williams John R. Variable bore packer assembly for ram type blowout preventers [ P ] . US Patent4 ,229 ,012. April 28,1978.
    [108] Nelson. Blowout preventer having a variable ram seal [ P] . US Patent 4 ,332 ,367. June 1 ,1982.
    [109] Parks ,J r. Variable bore ram packing element and blowout preventer [ P] . US Patent 4 ,444 ,404. April 24 ,1984.
    [110]贾光政,王宣银.液压防喷系统PLC控制设计[J].机床与液压, 2002,(3):53-54.
    [111] Jia Guangzheng, Wang Xuanyin. Study on the Hydraulic BOP System [A]. Proceedings of the 5th International Conference on Fluid Power Transmission and Control [C]. April 3-5,2001, Hangzhou,China (2001ICFP): 169-172.
    [112]于建民,张雷.钢管水压试验机管端密封方式的探讨[J].焊管, 1997, 20(1) :38-41.
    [113]王中华,王德钢,魏学成.径向密封式套管净水压检测设备研制[J].液压与气动,2002,(9): 26.26.
    [114]王平.50MPa(Φ177.8)石油套管净水压试验机的改造[J].石油矿场机械,2006,35(1):104-105.
    [115]李伟,张弘,邱真理等.70MPa石油套管净水压试验机的研制[J].石油矿场机械,1999, 28(5):12-14.
    [116]刘冬菊,陈书帛.400型套管水压试验机的研制与设计[J].石油机械, 2001,29 (11) :28-31.
    [117]徐永林,王善永.一种新型超高压管体密封装置[J].机械工程师, 2004,(9):52.
    [118]邓东生,李伟,苏爱明等.油套管净水压试验机的型式与结构[J].石油矿场机械,2004, 33(3):72-75.
    [119]黄永清,李天石,曹秉刚.电液伺服系统的非线性自适应控制[J].机床与液压,1998,(3): 7-8.
    [120]盛万兴等.基于基因算法的模糊控制优化及其用于电液伺服控制[J].机床与液压,1998,(4): 13-14.
    [121]顾永泉.流体动密封[M].北京:石油大学出版社.1990:12-18.
    [122]赵学瑞,廖其奠.粘性流体力学[M].北京:机械工业出版社.1983:13-25.
    [123]危银涛,杨挺青.橡胶类材料大变形本构关系及其有限元方法[J].固体力学学报,1999,4(20): 281-289.
    [124]龚积球,龚震震,朝熙雍.橡胶的工程设计及应用[M].上海交通大学出版社,2004:103-113.
    [125]王利荣,吕振华.橡胶隔振器有限元建模技术及静态弹性特性分析[J].汽车工程,2002,24(6):481-485.
    [126]哈明达.带压作业开关柔性密封系统及其控制技术研究[D].大庆石油学院硕士学位论文,2008,2:9-15.
    [127]邹龙庆,贾光政,杨超等.石油机械润滑与密封.哈尔滨:哈尔滨工程大学出版社[M].2000:96.123.
    [128] E.M. Arruda and M.C. Boyce. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993, (41): 389-412.
    [129]Instruction manual of Extensometer for soft specimen for Shimadzu Autograph, Shimadzu Corporation, Kyoto, Japan, 1983.
    [130]C. Moreau, S. Thuillier, G. Rio and V. Grolleau. The mechanical behavior of a slightly compressible rubber-like material: correlation of simulations and experiments. Rubber Chemistry and Technology, 1999, (72): 269-282.
    [131] J.D.Wu and K.M. Liechti. Multiaxial and time dependent behavior of a filled rubber. Mechanics of Time-Dependent Materials, 2000, (4): 293-331.
    [132] R.W. Fail and C.E. Taylor. An application of pattern mapping to plane motion. Experimental Mechanics, 1990, Dec., 404-410.
    [133] J.S. Sirkis and T.J. Lim. Displacement and strain measurement with automated grid methods. Experimental Mechanics, 1991, Dec., 382-388.
    [134] L.R.G. Treloar. The physics of rubber elasticity (3rd edition). Clarendon Press, Oxford, 1975.
    [135] P.D. Wu and E. Van der Giessen. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. Journal of the Mechanics and physics of Solids, 1993, (41): 427-456.
    [136] O.H. Yeoh. Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chemistry and Technology, 1990, (63): 792-805.
    [137] A.N. Gent. A new constitutive relation for rubber. Rubber Chemistry and Technology, 1996, (69): 59-61.
    [138] R.S. Rivlin. Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philos. Trans. R. Soc. London, Ser. A, 1948, (241): 379-397.
    [139] A.N. Gent. Engineering with rubber-How to design rubber components (2nd Edition). Carl Hanser Verlag, Munich, 2001.
    [140] D.J. Seibert and N.Schoche. Direct comparison of some recent rubber elasticity models. Rubber Chemistry and Technology, 2000, (73): 366-384.
    [141] ABAQUS analysis user’s manual (Version 6.5). Hibbitt, Karlsson & Sorensen, Inc., 2005.
    [142] Xia Yong, Li Wei, Xia Yuanming. Test and characterization for the incompressible hyperelastic properties of conditioned rubbers under moderate finite deformation. Acta Mechanica Solida Sinica, 2004, (17): 307-314.
    [143] Yong Xia, W Li and Yuanming Xia. Study on the compressible hyperelastic constitutive model of tire rubber compounds under moderate finite deformation. Rubber Chemistry and Technology, 2004, (77): 230-241.
    [144] Yong Xia, Yi Dong, Yuanming Xia and Wei Li. A novel planar tension test of rubber for evaluating the prediction ability of the modified eight-chain model under moderate finite deformation. Rubber Chemistry and Technology, 2005, (78): 879-892
    [145]白新理,杨开云等.不可压缩超弹性材料大变形接触分析[J].四川大学学报,2001, 33 (1):17-19.
    [146]牟建辉.非线性大弹性材料的位移分析[J] .江苏石油化工学院学报,9(2):60-64.
    [147]王学利.高压注水井带压作业防喷密封技术研究[D].大庆石油学院硕士学位论文,2007,3:14-21.
    [148]林军.液压闸板防喷器胶心抱紧力分析计算[J].石油机械,1993,21(6):9-19.
    [149]关景泰.机电液控制技术[M].上海:同济大学出版社,2002.
    [150] Jia Guangzheng, Wang Xuanyin. Study on the Hydraulic BOP System. Proceedings of the 5th International Conference on Fluid Power Transmission and Control, April 3~5,2001, Hangzhou, China: 169-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700