煤层气开发井网优化数值仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国低煤阶煤所包含的资源量约占全国煤层气资源量的47%,复杂地质条件下低煤阶煤层气藏的相关理论研究具有重要的理论意义和应用价值。论文基于煤层气地质学、渗流力学理论、有限差分理论,采用理论研究、数值模拟分析和现场实际生产数据资料相结合的方法,对复杂地质条件下煤层气藏群井排采的产能和压力扩展规律进行了研究,并对井网合理布局进行了研究,为煤层气地面开发提供了依据和指导。
     将煤储层抽象为双重介质,考虑了煤层气排采后压力变化引起的基质收缩对煤孔隙度和渗透率的影响,建立了基质、裂隙双重孔隙度,裂隙单一渗透率的煤层气藏渗流数学模型。采用隐式差分方法对所建立的煤层气渗流数学模型进行差分离散,推导和建立了可以迭代求解的线性煤层气藏渗流数值模型。
     以阜新刘家区块为背景,建立了考虑火成岩和断层构造的复杂煤层气藏地质模型。基于所建立的数学模型、数值模型和地质模型,对复杂地质条件刘家煤层气藏群井排采后的产能和压力扩展规律进行了仿真研究,通过区块煤层气井数值模拟结果和实际排采曲线的对比和分析,验证了论文所建立数学模型和地质模型的正确性。模拟得到地质构造影响煤层气排采后的储层压力扩展,封闭地质构造的存在改变了压力扩展的方式,压力扩展至封闭构造处时沿着封闭构造的走向扩展,在构造处的压力梯度较大。
     分析了端、面割理方向渗透率、地质模型和复杂地质条件对煤层气排采压力扩展和产能的影响:不考虑面、端割理渗透率的差异会使井的日产气量偏高,在相同条件下,排采后产生的有效井间干扰范围较大;采用理想地质模型计算得到的初始储量、日产量与实际会出现偏差;不考虑地质构造的普通地质模型煤层气井的产量与复杂地质条件储层有三种不同情况,且压力扩展和井间干扰的形成也有明显不同。
     对复杂地质因素影响下煤层气井的合理井间距进行了分析,地质构造影响煤层气井的布置,煤层气井与断层的距离越大,产能越高;煤层气井与侵入岩的距离确定为压裂影响半径时产能最高;在面割理方向和火成岩附近储层的煤层气井间距要适当加大,才能使端、面割理方向及多井排采时井间干扰的同时形成。
     基于上述煤层气井间距的分析,对刘家煤层气井网进行了优化,并且对刘家煤层气群井排采时的井网密度进行了研究,采用群井排采时,井数越多,井间干扰形成的时间越短,区块产能越高,煤层气的净收益越大,但是超过22口井时,井数再增加,区块产能提高不明显。
Low coal rank coal contains about 47% CBM resources of the national CBM resources, related theory research of low coal rank CBM reservoirs under complex geological conditions has important theoretical and application value. Capacity and pressure distribution of complicatedly geologic CBM reservoir with multi-well exploitation were researched based on coal-bed gas geology, permeation fluid mechanics and finite difference theory by the method of theoretical research and numerical simulation, the reasonable well pattern arrangement was studied, that provides basis and guidance for CBM ground development.
     Coal was abstracted as double-porosity media. Dual porosity-single permeability CBM seepage mathematical model considering the matrix shrinkage duing to fluid pressure change were established.CBM seepage mathematical model were discreted by implicit difference method, CBM seepage numerical model were deduced which can be solved by iteration.
     Complicatedly geologic CBM reservoir model considering igneous rocks and faults was established on the background of Fuxin LiuJia CBM block. The off-take potential and pressure distribution of complicatedly geologic CBM reservoir were simulated and researched based on the mathematical model, numerical model and geologic model. The correctness of mathematical model and geologic model was proved through comparing numerical simulation results with actual production data. The simulation results shows that pressure distribution after extracting CBM are influenced by the geological factor. the way of pressure distribution is changed due to the close geologic structure, pressure spreading along the strike of intrusive dykes and faults, reservoir pressure gradient is greater in the place of igneous rocks and faults.
     The influence of face cleat permeability, butt cleat permeability, geologic model and complicatedly geologic structure on off-take potential and pressure distribution were analysed. Daily production is higher and the area of well interference is larger without considering the difference of face cleat and butt cleat. Initial reserves and daily production using geological model deviate from actual ideal geological model. There are three different patterns of CBM wells productivity in complicated geological reservoir comparing with ordinary reservoir based on the different distance from well to intrusive dykes and faults, pressure distribution and well interference of complicated geological reservoir are different from ordinary reservoir.
     Reasonable well spacing of complex geological CBM was analyzed. Well pattern arrangement is influenced by geological structure. The capacity of CBM well increases along with the increase of well distance with faults. When the distance of CBM wells and intrusive rocks equal to pressing crack radius, the capacity of CBM well is the largest. Wells spacing should increase appropriately in the direction of face cleat and in the place of intrusive rocks, that can make well interference form at the same time.
     Well patterns was optimized and well patterns density was analysed based on the analysis of the CBM well spacing. The more wells,the shorter time of well interference generation,and the larger capacity and net earnings.In LiuJia block,when wells exceed 22, the improvement of block capacity is not obvious.
引文
[1]孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[D].辽宁:辽宁工程技术大学,2004:1-10.
    [2]张新民,庄军,张遂安.中国煤层气地质及资源评价[M].北京:科学出版社,2002:9-10.
    [3]李五忠,赵庆波,吴国干.中国煤层气开发与利用[M].北京:石油工业出版社,2008:1-3.
    [4]陈振宏.高低煤阶煤层气藏主控因素差异性对比研究[D].广州:中国科学院广州化学研究所,2007:1-10.
    [5] Scott,A.R.Hydrogeologic factors affecting gas content distribution in coal bed,International Journal of Coal Geology,2002(50):363-368.
    [6] Scott,A.R. Composition and origin of coalbed gases from selected basin in the United States. Proceeding of the 1993 International Coalbed Methane Symposium,1993,209-222.
    [7]谢勇强.低阶煤煤层气吸附与解吸机理实验研究[D].西安:西安科技大学,2006:1-5.
    [8]赵庆波.中国煤层气勘探成果及技术[R].
    [9]乔军伟.低阶煤孔隙特征与解吸规律研究[D].西安,西安科技大学,2006:2-8.
    [10] Airey E M.Gas emission from broken coal : an experimention and theoretical investigation[J]. InternationalJournal of Rock Mechanics and Mining Science,1968,(15):475-494.
    [11] Bumb A C.Unsteady-state flow of methane and water in coalbeds [D].University of Wyoming.
    [12] Gorbachev A T , Alekeev G V , Vorozhtsov E V.Numerical calculations in three-dimensional cases of degassing of coal seams[J].Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh,(12):83-92.
    [13] Karagodin L N,Krigman R K.The use of hydraulic modeling to determine the natural gas permeability of coal sems [J].Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh,(4):118-121.
    [14] Price H S,McCulloch R C,Edwards J C et al.A computer model study of methane migration in coal beds[J].The Canadian mining and metallurgical Bulletin,66(737):103-112.
    [15] Warren J E,Root R J.The behavior of naturally fractured reservoirs.Trans Am Inst Min Metall Pet Eng,228:245 -255.
    [16]张群.煤层气储层数值模拟模型及应用的研究[D].西安:煤炭科学研究总院西安分院,2003:3-10.
    [17] King G R,Ertekin T M.Comparative evaluation of vertical and horizontal drainage wells for degasification of coal seam,1988,SPERE 3(2):720-734.
    [18]周世宁.瓦斯在煤层中的流动机理[J].煤炭学报,1990,15(1):14-24.
    [19]周世宁,林柏泉.煤层瓦斯赋存与流动理论.北京:煤炭工业出版社,1998.
    [20]章梦涛,潘一山,梁冰等.煤岩流体力学[M].北京:科学出版社,1995.
    [21]赵阳升.煤体-瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13(3),229-239.
    [22]刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报,1999,18(6):397-401.
    [23]任冬梅.煤层甲烷气藏输运数值模拟研究[D].重庆:西南石油学院石油工程学院,2004.
    [24]张烈辉,陈军,等.用常规黑油模型模拟煤层气开采过程[J].西南石油学院学报,2001,23(5):26-28.
    [25]许广明,武强等.非平衡吸附模型在煤层气数值模拟中的应用[J].煤炭学报学报,2003,28(4):381-384.
    [26]刘曰武,张大为,等.多井条件下煤层气不定常渗流问题的数值研究[J].岩石力学与工程学报,2005,24(10):1679-1686.
    [27]孙可明,潘一山,等.流固耦合作用下深部煤层气井群开采数值模拟[J].岩石力学与工程学报,2007,26(5):994-1001.
    [28]肖晓春,潘一山.多井开采条件下煤层气渗流数值模拟[J].岩石力学与工程学报,2007,26(5):977-981.
    [29]杨新乐,张永利,等.井间干扰对煤层气渗流规律影响的数值模拟[J].煤田地质与勘探,2009,37(4):25-29.
    [30] DGB5751-86,中国煤炭分类标准[S].
    [31]陈鹏.中国煤炭分类的完整体系[J].中国煤炭,2000,26(10):7-11.
    [32]张新民,庄军,张遂安.中国煤层气地质与资源评价[M],北京:科学出版社,2002:114-136.
    [33]韩德馨.中国煤岩学[M],北京:中国矿业大学出版社,1998.
    [34]章照明.火成岩侵入煤层瓦斯涌出规律研究[D].安徽:安徽理工大学能源与安全学院,2008:23-28.
    [35]张子敏.瓦斯地质学[M],北京:中国矿业大学出版社,2008:195-203.
    [36]袁同星.确山煤田吴桂桥井田岩浆岩对煤层的影响破坏及接触变质带特征[J].河北建筑科技学院学报,2000,17(4).
    [37]梁冰,陈天宇,孙维吉,等.侵入岩对煤层气区块产能影响的仿真研究[J].采矿与安全工程学报,2010,27(2):154-159.
    [38]蒋福兴,姜金华,赵宝良.阜新王营井田浅成气的成藏与岩浆活动[J].辽宁工程技术大学学报,2002,21(4):501-503.
    [39] Gurba,L W,C R.Effects of igneous intrusions on coalbed methane potential,Gunnedah Basin,Australia[J].International Journal of Coal Geology,2001,46(2-4):113-131.
    [40]张文永,徐胜平,蔡学斌.卧龙湖煤矿岩浆侵入规律及其对煤层、煤质、瓦斯的影响[J].安徽地质,2005,15(1):25 -28.
    [41]张文燿.龙宫勘探区岩浆活动对二1煤层的影响浅析[J].江苏煤炭,2003,(3):31-33.
    [42]张俊宝.对阜新煤田刘家区影响煤层气地质因素的分析[J].辽宁工程技术大学学报,2003,22(6):764-766.
    [43]杨起,汤达祯.华北煤变质作用对煤含气量和渗透率的影响[J].地球科学-中国地质大学学报,2000,25(3):273-277.
    [44]朱志敏.阜新盆地中部煤层气地质特征研究[D].阜新:辽宁工程技术大学资源与环境工程学院,2003.
    [45]冯文光.煤层气藏工程[M].北京:科学出版社,2008:84-90.
    [46]骆祖江,杨锡禄,赵峻峰等.煤层气井数值模拟研究[J].中国矿业大学学报,2000,29(3):306-309.
    [47]孔祥言.高等渗流力学[M].合肥:中国科技大学出版社,1999:18-22.
    [48]梁冰,孙可明.低渗透煤层气开采理论及其应用[M].北京:科学出版社,2005:60-83.
    [49] Ian Palmer, John Mansoori. How Permeability Depends on Stress and Pore Pressure in Coalbeds: A New Model [J].Socity of Petroleum Engineers,1996,557-564.
    [50]哈立德.阿齐兹,安东尼.赛特瑞.油藏数值模拟[M].北京:石油工业出版社,2004:232-242
    [51]辽宁省阜新市刘家区煤层气含量报告[R].
    [52]陈兆山,曹立刚.阜新五龙刘家区煤层气开发前景浅析[J].中国煤田地质,2004,16(5):21-24.
    [53]张俊宝,何玉梅.阜新煤田刘家区辉绿岩活动规律及对煤层气赋存的影响[J].煤矿开采,2003,8(3):21-22
    [54]梁政国,魏云.阜新盆地内辉绿岩侵入体的初步认识[J].阜新矿业学院学报,1984,3(4):83-91.
    [55]苏现波,林晓英,柳少波.阜新盆地王营-刘家煤层气藏成藏机理[J].湖南科技大学学报,2007,22(1):21-24.
    [56]张明山.水平钻井具备的基本地质条件及工艺[J].中国煤层气,2009,6(5):38-40.
    [57]李华,水平井变密度射孔和分段射孔完井技术研究[D].山东:中国石油大学,2008:19-20.
    [58]朱文娟,喻高明,严维峰等.油田经济极限井网密度的确定[J].断块油气田,2008,15(4):66-68.
    [59]张波,李君,赖海涛.苏里格低渗气田井网井距计算方法探讨[J].石油化工应用,2010,29(6):42-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700