燃气透平叶片冷却通道及叶顶间隙流动和换热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃气透平常被喻为航空发动机的“心脏”。纵观航空技术的发展历程,每一次重大进展都离不开燃气透平设计及制造技术的革新。由于航空发动机应用的特殊性,它无疑集中体现了现代动力机械设计和制造的最先进水平,并代表着新一代动力机械的发展方向。正因如此,航空发动机技术历来是世界发达国家优先发展、高度垄断、严密封锁的关键技术,也是一个国家军事装备水平、科技发展、工业实力及综合国力的重要标志之一。在我国,为了满足高性能、大推力战斗机的发展需求,新一代燃气透平的研发刻不容缓。
     在保持战斗机重量和尺寸不变的前提下,提高透平入口燃气温度是提高发动机性能的重要途径之一。然而这是一柄双刃剑,因为提高燃气入口温度在获得更高的发动机推重比的同时,给发动机高温部件的可靠性和使用寿命也带来巨大威胁,特别是透平叶片。因此必须采取有效的透平叶片冷却技术来应对这一威胁,以保障高温、高压、高转速工作条件下发动机的可靠性和使用寿命。从早期的叶片内部简单直接冷却技术,到如今先进的气膜冷却、层板冷却、内通道肋片与外表面气膜组合冷却技术,燃气透平发动机技术伴随着叶片冷却技术的改进而迅速发展。尽管如此,人们对透平叶片冷却技术仍然不断提出更高的要求:如何设计最佳的冷却结构在达到更好冷却效果的同时降低二次流气动损失?如何用最少的冷却介质达到更合理的冷却效率分布?自航空发动机问世以来,围绕诸如此类伴随着发动机技术发展而衍生的课题,无数科研工作者做了大量的研究工作。尽管如此,时至今日,这些研究课题依旧非常热门。
     本文以实验研究为基础,结合数值模拟计算,针对航空发动机透平叶片内部肋化冷却通道以及叶片顶部间隙区的流动和换热特性,展开了一系列基础科学问题研究。研究内容主要可分为以下三个部分:
     第一部分,透平叶片内部肋化通道换热及流阻特性实验。搭建实验平台,设计了两种不同几何结构的矩形肋化冷却通道:单面斜肋通道和双面交错排列斜肋通道。测量两种冷却通道的局部和平均换热系数以及肋片导致的二次流气动压力损失,综合比较了两种冷却通道的综合换热效率。所展示的测量数据不仅可为肋化通道结构设计提供参考,还可为数值模拟时选择湍流模型及检验计算方法提供验证数据源。针对附加肋片可以强化换热但同时导致流动压力损失增大这一问题,根据流场的相似性原理,本文首先提出一种肋化通道的优化设计方法,即:先固定肋片高度e,改变肋片间距p,通过实验得到综合换热效率最高的肋片间距与高度比p/e;然后固定所得到的最佳p/e,改变肋片高度e,寻求固定几何通道中的最佳肋片高度。通过上述两步优化过程,可得到固定几何形状的最佳肋片高度和间距设计参数。此优化方法的特点在于能较大地减少肋片优化设计工作量,提高肋化通道设计工作效率。
     第二部分,叶顶间隙区流动和换热的实验和数值研究。利用学校工程实验中心先进的示踪粒子图像测速技术(PIV),捕捉旋转叶片顶部间隙区特征截面上的速度分布。通过不同截面上的速度分布,观察叶片顶部泄漏涡的产生和发展过程,分析泄漏流和叶栅通道流的混合特性。在实验研究的同时,本文利用商业软件,开展叶片顶部间隙流动的换热数值研究,并以实验数据为依据,比较利用五种湍流模型所得数值计算结果。数值计算结果与实验测量数据比较的表明:使用RNGk—ε湍流模型得到的数值结果与实验测量数据最接近。此外,本文通过实验还观测到叶片顶部不同位置气膜孔冷气射流对泄漏流的阻挡作用。为了深入研究气膜冷却对泄漏流的影响,本文设计了不同气膜孔排布方式和气膜孔角度,用经过实验检验的湍流模型和数值方法,比较了不同气膜孔设计方式的差异,并在此基础上提出改进叶顶气膜孔设计的建议。
     第三部分,叶片旋转和间隙高度对叶顶间隙区换热的影响。在研究旋转叶片顶部的流动和换热特性时,前人采用的实验状态有三种:1)叶片和端壁都处于静止状态,2)叶片静止而端壁运动的状态,3)叶片旋转而端壁静止的状态。真实叶片的工作状态是第三种,然而受实验测量手段的制约,当前大多数实验研究是在第一种和第二种状态下进行的,第三种状态下进行的很少,而且都是针对低温低压低转速条件的。由于前两种近似实验方案与实际叶片的工况相差很大,人们不断地提出疑问:近似方案究竟能否准确模拟叶顶的流动和换热情况?不同实验研究中方案如何选取?针对前人研究叶片顶部间隙泄漏流采用不同实验方案的争议,本文以GE-E3旋转叶片为模型,在旋转速度8450r/min的条件下,选取三种间隙高度0.3,0.75,1.2mm(分别对应于叶片高度的1%,2.5%,4%),采用前人推荐并用实验数据验证过的旋转问题湍流模型,用数值模拟方法,综合分析了三种实验状态下间隙高度对叶片顶部间隙区的流动和换热特性影响。本文通过数值分析,提出不同间隙高度下与真实叶片工作状态比较接近的实验方案,从而为转子叶片顶部间隙泄漏流及冷却特性实验研究装置设计提供有力的理论依据。
Gas turbine as aero-engine is usually likened as the aircraft's heart. Throughout the development of aeronautics and astronautics technologies, every major progress was inseparable from the development of aero-engine design and manufacture technology. Due to the particularity of the aero-engine applications, there is no doubt that the design and manufacture of the aero-engine represents the most advanced technique and key development direction of modern power machinery. For this reason, the aero-engine techniques in every world power are very crucial, developed priority, monopolized highly, blockaded tightly, because the correlation techniques are seen to be one of the most important symbols of national military level, industry equipment and overall national strength. In our country, to meet the demands of supersonic and high performance aircraft, it's imperative to investigate and improve a new generation of aero-engine.
     Under the premise of maintaining the same engine weight and dimension scale, one important approach to improve the engine efficiency is to increase turbine inlet temperature, but this approach is a double-edged sword. One hand side, a higher gas temperature at the inlet can bring a higher ratio of thrust to weight, but on the other hand side, the higher inlet temperature will result in a higher thermal load to the components exposed directly to extreme high temperature environment, especially to the turbine blade. Hence, more effective cooling methods must be developed to protect these components, and ensure the reliability and service life of the engine under long-term high temperature, high pressure conditions. At the beginning of turbine blade cooling design, only simple straight internal cooling channel was applied. Through several generations of cooling technique development, such as impingement cooling, film cooling and advanced film cooling, today the combination cooling techniques of internal ribbed channel and external film cooling have been widely used in modern gas turbine designs. However, more requirements of turbine blade cooling technique are still popular research topics, such as, how get optimal design of cooling structures to reduce the aerodynamic loss of the second flow? How achieve a reasonable cooling efficiency distribution with the least coolant consumption? Around these scientific questions deriving from the development of aero-engine gas turbine, numerous researchers have been carried out a lot of work in this field, since the invention of aero-engine. However, these topics are still very popular even nowadays.
     This dissertation will present a series of experimental and numerical investigations on the fluid flow and heat transfer characteristics of the internal cooling air channel and tip leakage of a typical turbine blade through the following three chapters.
     In the first section, the cooling air flow and heat transfer characteristics of the ribbed channels within a turbine blade were studied through experiments. Experimental platform was set up, and two different ribbed channels were designed, one channel is ribbed by inclined ribs installed on one wall, and the other channel by inclined ribs staggered installed on two opposite walls. Experiments were performed, and the aerodynamic loss, local and average heat transfer coefficients of the two channels was measured. The synthetical heat transfer efficiency of two structures was calculated and compared. The experimental data provide a reference for the designers of the ribbed channels, and can be used to validate turbulence models and calculation strategies in the numerical simulations carried out by our research group. Based on the experiments, according to the flow similar principles, a simplified optimization approach of the ribbed channels was proposed:during the first step of the optimization approach, the rib's height e is fixed, but the rib's pitch p is changed, the structure with the highest synthetical heat transfer coefficient was obtained by this step; in the second step, at the fixed p/e obtained by the first step, the rib height e is changed (but p/e maintains the value obtained by the previous step). Through the optimization of two steps, geometry parameters of a ribbed channel with the highest synthetical heat transfer coefficient can be obtained. The advantage of this optimization method is that it significantly reduces the work load of the ribbed channel design and improves work efficiency thereby.
     In the second section, an experimental and numerical investigation on tip leakage flow and blade tip heat transfer is presented. Two-dimension flow fields at the certain cross sections of turbine blade tip gap were captured by the PIV (Particle Image Velocimetry) system of USTC Engineering Experimental Center. Through the two-dimensional fluid flow fields, the generation and development of the tip leakage vortex of the turbine blade was analyzed. At the same time, a numerical simulation was carried out by commercial software. The numerical results obtained by five turbulence models were compared with the experimental data measured by the PIV. Through the comparison, the RNGk-ε model was suggested as the most close to the experimental data. Based on the experimental and numerical investigations, the effect of tip film holes injection to the tip leakage flow was numerical analyzed. To reduce the tip leakage flow using the cooling air injection through film holes, different arrangements and angles of the film holes were designed, and the corresponding cooling effectiveness and reduction effect of the leakage flow were compared through numerical simulations. Based on the numerical comparisons, this chapter provides the investigators and designers with a relatively comprehensive reference regarding turbulence model choice and tip film holes design to reduce leakage flow.
     In the third section, the effect of rotation and tip gap on blade tip heat transfer was numerically investigated. When investigating the characteristics of the fluid flow and heat transfer of the blade tip, three working states were used:1) both blade and endwall are stationary;2) the blade is stationary, but the endwall is rotating;3) the blade is rotating, but the endwall is stationary. The actual turbine blade worked under the third state, while resticted by experimental survey methods, most of the current experimental investigations were carried out under the first and second state. Great difference existed between the first two approximate experimental programs and actual turbine blade working condition, people doubted that whether the approximate program can accurately simulate the characteristics of flow and heat transfer on blade tip? How to select experimental program appropriately? To solve the controversy concerned with the experimental scheme of tip leakage flow, a typical GE-E3turbine blade was used as specimen, and numerical simulations were carried out at a rotating speed of8450r/min, three tip gap values0.3,0.75,1.2mm (1%,2.5%and4%of blade height respectively). The characteristics of the fluid flow and heat transfer of the blade tip gap were investigated under the three working states. Based on the numerical analysis, the better experimental schemes, which are more close to the real operation state of gas turbine rotor blade under different tip gaps, are suggested to investigators and designers of the experimental schemes of blade tip leakage flow and cooling performances.
引文
[1]张伟,2008,航空发动机.北京:航空工业出版社.
    [2]王云,2009,航空发动机原理.北京:北京航空航天大学出版社.
    [3]国外航空技术,发动机类第16号,1973.
    [4]刘长福,邓明,2006,航空发动机结构分析.西安:西北工业大学出版社.
    [5]Kwak, J. S., Han, J.C.,2003, Heat transfer coefficients and film-cooling effectiveness on a gas turbine blade tip. ASME Journal of Heat Transfer 125:494-502.
    [6]倪萌,朱惠人,裘云,许都纯,刘松龄,2005,航空发动机涡轮叶片冷却技术综述.燃气轮机技术18:25-33.
    [7]Wang, J. H.,2002, An experimental investigation on transpiration cooling, Shaker Publishing House, printed in Aachen, Germany, ISBN3-8322-1099-7.
    [8]Calmidi, V. V., Mahajan, R.L,2000, Forced convection in high porosity metal foams. ASME Journal of Heat Transfer 122(3):557-565.
    [9]Ejalali, A., Hooman, K., Gurgenci, H.,2009, Application of high porosity metal foams as air-cooled heat exchangers to high heat load removal systems. International Communications in Heat and Mass Transfer 36:674-679.
    [10]Odabaee, M., Hooman, K., Gurgenci, H.,2011, Metal foam heat exchangers for heat transfer augmentation from a cylinder in cross-flow. Transport in Porous Media 86:911-923.
    [11]Tamayol, A., Hooman, K.,2011, Thermal assessment of forced convection metal foam heat exchangers. ASME Journal of Heat Transfer,133:111801-1-7.
    [12]P. C. Sweeney, J. F. Rhodes,2000, An infrared technique for evaluating turbine airfoil cooling designs. ASME Journal of Turbomachinery 122:170-177.
    [13]马龙,王建华,吴向宇,杜治能,2007,利用红外技术进行层板冷却特性实验研究.航空动力学报,23:657-661.
    [14]Wang, J. H., Lv, X. J., Liu, Q. D., Wu, X. Y.,2009, An experimental investigation on cooling performance of a laminated configuration using infrared thermal image technique. ASME Paper GT2009-59838.
    [15]Wang, J. H., Xu, H. Z., Lv, X. J., Du, Z. N., Yang, S. J.,2009, A numerical investigation on fluid-thermal-structure coupling characteristics of laminated film cooling configurations. ASME Paper GT2009-59604.
    [16]Han, J. C.1984, Heat transfer and friction in channels with two opposite rib-roughed walls. ASME Journal of Heat Transfer 106:774-781.
    [17]Bergles, A. E.,1997, Heat Transfer Enhancement-The Encouragement andAccommodation of High Heat Fluxes. ASME Journal of Heat Transfer 119:8-19.
    [18]Liou, T. M., Wu, Y. Y., and Chang, Y.,1993, LDV Measurements of Periodic Fully Developed Main and Secondary Flow in a Channel With Rib-Disturbed Walls. ASME Journal of Fluids Engineering 115:109-114.
    [19]Han, J. C., Zhang, Y. M., and Lee, C. P.,1991, Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs. ASME Journal of Heat Transfer 113: 590-596.
    [20]Han, J. C., Sandip Duffa, Srinarh V. Ekkad,2000,《Gas turbine heat transfer and cooling technology, Taylor&Francis》, New York.
    [21]Tiggelbeck, St., Mitra, M. K., and Fiebig, M.,1994, Comparison of Wing-Type Vortex Generators for Heat Transfer Enhancement in Channel Flows. ASME Journal of Heat Transfer 116:880-885.
    [22]Chyou, Y. P.,1997, Investigation of Fluid Dynamic Characteristics of Longitudinal Vortices. Trans. Aeronaut. Astronaut. Soc. ROC 29(4):375-387.
    [23]Eibeck, P. A., and Eaton, J. K.,1987, Heat Transfer Effects of a Longitudinal Vortex Embedded in a Turbulent Boundary Layer. ASME Journal of Heat Transfer 109:16-24.
    [24]Pauley, W. R., and Eaton, J. K.,1994, The Effect of Embedded Longitudinal Vortex Arrays on Turbulent Boundary Layer Heat Transfer. ASME Journal of Heat Transfer 116:871-879.
    [25]Liou, T. M., Chen, C. C., and Tsai, T. W,2000, Heat Transfer and Fluid Flow in a Square Duct with 12 Different Shaped Vortex Generators. ASME Journal of Heat Transfer 122: 317-335.
    [26]Xie, G. N., Sunden, B.,2011, Comparisons of Heat Transfer Enhancement of an Internal Blade Tip with Metal or Insulating Pins. Advances in Applied Mathematics and Mechanics 3:297-309.
    [27]Kercher, D. M., Tabakoff, W.,1970, Heat transfer by a square array of round air jets impinging perpendicular to a flat surface, including effect of spent air. ASME Journal of Engineering for Power 92:73-82.
    [28]Fan, C.S. and Metzger, D.E.,1987, Effect of channel aspect ratio on heat transfer in rectangular passage sharp 180 deg turns. ASME Paper 87-GT-113.
    [29]Wagner, J.H., Johnson, B. V., and Hajek, T.J.,1991, Heat transfer in rotating passages with smooth walls and radial outward flow, ASME Journal of Turbomachinery 113:42-51.
    [30]Han, J.C. and Zhang, P.,1991, Effect of rib-angle orientation on local mass transfer distribution in a three-pass rib-roughened channel. ASME Journal of Turbomachinery 113: 123-130.
    [31]Han, J. C., Zhang, Y. M., and Lee, C. P.,1992. Influence of surface heat flux ratio on heat transfer augmentation in square channels with parallel, crossed and V-shaped angled ribs. ASME Journal of Turbomachinery 114:872-880.
    [32]Ekkad, S. V., and Han, J. C,1997, Detailed Heat Transfer Distributions in Two-Pass Square Channels with Rib Turbulators. International Journal of Heat and Mass Transfer 40(11): 2525-2537.
    [33]Chyu, M. K., Ding, H., Downs, J. P., Van Sutendael, A., and Soechting, F.O.,1998, Determination of Local Heat Transfer Coefficient Based on Bulk Mean Temperature Using a Transient Liquid Crystal Technique. Experimental Thermal and Fluid Science 18(2):142-149.
    [34]Heidrich, P., von Wolferdorf, J., and Schnieder, M.,2008, Experimental Study of Internal Heat Transfer coefficients in a Rectangular Ribbed Channel Using a non-invasive, non-destructive, transient inverse method. ASME Paper GT2008-50297.
    [35]Huang, R.F., Chang, S.W., and Chen, K.H.,2007, Flow and Heat Transfer Characteristics in Rectangular Channels With Staggered Transverse Ribs on Two Opposite Walls. ASME Journal of Heat Transfer 129:1732-1736.
    [36]Sunden, B.,2011, Convective heat transfer and fluid flow physics in some ribbed ducts using liquid crystal thermography and PIV measureing techniques. Journal of Heat and Mass Transfer 47:899-910.
    [37]Elfert, M., Schroll, M., Forster, W.,2012, PIV measurement of secondary flow in a rotating two-pass cooling system with an improved sequencer technique. ASME Journal of Turbo-machinery 134:031001-1-12.
    [38]Taslim, M. E., and Lengkong, A.,1998,45 deg Staggered Rib Heat Transfer Coefficient Measurements in a Square Channel. ASME Journal of Turbomachinery 120(3):571-580.
    [39]Koroky, G. J., Taslim, M. E.,1998, Rib heat transfer coefficient measurements in a rib-roughed square passage. ASME Journal of Turbomachinery 120:376-385.
    [40]Ahn, S. W., Kang, H. K., and Bae, S. T., Lee, D, H.,2008, Heat Transfer and Friction Factor in a Square Channel With One, Two, or Four Inclined Ribbed Walls. ASME Journal of Turbomachinery 130(3):034501-1-5.
    [41]Jenkins, S.C., Zehnder, F., Shevchuk, I.V., von Wolfersdorf, J., Schenieder, M., Wergand, B., 2008, The Effect Of Ribs And Tip Wall Distance On Heat Transfer For A Varying Aspect Ratio Two-Pass Ribbed Internal Cooling Channel. ASME Paper GT2008-51207.
    [42]Chandra, P. R., and Niland, M. E,1997, Turbulent Flow Heat Transfer and Friction in a Rectangular Channel With Varying Numbers of Ribbed Wall. ASME Journal of Turbo- machinery 119:374-380.
    [43]Kunstmann, S., von WolfersdortfJ., and Ruedel,U.,2009, Heat Transfer and Pressure Loss in Rectangular One-Side-Ribbed Channel With Different Aspect Ratios. ASME Paper GT2009-59333.
    [44]Rallabandi, A. P., Alkhamis.N., and Han,J.C.,2009, Heat transfer and pressure drop measurements for a square channel with 45deg round edged ribs at high Reynolds numbers. ASME Paper GT2009-59546.
    [45]Hsieh, S.S., Hong, Y. J.,1995, Heat transfer coefficients in an orthogonally rotating duct with turbulators ASME Journal of Heat Transfer 117:69-78.
    [46]Jang, Y. C., Chen, H. C., Han, J. C.,2001, Flow and heat transfer in a rotating square channel with 45 deg angled ribs by Reynolds stress turbulence model. ASME Journal of Turbo-machinery 123:124-132.
    [47]Azad, G., Uddin, M. J., Han, J. C., Moon, H. K., Glezer, B.,2002, Heat transfer in a 45 deg angled rib turbulators. ASME Journal of Turbomachinery 124:251-259.
    [48]Liou, T. M., Chen, M. Y., Tsai, M. H.,2002, Fluid flow and heat transfer in a rotating two-pass square duct with in-line 90 deg ribs, ASME Journal of Turbomachinery 124:260-268.
    [49]Hwang, G. J., Tzeng, S.C. Mao, C. P., Soong, C.Y.,2001, Heat transfer in a radially rotating four-pass serpentine channel with staggered half-V rib turbulators. ASME Journal of Heat Transfer 123:39-50.
    [50]Armellini, A., Casarsa, L., Mucignat, C.,201 l.Flow field analysis inside a gas turbine trailing edge cooling channel under static and rotating conditions. International Journal of Heat and Fluid Flow 32:1147-1159.
    [51]Huh, M., Lei, J., Liu, Y. H., Han, J. C,2011, High Rotation Number Effects on Heat Transfer in a Rectangular (AR=2:1) Two-Pass Channel. ASME Journal of Turbomachinery 133: 021001-1-12.
    [52]Schuler, M., Dreher, H. M., Neumann, S.O., Weigand, B., Elfert, M.,2012, Numerical Predictions of the Effect of Rotation on Fluid Flow and Heat Transfer in an Engine-Similar Two-Pass Internal Cooling Channel With Smooth and Ribbed Walls. ASME Journal of Turbomachinery 134:021021-1-10.
    [53]Huh, M., Liu, Y. H., Han, J. C., and Chopra, S.,2008, Effect of Rib Spacing on Heat Transfer in a Two-Pass Rectangular Channel (AR=1:4) With a Sharp Entrance at High Rotation Numbers. ASME Paper GT2008-50311.
    [54]Elsaadawy, E., Mortazavi, H.,and Hamed, M. S.,2008, Turbulence Modeling of Forced Convection Heat Transfer in Two-Dimensional Ribbed Channels. Journal of Electronic Packaging 130(3):031011-1-17.
    [55]Maurer, M., von Wolfersdorf,J.,and Gritsch, M.,2007, An Experimental and Numerical Study of Heat Transfer and Pressure Loss in a Rectangular Channel With V-Shaped Ribs. ASME Journal of Turbomachinery 129(4):800-808.
    [56]刘慧春,2010,带肋片的矩形管道内流场和换热的数值模拟[硕士毕业论文].合肥:中国科学技术大学.
    [57]苏生,胡捷,刘建军,安柏涛,2008,交替大小肋片方腔通道内换热性能的数值模拟.航空动力学报23(12)
    [58]Goldstein, R.J.,1971, Film cooling. Advances in Heat Transfer 7:321-379.
    [59]Wieghard, K.,1946, Air Discharge for De-icing. AAF Translation, Report No. FTS-919-Re, pp.1-44.
    [60]Booth, T. C., Dodge, P. R., and Hepworth, H. K.,1982, Rotor-Tip Leakage:Part 1-Basic Methodology, ASME J. Eng. Power 104:154-161.
    [61]Bunker, R.S.,2001,A review of turbine blade tip heat transfer. Annals of the New York Academy of Sciences 934(1):64-79.
    [62]Mayle, R. E., Metzger, D. E.,1982, Heat transfer at the tip of an unshrouded turbine blade. Proceedings of the 7th International Heat Transfer Conference, pp.87-92.
    [63]Chyu, M. K., Moon, H. K., Metzger, D. E.,1985, Heat Transfer in the Tip Region of a Rotor Blade Simulator. Turbine Engine Hot Section Technology, pp.175-186.
    [64]Pietrzyk,J.R., Bogard,D.G. and Crawford, M.E.,1990, Effects of density ratio on the hydro-dynamics of film cooling. ASME Journal of Turbomachinery 112:437-443.
    [65]Thole, K., Gritsch, M., Schulz, A., and Witting, S.,1998, Flowfield measurements for film cooling holes with expanded exits. ASME Journal of Turbomachinery 120:327-336.
    [66]Treml, K., and Lawless, P.B.,1998, Particle Image velocimetry of vane-rotor interaction in a turbine stage. AIAA Paper 98-3599.
    [67]Yoon J.H.,Martinez-Botas, R.F.,2005,Film cooling performance in a simulated blade tip geometry. Proceedings of the ASME Turbo Expo 2005, Vol.3:739-754.
    [68]Wang J H, Liu Y L, Wang X C.2010,Characteristics of tip leakage flow of the turbine blade with cutback squealer and coolant injection. ASME Paper GT2010-22566.
    [69]Richard, H., VanderWall, B.G., Raffel, M.,Thimm, M.,2007,Application of PIV techniques for rotor blade tip vortex characterization. New Results in numerical and experimental fluid mechanics 96:446-453.
    [70]Chen, Y., Matalanis, C. G., Eaton, J. K.,2008, High resolution PIV measurement around a model turbine blade trailing edge film-cooling breakout. Experiments in Fluids 44:199-209.
    [71]Wernet, M. P., Van, Z. D., Strazisar, T. J., John, W.T., Prahst, P.S.,2005, Characterization of the tip clearance flow in an axial compressor using 3-D digital PIV. Experiments in Fluids. 39:743-753.
    [72]Palafox, P., Oldfield, M. L. G., LaGraff, J. E., Jones, T. V.,2008, PIV maps of tip leakage and secondary flow fields on a low-speed turbine blade cascade with moving end wall. ASME Journal of Turbomachinery 130(1):011001-1-9.
    [73]Johnson, B., Ramasamy, M., Leishman, J.G.,2010, Turbulence measurement inside blade tip vortices using dual-plane PIV.2010. Journal of the American Helicopter Society, Vol.55(4).
    [74]Xiao, J. P., Wu, J., Chen, L., Shi, Z.Y.,2011, Particle image velocimetry (PIV) measurements of tip vortex wake structure of wind turbine. Applied Mathematics and Mechanics 32:729-738.
    [75]Zhao, J., Gao, Z.M., Bao, Y.Y.,2011, Effects of the blade shape on the trailing vortices in liquid flow generated by disc turbine. Chinese Journal of Chemical Engineering 19:232-242.
    [76]Christophel, J.R. and Thole, K.A.,2005, Cooling the tip of a turbine blade using pressure side holes-Part I:Adiabatic effectiveness measurements. ASME Journal of Turbomachinery 127 (2):270-277.
    [77]Christophel, J.R., Thole, K.A., and Cunha, F.J.,2005, Cooling the tip of a turbine blade using pressure side holes-Part Ⅱ:Heat transfer measurements. ASME Journal of Turbomachinery 127(2):278-286.
    [78]Hippensteele, S.A., Russell, L.M. and Stepka, E.S.,1983, Evaluation of a method for heat transfer measurements and thermal visualization using a composite of a heater element and liquid crystals. ASME Journal of Heat Transfer 105:184-189.
    [79]Nasir, H., Ekkad, S. V., Kontrovitz, D. M.,2004, Effect of tip gap and squealer geometry on detailed heat transfer measurements over a high pressure turbine rotor blade tip. ASME Journal of Turbomachinery 126(2):221-228.
    [80]Kwak, J. S., Han, J. C.,2003, Heat transfer coefficients on the squealer tip and near squealer tip regions of a gas tur-bine blade. ASME Journal of Heat Transfer 125(4):669-677.
    [81]Kwak, J. S., Han, J. C.,2003, Heat transfer coefficients and film-cooling effectiveness on a gas turbine blade tip. ASME Journal of Heat Transfer 125(3):494-502.
    [82]Kwak, J. S., Han, J. C.,2003, Heat transfer coefficients and film-cooling effectiveness on the squealer tip of a gas tur-bine blade. ASME Journal of Heat Transfer 125(4):648-657.
    [83]Bunker, R. S., Baily, J. C., and Ameri, A. A.,2000, Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine:Part 1:Experimental Results. ASME Journal of Turbomachinery 122(2):263-271.
    [84]Azad, G. M. S., Han, J. C., Teng, S., and Boyle, R.,2000, Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip. ASME Journal of Turbomachinery 122:717-724.
    [85]Azad, G. M. S., Han, J. C., and Boyle, R.,2000, Heat Transfer and Pressure Distributions on the Squealer Tip of a Gas Turbine Blade. ASME Journal of Turbomachinery 122:725-732.
    [86]Newton, P. J., Lock, G. D., Krishnababu, S. K., Hodson, H. P., Dawes, W. N., Hannis, J., 2009,Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines-Part Ⅲ:Tip Cooling. ASME Journal of Turbomachineryl31(1):011006-1-14.
    [87]Han, J.C., Chandra, P. R., and Lau, S.C.,1988, Local heat/mass transfer distributions around sharp 180 deg turns in two-pass smooth and rib-roughed channels. ASME Journal of Heat Transfer 110:91-98.
    [88]Goldstein, R.J, Jin, P., and Olson, R.L.,1999, Film cooling effectiveness and Mass/heat transfer coefficient downstream of on row of discrete holes. ASME Journal of Turbo-machinery 121:225-232.
    [89]Papa, M., Goldstein, R. J., and Gori, F.,2003, Effects of Tip Geometry and Tip Clearance on the Mass/Heat Transfer From a Large-Scale Gas Turbine Blade. ASME Journal of Turbo-machinery 125(1):90-96.
    [90]Jin, P., and Goldstein, R. J.,2003, Local Mass/He at Transfer on a Turbine Blade Tip. International Journal of Rotating Machinery 9(2):81-95.
    [91]Jin, P., and Goldstein, R. J.,2003, Local Mass/He at Transfer on Turbine Blade Near-Tip Surfaces. ASME Journal of Turbomachinery 125:521-528.
    [92]Srinivasan, V., and Goldstein, R. J.,2003, Effect of Endwall Motion on Blade Tip Heat Transfer. ASME Journal of Turbomachinery 125:267-273.
    [93]Zhang, L., Baltz, M., Padupatty, R., and Fox, M.,1999, Turbine Nozzle film cooling study using the pressure sensitive paint (PSP) technique. ASME Paper 99-GT-196.
    [94]Ahn, J., Mhetras, S. P., and Han, J. C.,2005, Film-Cooling Effectiveness on a Gas Turbine Blade Tip. ASME Journal of Heat Transfer 127:521-530.
    [95]Mhetras, S. P., Yang, H., Gao, Z., and Han, J. C.,2005, Film-Cooling Effectiveness On Squealer Rim Walls and Squealer Cavity Floor of a Gas Turbine Blade Tip Using Pressure Sensitive Paint. ASME Paper GT2005-68387.
    [96]Mhetras, S., Yang, H., Gao, Z., and Han, J. C.,2006, Film-Cooling Effectiveness on Squealer Cavity and Rim Walls of Gas-Turbine Blade Tip. AIAA Journal of Propulsion and Power 22:889-899.
    [97]Palafox, P., Oldfield, M. L. G., Ireland, P. T., Jones, T. V., LaGraff, J. E.,2012, Blade tip heat transfer and aerodynamics in a large scale turbine cascade with moving endwall. ASME Journal of Turbomachinery 134:021020-1-11.
    [98]吴宏,陶智,徐国强等.2000,带气膜出流的旋转叶片冲击冷却的实验研究.航空动力学报15(4):375-380.
    [99]杨晓军,陶智,丁水汀等.2007,旋转对气膜冷却覆盖区域的影响.北京航空航天大学学报37(12):1383-1386.
    [100]赵振明,吴宏伟,丁水汀等.2008,旋转状态下气膜冷却换热系数的实验.推进技术29(6):662-666.
    [101]Rozenberg, Y.,Roger, M.,Moreau, S.,2010,Rotating blade trailing-edge noise:Experimental validation of analytical model. AIAA Journal 48:951-962.
    [102]Li, H.L., Chiang, H.W. D., Hsu, C. N.,2011, Jet impingment and forced convection cooling experimental study in rotating turbine blades. International Journal of Turbo & Jet-Engines 28:147-158.
    [103]Ibrahim, M.K., Matsumoto, S., Mori, K., Nakamura, Y.,2011, Visualization of pressure field over rotating blades using pressure sensitive foil technique. Transactions of the Japan Society for Aeronautical and Space Sciences 53:243-249.
    [104]Ameri, A. A., and Steinthorsson, E.,1995, Prediction of unshrouded rotor blade tip heat transfer. ASME International Gas Turbine & Aeroengine Congress&Exposition,Houston, Tex.,June5-8,ASME Paper 95GT-142.
    [105]Ameri, A.A., Steinthorsson, E., and Rigby, D. L.,1998, Effect of Squealer Tip on Rotor Heat Transfer and Efficiency. ASME Journal of Turbomachinery 120:753-759.
    [106]Grag, V. K., Gaugler, R. E.,1997, Effect of coolant temperature and mass flow on film cooling of turbine blades. International Journal of Heat and Mass Transfer 40:435-444.
    [107]Grag, V. K., Gaugler, R. E.,1997, Effect of velocity and temperature distribution at the hole exit on film cooling of turbine blades. ASME Journal of Turbomachinery 119:343-349.
    [108]Grag, V. K., Ameri, A. A.,1998, Comparison of two-equation turbulence models for prediction of heat transfer on film-cooled turbine blades. Numerical Heat Transfer,32: 347-355.
    [109]Tang, M.T., Palafox.P., Cheong, C. Y., Oldfield, L. G.,2008, Computational Modelling of Tip Heat Transfer to a Superscale Model of an Unshrouded Gas Turbine Blade, ASME Paper GT2008-51212.
    [110]Yang, D. L., Yu, X. B., Feng, Z. P.,2010, Investigation of leakage flow and heat transfer in a gas turbine blade tip with emphasis on the effect of rotation. ASME Journal of Turbo-machinery 132[4]:041010-1-9.
    [111]Vass, P., Arts, T.,2011, Numerical investigation of high-pressure turbine blade tip flows: analysis of aerodynamics. Proceedings of the Institution of Mechanical Engineers Part A-Journal of Power and Energy 225:940-953.
    [112]Li, J., Sun, H., Wang, J.S., Feng, Z.P.,2011, Numerical investigations on the steady and unsteady leakage flow and heat transfer characteristics of rotor blade squealer tip. Journal of Thermal Science 20:304-311.
    [113]Kim, S.I., Rahman, M. H., Hassan, I.,2012, Effect of turbine inlet temperature on rotor blade tip leakage flow and heat transfer. International Journal of Numerical Methods for Heat & Fluid Flow 22:73-93.
    [114]Yang, H., Chen, H. C, Han, J.C., Moon H. K.,2008, Numerical study of film cooled rotor leading edge with tip clearance in 1-1/2 turbine stage. International Heat and Mass Transfer 51:3066-3081.
    [115]Acharya, S., Yang, H., Ekkad, S. V., Prakash, C.,2002, Numerical Simulation of Film Cooling Holes on the Tip of a Gas Turbine Blade. ASME Paper GT2002-30553.
    [116]Acharya, S., Yang, H., Prakash, C., and Bunker, R.,2003, Numerical Study of Flow and Heat Transfer on a Blade Tip with Different Leakage Reduction Strategies. ASME Paper GT2003-38617.
    [117]Saha, A. K., Acharya, S., Prakash, C., and Bunker, R.,2003, Blade Tip Leakage Flow and Heat Transfer with Pressure Side Winglet. ASME Paper GT2003-38620.
    [118]Ameri, A.A.,2001, Heat transfer and flow on the blade tip of a gas turbine equipped with a mean-camberline strip.ASME Journal of Turbomachinery 123:704-708.
    [119]Mumic, F., Eriksson, D., and Sunden, B.,2004, On Prediction of Tip Leakage Flow and Heat Transfer in Gas Turbines. ASME Paper GT2004-53448.
    [120]Yang, H. T., Chen, H. C., Han, J. C,2004, Nunerical Predication of Film Cooling and Heat Transfer with Different Film Hole Arrangements on the Plane and Squealer Tip of a Gas Turbine Blade. ASME Paper GT2004-53199.
    [121]Key, N. L. and Arts, T.,2006, Comparison of turbine tip leakage flow for flat tip and squealer tip geometries at high-speed conditions. ASME Journal of Turbomachinery 128(2): 213-220.
    [122]Naik, S., Georgakis, C., Hofer, T., and Lengani,2012, Heat transfer and film cooling of blade tips and endwalls. ASME Journal of Turbomachinery 134:041004-1014.
    [123]Nho, Y.C., Park, J.S., Lee, Y.J., Kwak, J.S.,2012, Effect of turbine blade shape on total pressure loss and secondary flow of a linear turbine cascade. International Journal of Heat and Fluid Flow 33:92-100.
    [124]范洁川,2002,近代流动显示技术,北京:国防工业出版社.
    [125]马广云,申功炘,1995,PIV测速技术实验参数分析.空气动力学学报13:274-282.
    [126]Cardenas,C., Suntz, R., Denev,J.A., Bockhorn, H.,2007,Two-dimensional estimation of Reynolds-fluxes and stresses in a Jet-in cross flow arrangement by simultaneous 2D-LIF and PIV. Applied physics B-lasers and Optics 88(4):581-591.
    [127]刘应征,罗次申,陈汉平,2002, LDV/PIV全场速度测量的误差分析.上海交通大学学报36(10):1404-1407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700