微小型燃气轮机径向旋流预混燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微小型燃气轮机作为分布式供能的核心单元得到了越来越广泛的应用。为了降低燃气轮机的NOX排放,近几十年来各国大力开展低NOX燃烧技术研究,主要包括稀态预混燃烧技术、富燃-焠熄-稀态燃烧技术、催化燃烧技术和无焰燃烧等,其中稀态预混燃烧技术已在工业燃气轮机上得到成功应用,然而稀态预混燃烧过程中非常容易出现热声耦合振荡问题。热声耦合振荡中的低频高幅的压力振荡会干扰燃烧过程,增大污染物的排放,严重时会对整个燃烧系统造成结构性的破坏。
     本文通过数值计算和实验相结合的手段,研究了径向旋流预混型燃烧室的污染物生成与热声耦合振荡特性。
     本文中的径向旋流器采用切向方形进气通道产生旋流,在每条进气通道上游布置有一根开有多个喷孔的预混燃料喷杆,由喷孔流出后的预混燃料与来流空气经过旋流器进气通道进入预混通道内预混,并在预混通道和燃烧室内燃烧,径向旋流器中心处安装有值班喷嘴,用于稳定预混火焰。研究了三种旋流强度(S1=0.81、S2=0.93和S3=1.03)、两种预混燃料喷射方向(离心喷射和向心喷射)、两种喷孔布置方式(A型:喷孔距旋流器端壁较远。B型:喷孔紧临旋流器端壁。)、两种喷杆周向位置(0°:喷杆位于进气通道正上方。10。:喷杆向进气通道压力面方向周向偏离10°。)和值班比(值班燃料量占总燃料量百分比)对燃烧室内流动特性和燃烧特性的影响。
     首先,本文通过三维数值计算的方法研究了旋流强度、预混燃料喷射方向、喷孔布置方式、喷杆周向位置和值班比等参数对燃烧室内流动特性和燃烧特性的影响。研究发现,预混燃料采用向心喷射时的预混效果较好,采用离心喷射时则容易造成预混通道中心区燃料过富;预混喷孔采用B型布置时预混效果非常好,而采用A型布置时则造成预混通道中心处燃料浓度偏低,不利于火焰的稳定;喷杆位置对预混通道内的燃料分布影响明显,采用正对旋流器进气斜槽中心的0。布置时预混效果最好,而采用偏离10°布置时则造成预混通道内燃料分布呈现出中心和靠近壁面略高的形式;增大值班比有利于火焰的稳定,但会增加高温区范围,造成NOX排放的增加。
     然后,在设计建造的燃烧实验台上测试了结构参数(预混燃料喷射方向、喷孔布置方式和喷杆周向位置)和进气参数(进气温度、当量比、理论火焰温度、速度、值班比和压力)对污染物排放和热声耦合振荡的影响。研究发现:1)由结构参数造成的燃料在预混通道内的不均匀分布将增加NOX和CO的排放水平,并导致热声耦合振荡加强。预混燃料采用向心喷射、喷孔B型布置和喷杆0°布置时的NOX排放最低,且燃烧平稳,未出现强烈的热声耦合振荡问题;2)随着进气温度和当量比的提高,CO迅速降低,NOX逐渐提高,热声耦合振荡的声压级先增加后降低,并伴随有典型的分叉现象和迟滞现象;3)将进气温度和当量比统一用理论火焰温度Tad表示,对于预混良好的C_3结构燃烧室,在进气速度为34-46m/s,理论火焰温度为1600-1700K时,可使NOx和CO排放均小于10ppm@15%O2,且具有很好的稳定性,NOx正比于exp(0.01Tad);4)随着进气速度的提高,CO近似线性增加,NOx近似线性降低,热声耦合振荡的声压级随着进气速度的增加先增加而后降低;5)提高值班比造成CO和NOx排放的同时提高,火焰稳定性提高,但在某一值班比附近热声耦合振荡的声压级会加强,随着值班比的增加声压级先增加而后突然降低;6)测试了进气压力分别为0.11和0.22MPa的工况,随着值班比的增加,进气压力对NOx排放的影响越来越显著,当值班比为0时NOx排放几乎不受进口压力的影响,而在值班比为15%时NOx排放则从17ppm@15%02提高到了25ppm@15%O2。
     最后,将上述最优的组合方案应用于国家863项目的某型燃机,对该燃机不同负荷下燃烧室的工作状态在常压下进行了模化性能试验。分别测试了值班点火和复合点火(值班喷嘴和预混喷嘴同时喷入燃料)两种点火方式下点火曲线,证明采用复合点火方式更加可靠。测试了熄火曲线,随着进气空气量的增大,吹熄当量比逐渐降低,当进气空气量为额定空气量的4.56%时,可在当量比高于0.038时成功点火和稳定燃烧,而当空气量增加到10%时,该当量比降到了0.019。设计状态下:燃烧室总压损失为0.063略大于0.05的设计目标;出口温度场分布OTDF为0.0327,RTDF为0.0214,满足OTDF小于0.2、RTDF小于0.08的设计要求;壁面温度最高不超过650℃,远小于材料允许的工作温度;纯预混工作方式下NOx排放不大于9.5ppm@15%O2,满足小于25ppm@15%O2的设计要求,而CO排放接近于零。
     本文系统的研究了预混燃料供给方式和旋流强度等结构参数和进气温度、当量比、理论火焰温度、速度、压力、值班比等进气参数对径向旋流预混型燃烧室的污染物生成和热声耦合振荡特性的影响,为开发微小型燃气轮机低污染燃烧室提供了技术支持,并且对稀态预混燃烧中的热声耦合振荡的形成机制方面的研究进行一定的补充。采用的径向旋流预混燃烧室具有极低的污染物排放和稳定的燃烧特性,基本满足863项目微小型燃气轮机低污染燃烧室的性能要求,具有广阔的应用前景。
As key equipment of distributed energy supply system, the micro and small gas turbine have been widely used gradually. In order to reduce the NOx emission of gas turbine, more efforts have been made on developing Low NOx combustion technology in the recent decades, including Lean-Premixed combustion, Rich-burn Quick-quench Lean-premixed combustion (RQL), Catalytic Combustion and Flameless combustion etc. The Lean-Premixed combustion has already been used in industrial heavy gas turbine, but it is prone to thermoacoustic coupled oscillation. Low bands of oscillations can disturb the combustion process and increase the emission of pollution, and in some case may structurally damage the combustor.
     In this paper, the pollution formation and thermoacoustic coupled oscillation characteristics have been researched with numerical and experimental methods.
     The radial swirler used in this paper takes tangential rectangular passages as swirl generator, and mount a main fuel spray rod with many tiny holes just upstream of each inlet passage. The fuel and air flow through the swirler inlet passages and mix in the mixing-passage, and then are burned in the mixing-passage and combustor. A pilot nozzle is mounted in the center of radial swirler to stabilize the premixed flame. Three swirl number (S1=0.81, S2=0.93and S3=1.03), two main fuel inject direction (centrifugal and centripetal), two spray holes position (A type: spray holes are away from the swirler wall. B type:the spray holes are near the swirler wall.), two spray rod circumferential position (0°:just upstream of the inlet passage center.10°:rotated10°at the direction of pressure face) and pilot percentage (the percentage of pilot fuel in the total fuel supply) have been researched to reveal all the effects on the flow and combustion characteristics in gas turbine combustor.
     Firstly, the effect of swirl number, main fuel's inject direction, position of spray hole and spray rod, percentage of pilot fuel on the flow and combustion characteristics of combustor were researched with3-dimentional computation. Our research found that good mixing of fuel could be reached by injecting fuel centripetal, and when fuel is centrifugally injected the fuel will be rich in the center zone of mixing passage. Spray hole positioned with B type could reach good mixing and with A type will form a lean fuel zone at the mixing passage center, which could lead to blow off of the flame. The position of spray rod has strong effect on the distribution of fuel in the mixing passage. When the spray rod is just positioned at0°, a good mixing of fuel will be reached. And if the spray rod is biased to10°, the fuel distribution in the passage will be rich at the center and near the passage wall. When increase the percentage of pilot fuel, the flame will be more stable, but the high temperature zone near the pilot will be extended and thus the NOx formation increased.
     Secondly, the effects of structural parameters (such as main fuels inject direction, position of spray hole and spray rod) and operating conditions (such as inlet temperature, inlet velocity, equivalence ratio, percentage of pilot fuel and pressure) on pollution emission and thermoacoustic coupled oscillations have been tested. Results show that:1) The nonuniform of fuel\air mixture in the mixing passage formed by the structure will increase the NOx and CO emission, and enhance the thermoacoustic coupled oscillation level. When main fuel is centripetally injected, with main fuel spray rod mounted at0°and B type spray hole position, the NOx emission is the lowest without obvious thermoacoustic coupled oscillation;2) With the increase of inlet temperature and equivalence ratio, the CO will decrease sharply and the NOx increase linearly, the thermoacoustic coupled oscillations'sound pressure level first will increase and then decrease, and hysteresis and bifurcation phenomena will be observed;3) Adiabatic flame temperature Tad is used to combine inlet temperature and equivalence ratio. In the well premixed C_3combustor, when inlet velocity is34~46m/s and Tad is1600~1700K, the NOx and CO emission can be less than10ppm@15%O2, and has a good flame stability, NOx is proportional to exp(0.01Tad);4) With the increase of inlet velocity, CO will increase and NOx decrease linearly at the same time, the thermoacoustic coupled oscillations'sound pressure level first will increase and then decrease;5) With the increase of pilot percentage, CO emission will increase quickly and NOx increase gradually, the flame stability will be enhanced, but the thermoacoustic coupled oscillation will appear at some critical pilot percentage, with the increase of pilot percentage, the sound pressure level will increase first and then decrease abruptly;6) The pollution emission of0.11and0.22MPa operating conditions were tested, with the increase of pressure, the effect of pressure on NOx emission is enhanced, when the pilot percentage is0%the NOx emission has no change at the two operating pressure, but when the pilot percentage is15%, the NOx emission is17ppm@15%O2at0.11MPa and25ppm@15%O2at0.22MPa.
     At last, the best structure of combustor has been tested at modeled operation conditions at the863program's low emission combustor project's request, and the characteristics of ignition, blow-off, total pressure loss, outlet temperature field, wall temperature and pollution emission were tested. Two types of ignition methods were tested, which are pilot ignition and multi-ignition, the multi-ignition has stable ignition characteristics. And the blow-off characteristics is also been tested, with the increase of air mass flow rate the blow-off equivalence ratio will decrease. When air mass flow rate is4.56%of the full-load, the blow-off equivalence ratio is0.038, and when the mass flow rate increased to10%, the blow-off equivalence ratio will decrease to0.019. The total pressure loss is0.063and greater than the aim of0.05. the outlet temperature field is very uniform, the OTDF=0.0327and RTDF=0.0214, and fulfills the aim of OTDF≤0.2and RTDF≤0.08. The combustor wall temperature is no higher than650℃,which is within the allowable limit of the combustor's material. The NOx emission can reach9.5ppm@15%O2at pure premixed combustion, and is much lower than the aim of25ppm@15%O2and CO emission nearly zero.
     In this paper, structural parameters (the main fuel supply methods and swirl number) and operating conditions (such as inlet temperature, inlet velocity, equivalence ratio, percentage of pilot fuel and pressure) on the pollution emission and thermoacoustic coupled oscillation characteristics of radial swirl lean premix combustor have been researched systematically, and offered technical support for developing of micro and small gas turbines low emission combustor, and have made some complement for the research of thermoacoustic coupled oscillation mechanism in the lean premixed combustion. The radial swirl lean premix combustor can reach ultra low pollution emission and has a stable combustion characteristic, can fulfill the863program's low emission combustor project's request, and thus has a wide application prospect.
引文
[1]. International energy agency.世界能源展望2007,2008
    [2].肖利,曾成碧,李纪财.以微型燃气轮机为核心的分布式供能系统方案.四川电力技术.Vol.31,No.2.Apr.,2008
    [3].《中华人民共和国国家标准》,GB13223-2003.
    [4]. Manfred Klein.. Gas Turbine Emission Standards. IGTI Industrial Cogen& Environmental Affairs Committees.2005
    [5].侯晓春,季鹤鸣,刘庆国等.高性能航空燃气轮机燃烧技术[M].北京:国防工业出版社,2002.
    [6]. Khawar J Syed and Eoghan Buchanan. THE NATURE OF NOX FORMATION WITHIN AN INDUSTRIAL GAS TURBINE DRY LOW EMISSION COMBUSTOR. Proceeding of ASME Turbo Expo 2005, GT2005-68070.
    [7]. Luke Cowell, Colin Etheridge, Ken Smith.TEN YEARS OF DLE INDUSTRIAL GAS TURBINE OPERATING EXPERIENCES. Paper No GT-2002-30280. ASME Turbo Expo 2002:June 3-6,2002, Amsterdam, The Netherlands
    [8]. Huang Y, Yang V. Dynamics and stability of lean-premixed swirl-stabilized combustion. Progress in Energy and Combustion Science,2009,35:293-364.
    [9].李孝堂等.现代燃气轮机技术[M].北京:航空工业出版社,2006,P95-P97.
    [10]. Robert C. Steele, Luke H. Cowell, Steven M. Cannon et.al. Passive Control of Combustion Instability in Lean Premixed Combustors. Journal of Engineering for Gas Turbines and Power,2000,122:412-419.
    [11]. L.B. Davis, S.H. Black. Dry Low NOx Combustion Systems for GE Heavy-Duty Gas Turbines. GER 3568G.
    [12]. Cramb, D.J., McMillan, R.,2001,Tempest Dual Fuel DLE Development and Commercial Operating Experience and Ultra Low Nox Gas Operation, ASME paper 2001-GT-76.
    [13]. Ghenadie Bulat, Dorian Skipper, Robin McMillan et al. ACTIVE CONTROL OF FUEL SPLITS IN GAS TURBINE DLE COMBUSTION SYSTEMS. Paper No GT2007-27266. ASME Turbo Expo 2007:Power for Land, Sea and Air May 14-17,2007, Montreal, Canada.
    [14]. Klaus Dobbeling, Jaan Hellat, Hans Koch. 25 Years of BBC/ABB/Alstom Lean Premix Combustion Technologies. P 1-P12/Vol.129, JANUARY 2007.
    [15]. Crocco L, Cheng S I. Theory of combustion instability in liquid propellant rocket motors. London: Butterworths, 1956.
    [16]. Ying Huang. Modeling and Simulation of Combustion Dynamics in Lean-Premixed Swirl-Stabilized Gas Turbine Engines. Ph.D. Thesis, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA; 2003.
    [17]. D. E. Brandt, R. R. Wesorick. GE Gas Turbine Design Philosophy[M]. GE Industrial & Power Systems, Schenectady, NY.
    [18].房爱兵,燃气轮机合成气燃烧室燃烧稳定性的实验研究,中国科学院研究生院博士论文,2007
    [19]. Rayleigh, JWS. The Theory of Sound, vol. II. New York:Dover; 1945.
    [20]. Boe Teh Chu. On the energy transfer to small disturbances in fluid flow, part I. vol 1:P215-234, Acta Mechanica,1965.
    [21]. A. P. Dowling. Nonlinear Self-excited Oscillations of a Ducted Flame. Journal of Fluid Mechanics,1997,346:P271-290.
    [22]. Dowling A. P. Vortices, Sound and Flames--a Damaging Combination. The Aeronautical Journal of the Royal Aeronautical Society, 2000, P104-116.
    [23]. Lieuwen T, Yang V, editors. Combustion Instabilities in Gas Turbine Engines:Operational Experience, Fundamental Mechanisms, and Modeling. Progress in Astronautics and Aeronautics Series 2005; 210: P3-28.
    [24]. S. L Bragg. Combustion Noise. Journal of the Institute of Fuel 1963; 36:P12-16.
    [25]. Strahle W. C. On Combustion Generated Noise. Journal of Fluid Mechanics 1971; 49:P 399-414.
    [26]. Clavin P and Siggia E. D. Turbulent Premix Flames and Sound Generation. Combustion Science and Technology 1991; 78:P147-155.
    [27]. H. Lefebvre. Gas Turbine Combustion [M],2nd edition. Taylor & Francis Group.1999.
    [28]. Sutton G P, Biblarz O. Rocket propulsion elements, 7th edition. John Wiley and Sons, 2000.
    [29]. Mongia H C, Held T J, Hsiao G C, et al. Incorporation of combustion instability issues into design process:GE aero-derivative and aero engines experience. Progress in Astronautics and Aeronautics 2005:P43-64.
    [30]. Sewell J, Sobieski P. Combustion instability monitoring experience at Calpine. Progress in Astronautics and Aeronautics 2005:p 147-62.
    [31]. Barrere M, Williams, F A. Comparison of combustion instabilities found in various types of combustion chambers. Proceedings of the Combustion Institute, The Combustion Institute, 1969,12:169-181.
    [32]. Williams F. A. Combustion theory, 2nd edition. California: Addison-Wesley Publishing Company; 1985. P411-415.
    [33]. Candel S. Combustion instabilities coupled by pressure waves and their active control. Proceedings of the Combustion Institute 1992; Vol 24:P1227-1296.
    [34]. Timothy C. Lieuwen. Investigation of Combustion Instability Mechanisms in Premixed Gas Turbines. Ph. D. Thesis, Georgia Institute of Technology, 1999.
    [35]. Johannes Eckstein. On the Mechanisms of Combustion Driven Low-Frequency Oscillations in Aero-Engines. Ph. D. Thesis, University Munchen,2004.
    [36]. Thomas Sattelmayer. Influence of the Combustor Aerodynamics on Combustion Instabilitites from Equivalence Ratio Fluctuations. Proceeding of ASME Turbo Expo 2000, 2000-GT-0082.
    [37]. Kaskan W E, Noreen A E. High frequency oscillations of a flame held by a bluff body. ASME Journal of Engineering for Gas Turbines and Power,1955; Vol 77:P885-895.
    [38]. Rogers D E, Marble F E. A mechanism for high frequency oscillations in ramjet combustors and afterburners. Jet Propulsion, 1956:P456-462.
    [39]. Culick FEC. Combustion Instabilities in Liquid-Fueled Propulsion Systems, an Overview. AGARD Conference Proceedings 450. Belgium: NATO ASI Series Publication Coordination Office; 1989.
    [40]. Smith DA, Zukoski EE. Combustion instability sustained by unsteady vortexcombustion. AIAA Paper 1985-1248; 1985.
    [41]. Thierry J. Poinsot, Arnaud C. Trouve et al. Vortex Driven Acoustically Coupled Combustion Instabilities. Journal of Fluid Mechanics,1987; 177:P265-292.
    [42]. Paschereit CO, Gutmark EJ, Weisenstein W. Structure and control of thermoacoustic instabilities in a gas-turbine combustor. Combustion Science and Technology 1998; 138:P213-232.
    [43]. S. Roux, G. Lartiguea, T. Poinsot et al. Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations. Combustion and Flame,2005; 141:P 40-54.
    [44]. Zukoski FE. Afterburners. Chapter 21. In:Oates G, editor. The aerothermodynamics of aircraft gas turbine engines. Air Force Aero Propulsion Laboratory; 1978. AFAPL-TR-78-52.
    [45]. T Lieuwen, Y Neumeier, B. T. Zinn. The Role of Chemical Kinetics in Driving Acoustic Instabilities in Lean Premixed Combustors. Proceedings of the 16th International Colloquium on the Dynamics of Explosions and Reactive Systems, 1997.
    [46]. Tim Lieuwen, Ben T. Zinn. The Role of Equivalence Ratio Oscillation in Driving Combustion Instabilities in Low Nox Gas Turbines. Proceeding of the Combustion Institute, 1998;P1809-1816.
    [47]. Thomas Scarinci, Christopher Freeman. The Propagation of a Fuel-Air Ratio Disturbance in a Simple Premixer and Its Influence on Pressure Wave Amplification. Proceeding of ASME Turbo Expo 2000, GT2000-0106.
    [48]. Marble F. E, Candel S. An Analytical Study of the Non-Steady Behavior of Large Combustor. Proceeding of Combustion Institute,1978; 17:P 761-769.
    [49]. Subbaiah MV. Non-steady flame spreading in two-dimensional ducts. AIAA Journal 1983;21(11):P1557-1564.
    [50]. Poinsot T, Candel SM. A nonlinear model for ducted flame combustion instabilities. Combustion Science and Technology,1988;61:P121-151.
    [51]. Yang V, Culick FEC. Analysis of low frequency combustion instabilities in a laboratory ramjet combustor. Combustion Science and Technology,1986;45:P1-25.
    [52]. Fleifil M, Annaswamy M, Ghoneim Z. A, Ghoniem A. F. Response of a Laminar Premixed Flame to Flow Oscillations:A Kinematic Model and Thermoacoustic Instability Results. Combustion and Flame,1996; 106: P487-510.
    [53]. Dowling A. P. A Kinematic Model of a Ducted Flame. Journal of Fluid Mechanics, 1999; 394:P 51-72.
    [54]. S Hubbard, A. P. Dowling. Acoustic Instabilities in Premix Burners. Paper of AIAA, AIAA98-2272.
    [55]. Keller J. J. Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines. AIAA Journal, 1995;33(12):P2280-2287.
    [56]. Marble F. E, Candel S. M. Acoustic Disturbances from Gas Non-Uniformities Convected through a Nozzle. Journal of Sound and Vibration, 1977; 55(2):P 225-243.
    [57]. Anna Schwarz, Johannes Janicka (Ed.). Combustion Noise, Springer, 2009.
    [58]. Wolfgang Polifke, Christian Oliver Paschereit, Klaus Dobbeling. Constructive and Destructive Interference of Acoustic and Entropy Waves in a Premixed Combustor with a Choked Exit. International Journal of Acoustics and Vibration,2001; 6(3):P 135-146.
    [59]. Knoop P, Culick FEC, Zukoski EE. Extension of the stability of motions in a combustion chamber by nonlinear active control based on hysteresis. Combustion Science and Technology 1997;123:P363-376.
    [60]. Strogatz SH. Nonlinear dynamics and chaos:with applications to physics, biology, hemistry, and engineering. MA: Addison-Wesley Publishing Company; 1994.
    [61]. Kuznetsv YA. Elements of applied bifurcation theory. 3rd ed. New York: Springer-Verlag; 2004.
    [62]. Broda J C, Yang V, Santoro R J, et al. An experimental study of combustion dynamics of a premixed swirl injector. Twenty-seventh symposium on combustion,1998; P1849-1856.
    [63]. Seo S. Parametric study of lean-premixed combustion instability in a pressurized model gas turbine combustor. Ph.D. Thesis, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA; 1999.
    [64]. Lieuwen T. Experimental investigation of limit-cycle oscillations in an unstable gas-turbine combustor. Journal of Propulsion and Power, 2002;18:P61-67.
    [65]. Stow S. R, Dowling A. P. Low-order modeling of thermoacoustic limit cycle. Proceedings of ASME Turbo Expo 2004, GT2004-54245.
    [66]. Stow S. R, Dowling A. P. Thermoacoustic oscillations in an annular combustor. Proceedings of ASME Turbo Expo 2001,2001-GT-0037.
    [67]. Dowling A. P, Stow S. R. Acoustic Analysis of Gas Turbine Combustors. Journal of Propulsion and Power, 2003; 19(5):P751-764.
    [68]. Dowling A. P. Modeling and control of combustion oscillations. Proceedings of ASME Turbo Expo 2005, GT2005-68452.
    [69]. Danning You. A Three-Dimensional Linear Acoustic Analysis of Gas Turbine Combustion Instability. Ph. D. Thesis, The Pennsylvania State University, 2004.
    [70]. C. Hirsch, W. Polifke,T. Sattelmayer, et al. Influence of the swirler design on the flame transfer function of premixed flames. Proceedings of ASME Turbo Expo 2005, GT2005-68195.
    [71]. Kopitz J, Huber A, Sattelmayer T, et al. Thermoacoustic stability analysis of an annular combustion chamber with acoustic low order modeling and validation against experiment. Proceedings of ASME Turbo Expo 2005, GT2005-68797.
    [72], Russ M, Meyer A, Buchner H. Scaling thermo-acoustic characteristics of LP and LPP swirl flames. Proceedings of ASME Turbo Expo 2007, GT2007-27775.
    [73]. Kim K T, Quay B D, Santavicca D, et al. Flame transfer function measurement and instability frequency prediction using a thermoacoustic model. Proceedings of ASME Turbo Expo 2009, GT2009-60026.
    [74]. Illingworth S J, Morgans A S. Adaptive feedback control of combustion instability in annular combustors. Combustion Science and Technology, 2010,182:143-164.
    [75]. Sato K, Knudsen E, Pitsch H. Study of combustion instabilities imposed by inlet velocity disturbance in combustor using LES. Proceedings of ASME Turbo Expo 2009, GT2009-59132.
    [76]. Armitage C A, Riley A J, Cant R S, et al. Flame transfer function for swirlen LPP combustion from experiments and CFD. Proceedings of ASME Turbo Expo 2004, GT2004-53820.
    [77]. Schuller T, Durox D, Candel S. Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners. Combustion and Flame,2003;135:P525-537.
    [78]. Torres H, Lieuwen T, Zinn B T, et al. Experimental investigation of combustion instabilities in a gas turbine combustor simulator. 37th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-99-0712.
    [79]. Neumeier Y, Cohen J, Zinn B T, et al. Supperssion of combustion instabilities in gaseous fuel combustor using fast adaptive control algorithm part I:controllability tests.38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA2002-4076.
    [80]. Lee H J, Quay B D, Santavicca D A, et al. An experimental study on the coupling of combustion instability mechanisms in a lean premixed gas turbine combustor. Proceedings of ASME Turbo Expo 2009, GT2009-60009.
    [81]. Umeh C O U, Rusak Z, Gutmark E J. Experiental study of reaction and vortex breakdown in a swirl-stabilized combustor. Proceedings of ASME Turbo Expo 2009, GT2009-60183.
    [82]. Altay H M, Hudins D E, Speth R L, et al. Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone. Combustion and Flame, 2010;157(4):P686-700.
    [83]. Fanaca D, Sattelmayer T, Hirsch C, et al. Comparison of the flow field of a swirl stabilized premixed burner in an annular and a single burner combustion chamber. Proceedings of ASME Turbo Expo 2009, GT2009-59884.
    [84]. Olbricht C, Flemming F, Sadiki A, et al A study of noise generation by turbulent flow instabilities in a gas turbine model combustor. Proceedings of ASME Turbo Expo 2005, GT2005-69029.
    [85]. Kim K T, Quay BD, Santavicca D, et al. Characterization of forced flame response of swirl-stabilized turbulent lean-premixed flames in a gas turbine combustor. Proceedings of ASME Turbo Expo 2009, GT2009-60031.
    [86]. Komarek T, Polifke W. Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner. Proceedings of ASME Turbo Expo 2009, GT2009-60100.
    [87]. Bothien M R, Moeck J P, Paschereit C O. Impedance tuning of a premixed combustor using active control. Proceedings of ASME Turbo Expo 2007, GT2007-27796.
    [88]. Bothien M R, Moeck J P, Paschereit C O. Assessment of different actuactor concepts for acoustic boundary control of a premixed combustor. Proceedings of ASME Turbo Expo 2008, GT2008-50171.
    [89]. Bothien M R, Paschereit C O. Active control of the acoustic boundary conditions of combustion test rigs:extension to actuators with non-linear response. Proceedings of ASME Turbo Expo 2009, GT2009-60016.
    [90]. Bothien M R, Moeck J P, Paschereit C O. Experimental validation of linear stability analysis in a premixed combustor by actively tuning its acoustic boundary conditions. Proceedings of ASME Turbo Expo 2009, GT2009-60019.
    [91]. Muhlbauer B, Noll B, Aigner M. Numerical investigation of entropy noise and its acoustic sources in aero-engines. Proceedings of ASME Turbu Expo 2008, GT2008-50321.
    [92]. Tran N, Ducruix S, Schuller T. Passive control of the inlet acoustic boundary of a swirled turbulent burner. Proceedings of ASME Turbo Expo 2008, GT2008-50425.
    [93]. Sai Kumar Thumuluru, Tim Lieuwen. Characterization of acoustically forced swirl flame dynamics. Proceedings of the Combustion Institute 32,2009; P2893-2900.
    [94]. Stopper U, Aigner M, Meier W, et al. Flow field and combustion characterization of premixed gas turbine flames by planer laser techniques. Proceedings of ASME Turbo Expo 2008, GT2008-50520.
    [95]. Holger Ax, Ulrich Stopper, Wolfgang Meier, et al. Experimental analysis of the combustion behavior of a gas turbine burner by laser measurement techniques. Proceedings of ASME Turbo Expo 2009, GT2009-59171.
    [96]. Meier W, Weigand P, Duan XR, et al. Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combustion and Flame, 2007, 150(1-2):P2-26.
    [97]. Schuermans B, Guethe F, Pennel D, et al. Thermoacoustic modeling of a gas turbine using transfer functions measured at full engine pressure. Proceedings of ASME Turbo Expo 2009, GT2009-59605.
    [98].李国能,周昊,李时宇,岑可法.化学当量比对旋流燃烧器热声不稳定特性的影响.中国电机工程学报,2008,28(8):P18-23.
    [99].郭志辉,王帅,李磊等.贫燃预混旋流火焰燃烧不稳定性的实验.航空动力学报,2009,24(12):P2637-2642.
    [100].徐纲,俞镔,雷宇等.合成气燃气轮机燃烧室的实验研究.中国电机工程学报,2006,26(17):P100-105.
    [101].宋权斌,多旋流合成气燃烧室燃烧特性的实验研究,中国科学院研究生院博士论文,2008.
    [102]. Quanbin Song, Aibin Fang, Gang Xu, Yanji Xu, Weiguang Huang, Dynamic And Flashback Characteristics Of The Syngas Premixed Swirling Combustors, ASME GT2008-50752, June 9-13,2008, Berlin, Germany.
    [103]. Bohn D, Deutsch G, Kruger U. Numerical prediction of the dynamic behavior of turbulent diffusion flames. Trans. ASME:J. ENG. Gas Turbines Power,1998;120:P713-720.
    [104]. Polifke W, Poncet A, Paschereit C O, et al. Reconstruction of acoustic transfer matrices by instationary computational fluid dynamics. Journal of Sound and Vibration, 2001;245(3):P483-510.
    [105]. Noiray N, Durox D, Schuller T. Self-induces instabilities of premixed flames in a multiple injection configuration. Combustion and Flame,2006;145:P435-446.
    [106]. Grout R W, Swaminathan N, Cant R S. Effects of compositional fluctuations on premixed flames. Combustion Theory and Modelling,2009;13(5):P823-852.
    [107]. Muhlbauer B, Widenhorn A, Liu M, et al. Fundamental mechanism of entropy noise in aero-engines:numerical simulation. Proceedings of ASME Turbo Expo 2007, GT2007-27173.
    [108]. Ying Huang, Vigor Yang. Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor. Proceedings of the Combustion Institute 30 (2005),P1775-1782.
    [109]. Huber A, Polifke W. Impact of fuel supply impedance on combustion stability of gas turbines. Proceedings of ASME Turbo Expo 2008, GT2008-51193.
    [110]. G. Lartigue, U. Meier, C. B erat. Experimental and numerical investigation of self-excited combustion oscillations in a scaled gas turbine combustor. Applied Thermal Engineering 24 (2004);P1583-1592.
    [111]. P. Jochmann, A. Sinigersky, M. Hehle, et al. Numerical simulation of a precessing vortex breakdown. International Journal of Heat and Fluid Flow 27 (2006); P192-203.
    [112]. Zhu M, Dowling A P, Bray K. Self-excited oscillations in combustors with spray atomizers. ASME J. ENG. Gas Turbine Power,2001; 123:P779-786.
    [113].姚兆普,朱民.自激振荡燃烧的模拟和数值计算.中国工程热物理学会2008年燃烧会议,2008,084265.
    [114]. C. J. Goy, A. J. Moran, G. O. Thomas. AUTOIGNITION CHARACTERISTICS OF GASEOUS FUELS AT REPRESENTATIVE GAS TURBINE CONDITIONS. Proceedings of ASME Turbo Expo 2001,2001-GT-0051.
    [115].焦树建.燃气轮机燃烧室[M].北京:机械工业出版社,1990.
    [116].林宇震.许全宏,刘高恩,燃气轮机燃烧室[M].北京:国防工业出版社,2008.
    [117].胡广书.数字信号处理——理论、算法与实现[M].北京:清华大学出版社,2003.
    [118]. ANSYS Inc. ANSYS FLUENT 12.0/12.1 Documentation, Theory Guide[M/OL].USA, 2010.
    [119].段冬霞.燃气轮机燃烧室参数化CFD模拟方法的研究和应用.中国科学院研究生院硕士论文,2011.
    [120]. Lieuwen T, Neumeier Y, Zinn BT. The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustor. Combustion Science and Technology 1998;135:P193-211.
    [121]. Anuj Bhargava, Donald W. Kendrick, et al. Pressure Effect on NOx and CO Emissions in Industrial Gas Turbines. Proceedings of ASME TURBOEXPO 2000, 2000-GT-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700