某汽轮级组通流部分气动设计技术的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽轮机行业的不断发展,降低生产成本、提高气动性能越来越成为设计者的追求的目标。本文研究的是从三菱公司引进的某型汽轮机高压缸内的压力级组,该压力级组具有叶片数和级数较少、单级气动负荷较高、生产成本降低、气动性能不低于常规负荷级的特点,研究该级组的设计特点和设计思想,消化吸收其设计技术,具有较大的借鉴和指导意义。特别是该级组采用的重复级静叶片弯、扭联合设计方法,有利于提高整个高压缸通流部分的气动性能。为了了解每一级叶片的设计思想,本文首先借助S2通流设计的基本理论和基本计算方法,从汽轮机叶片成型可行性的设计体系出发,进行分析、探索和总结。给出了S2通流计算的总体思路,即以一元流方案计算为基础,以S2流面选择流型和匹配计算为主,编程求解三元Euler方程和NS方程计算并辅助考察叶型局部流动状况。
     提炼了叶片可能采用的可控涡设计思想和弯扭联合设计思想,指出多级透平以及高负荷跨音速透平的设计宜采用沿叶高等理想焓降的抛物线型输出功规律与控制反力度沿叶高分布相结合的设计方法。然后应用到对S2计算结果的对照分析中,并通过S2通流计算方法与三维方法计算对比,验证应用S2计算方法所采用的经验参数的合理性。
     运用CFD计算软件FINE/TURBO为平台对叶栅流道进行了全三维数值求解,并对整个流道子午流面的相对马赫数、静压分布、不同叶高型面静压分布等计算结果进行了详细的分析,分析结论与之前S2计算结果呈现出的分布规律基本一致,再次验证了计算方法的可信度。
     随后对二、三级流场的气动参数进行分析,通过对静压分布、叶片表面极限流线、能量损失系数沿叶高的分布规律的计算,指出引进级组在控制静叶栅中的二次流动、控制流动分离、损失分布规律上的优缺点。
With the continuous development of turbomachinery industry, reducing production costs and improving aerodynamic performance has become a designer's goal. This paper researches on a high-pressure cylinder-type pressure steam turbine stage group introduced from Mitsubishi, the stress level group has lower blades and stages, higher single-stage pneumatic load, lower production costs and lower aerodynamic performance than the conventional stage. Studing features and ideas of the design, digesting and absorbing of its design has great reference and guidance. In particular, the group uses of design method of bend-twist joint for stator in the repeatable level, which improves aerodynamic performance of the flow path in high-pressure stage.
     In order to understand the idea of every blade design, using basic theory and calculating method of S2 through-flow design, this paper analyses, searches and summarizes from the design method for forming turbine blade. It also gives the general idea of S2 through-flow calculation, which is based on calculation schemas for unary form flow and primaried by selecting flow pattern and computing method through S2 stream surface,programmes to calculate the equation of Euler and NS and reviews the flowing of local blade profile.
     This paper extracts the theory of controlled vortex design and joint design of bending and torsion ,Multi-stage turbine and a high load of transonic turbine design should adopt the higher ideal enthalpy drop leaf along a parabolic law and control of output power against the intensity distribution along the blade height design method of combining, then applied the theory to the comparising analysis of the results for S2, with the help of comparising it with full three-dimensional calculation, shows the rationality of the experience parameter used in S2 Flow calculation.
     This paper uses FINE/TURBO for full three-dimensional calculation of the passage and analyze comparative mach number, static pressure distribution and other calculating results of the whole meridianplane, the conclusion is similar to the distribution showed by the result of S2 through-flow calculating method, it validates the reliability of this calculating method again. At last, this paper analyzes the parameters of flow field of the second and third stages, through calculating static pressure distribution, ultimate streamline of blade surface, distribution rule of lost energy along the blade height, then points out the advantages and disadvantages of controling secondary flow in stationary blades, flow separation and losses distribution regularities of the produced stage group.
引文
1吴智泉.超临界600MW汽轮机的演进和特点.《汽轮机技术》.2006年4月第48卷第2期
    2翁思成,姚祖安,郑云之.超临界汽轮机组的现状和开发前景.《上海汽轮机》.1998年第三期
    3 J. D. Denton. Loss Mechanisms in Turbomachines. ASME Paper 93-GT-435. 1993
    4 IHPTET. Integrated High Performance Turbine Technology Initiative. 1987
    5彭泽琰,刘刚.航空燃气轮机原理.国防工业出版社, 2000
    6航空航天工业部高效节能发动机文集编委会主编.,“高效节能发动机文集”,第5分册,北京,航空工业版社,1991
    7 Garrent Turbine Co. Makers leand in Computer Uses, Aviation Week and Space Technology. August 29, 1983
    8МинюшкинЮИ.КВопросуПространственногоТеченияНевязкойСжимаемойЖидкостивСопловойВенцеОсевойтурбомашины.ТрудыЛКИ,вып. 1959, 23
    9ДейяМ.Е.,ТубаревА.В.ФилипповГ.А.,иванчжун-ци.,НовыйМетодПрофилированияНаправляющихРешетокСтупенейсМалыйd/L.Теплоэнергетика1962, (8)
    10ФилипповГ.А.,ИВанЧжун-ци.,ВлияниеЗакруткиПотокана
    11 L. A. Beatty, et al. Low Speed Cascade Tests of Two 45 Degree Swept Compressor Blades with Constant Spanwise Loading. NASA Research Memorandum, L53L07. 1954
    12 L. H. Smith and H. Yeh. Sweep and Dihedral Effect in Axial Flow Turbomachinery. ASME Journal of Basic Engineering. 1963, 85: 1078-1091
    13 R.I. Lewis and J. M. Hill. The Influence of Sweep and Dihedral in Turbomachinery Blade Rows. Journal of Mechanical Engineering Science. 1971, 13(4): 695-712
    14 J. P. Gostelow and L. H. Smith. Aerodynamic Design and Performance of a Swept Back Rotor SW-1. GE Internal Report 68-AGE-175. 1968
    15 D. B. Bliss, et al. Design Considerations for a Novel Low Source Noise Transonic Fan Stage. AIAA Paper 76-577. 1976
    16 R. L. Lewis and J. M. Hillf. The Influence of Sweep and Dihedral in Turbomachinery Blade Rows. Jour. Machanical Engineering Science. 1971, 13(4)
    17 E. G. Gogolv et al. Results of Testing Axial Turbine Stage Models with Radial“Loading”of the Guide Blades. GEL Power Eng. Ltd., Manchester, Translation No. 4354. 1969
    18 U. Okapuu. Some Results from Tests on a High Work Axial Gas Generator Turbine. ASME Paper 74-GT-81. 1974
    19 K. V. Patel. Investigation of a High Work Axial Gas Generator Turbine. SAE Paper No. 800618. 1980
    20 Wang Zhongqi, Lai Shenkai and Xu Wenyuan. Aerodynamic Calculation of Turbine Stator Cascades with Curvilinear Leaned Blades and some Experimental Resultes. Symposium Paper of 5-th ISABE. 1981, 30(1)-30(9)
    21 Wang zhongqi, Han Wanjin, Xu Wenyuan and Zhao Guilin. Effect of Blade Curvature on Exit Flow Field of Low Aspect Ratio Turbine Stator Cascade. Chinese Journal of Engineering Thermophysics. 1991, 3
    22 Han Wanjin, Xu Wenyuan and Wang Zhongqi. An Experimental Study of how Static Pressure Distributions on Endwalls and Blade Surface Affect Aeradynamic Characteistics of Cascade. Chinese Journal of Engineering Thermophysics. 1990, 2
    23 Wang Zhongqi, Han Wanjin, Xu Wenyuan. Effect of Incidences and Blade Lean Angles on Exit Secondary Flow Fields of Rectangular Cascades. Chinese Journal of Engineering Thermophysics. 1989, 1(4)
    24 Wang Zhongqi, Su Jiexian, Feng Guotai and Han Wanjin. Status and Development of Research on Bowed Blade in Turbomachinary. Program and Registration for the Second Russian-Sino Symposium on Astronautical Science and Technology Samara Russia.Типезо-July 4, 1992
    25Ю.И.Минюшкин., A. B.ПеревозниковВ.П.Яковлев.ВлияиеСнижногоГрадиентаРеактивностинаПотеривЭлементахОсевойтурбиннойСтупени,ИЗВ,ВУЗОВ,Энергитика. 1982,2: 107-111
    26Ю.Л.Корзунов.,Ю.И.Митюшкин.ПрименениеТангенциальногоНаклонаСопловыхЛопатокдляПовышенияЭкономичностиТурбинныхСтупенейСНезакрученнымиЛапатками.ИЗВ,ВУЗОВ,Энергетика. 1981, 7: 111-114
    27韩万金,才大颖,徐文远,王仲奇.端壁与叶片表面静压分布对叶栅气动特性影响的实验研究.工程热物理学报. 1989, 10(3): 43-46
    28王仲奇,韩万金,徐文远,赵桂林.在低展弦比透平静叶栅中叶片的弯曲作用.工程热物理学报. 1990, 11(3): 16-19
    29 Han Wanjin, Wang Zhongqi. Relationships between Static Pressure Distribution on Walls and Secondary Flow Losses in Rectangular Turbine Stator Cascades with Leaned and Curvilinear Blade of Different Incidences. INTERFLUID 1st International Congress on Fluid Handling Systems. Sept. 1990. Germany
    30苏杰先,冯国泰,闻洁,王仲奇.弯曲叶片在压气机中的应用.工程热物理学报. 1990, 11(4): 25-28
    31 T. S. Sullivan, et al. Energy Efficient Engine Fan Test Hardware Detailed Design Report. NASA CR-165148. Oct., 1980
    32 Han Wanjin, Wang Zhongqi, Tan Chunqing, Shi Hong, Zhou Mochun. Effects of Leaning and Curving of Blades with High Turing Angles on the Aerodynamic Characteristics of Turbine Rectangular Cascades. Trans. of ASME, Journal of Turbomachinery. July 1994, 116: 417-424
    33 Wu.C.H. A General Theory of ThreeDimensional Flow in Subsonic and Supersonic Turbomachine in Radial, Axial and Mixed Flow Types. 1952,NASA TN-2604
    34 Denton, J.D. A Time Marching Method for Two-and Three-dimensional Blade to Blade Row. 1974, ARC R&M 3775
    35 Dawes.W.N. A Numerical Analysis of the Three-Dimensional Viscous Flow in a Transonic Compressor Rotor and Comparison With Experiment. 1986,ASME 86-GT-16.
    36 Hah,C., J.D. A Numerical Modeling of Endwall and Tip Clearance Flow of an Isolated Compressor Rotor. ASME Paper 85-GT-116, 1985
    37 Arnone.Viscous Analysis of Three Dimensional Rotor Flow Using a Multigrid Method. Journal of Turbomahcinery. 1994, 116(2): 435-445
    38 L.He, W.Ning. Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines. AIAA Journal. 1998, 36(11):2005-2012
    39 Denton J D, Dawes, W N. Computational fluid dynamics for turbomachinery design[c]//proceeding of instin Mech Engrs,1999,213(part c):107-124.
    40徐勤芳. 600MW中间再热空冷凝器式汽轮机通流部分设计.热力透平. 2005,3:170-174
    41王仲奇,秦仁.透平机械原理.机械工业出版社. 1987:113-137
    42袁宁,卢文才,王仲奇. 300MW汽轮机末级采用完叶片对反力度的影响.工程热物理学报. 1999,1:36-40
    43刘凤君,顾发华,杨弘,王仲奇.弯扭叶片对涡轮三维压力场的影响.工程热物理学报,1996,12:48-51
    44钟刚云,吴其林. CFD技术在汽轮机通流设计中的应用.汽轮机技术. 2005,5:38-43
    45吴曼,朱奇,姚征. 300MW汽轮机中压缸多级叶片气动设计与分析.上海理工大学学报. 2008,5:434-438
    46于红英,唐德威,伞红军.汽轮机叶片参数化设计关键技术研究.计算机集成制造系统. 2006,10:1537-1542
    47梅运焕,刘波,管继伟,任大康.大功率汽轮机长叶片气动设计初探.汽轮机技术. 2006,4:241-246
    48株洲航空发动机研究所涡轮设计组.控制环量设计涡轮的实验研究.工程热物理学报. 1980,4:348-355
    49邹滋祥.轴流透平叶片的控制环量设计与扭曲规律优化的研究.工程热物理学报. 1982,2:158-160
    50 J. D. Denton. Loss Mechanisms in Turbomachines. ASME Paper 93-GT-435. 1993
    51航空航天工业部高效节能发动机文集编委会主编.,“高效节能发动机文集”,第5分册,北京,航空工业版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700