基于激光图像土的压实度检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土的压实度是工程建设基础施工最重要的质量指标,检测工作量大,并要求准确、快速、方便、实时,使得土的压实度无损检测成为压实度检测研究的热点问题。本文利用光电技术和计算机技术,对基于激光图像的土的压实度无损检测检测方法进行了探讨研究。鉴于土的类别和结构成分的多样性和复杂性,本文选取粘土为研究对象,假定土的密实度是均值。主要工作如下:
     首先,论文对土的压实度检测技术和激光图像技术相关内容的研究现状及其存在的主要问题进行了归纳和总结,指出了土的压实度检测方法存在的不足,以及激光图像检测土压实度的存在问题;从土的含水率测量方法、最佳含水率和最大干密度等方面论述了土压实度的评价方法以及压实理论,系统分析了压实度的影响因素。对比分析了土组织和生物组织结构的特点,借鉴激光在生物组织中传输规律及激光成像理论来研究激光在土组织中传播过程及激光成像。分析了土组织的光学特性以及光子在组织中的辐射传输方程,并且利用漫射近似理论对传输方程求解;根据激光在土组织中的传输规律及成像理论,通过土组织激光图像找出与其压实度相关的特征。对基于激光图像的土压实度的检测系统的基本原理、系统组成和检测的关键技术进行了研究分析。
     其次,对能否利用漫射近似理论对传输方程求解得出土的光学参数问题进行了研究。提出用蒙特卡罗模拟方法验证漫射近似理论,并分析了蒙特卡罗方法及模拟过程,然后在假定土的光学参数的前提下,用C语言编制程序模拟了光在土组织中的传播过程以及得出了漫反射率,并通过漫射近似理论计算出漫反射率,并将两者结果进行了比较分析,两者结果的最大绝对误差为0.0497和最大相对误差为10.44%。结果表明:由于蒙特卡罗方法对任意的反照率、测量位置和边界条件都是成立的,所以可认为蒙特卡罗模拟结果是足够精确的。证明了用漫射近似理论对辐射传输方程求解得出土的光学特性参数是可行的。
     然后,对土组织激光图像的试验和结果进行了研究。依据击实试验制备了土组织试样,通过激光图像检测系统采集了激光图像;通过现有图像处理方法找到了图像中心位置,针对现有图像处理方法的处理步骤多和速度慢的问题,提出了Matlab Gui界面交互处理方式,减少了处理步骤以及提高了速度。并分析了不同含水率的土组织表面漫反射光的分布规律;通过漫射理论方程和最小二乘法计算出土组织的光学参数。然后分析了漫反射率的变化率、光学参数和图像灰度均值变化率与压实度的相关性,漫反射率变化率随着压实度的增大而有增大的趋势,灰度变化率随着压实度的上升而有下降的趋势;吸收系数随着压实度的增大有减小的趋势,散射系数随压实度增大有增大的趋势。同时分析了激光图像的现有纹理特征提取算法,现有算法提取的均匀性、能量和第3阶矩特征随着压实度的增大而增大的趋势,而其相关度、对比度、平均亮度、平均对比度、平滑度、一致性和熵特征随着压实度的增大而减小的趋势;并提出了新的纹理特征算法,新算法提取的相关和逆差矩特征随着压实度的增大而增大的趋势;而其小梯度优势、大梯度优势、灰度分布的不均匀性、灰度平均、惯性、梯度平均、灰度均方差和梯度均方差特征随着压实度的增大而减小的趋势。为了比较两种纹理特征提取算法,下一章节分别将两种算法提取的特征建立预测模型,比较其预测精度。
     最后,对BP神经网络预测压实度和试验验证问题进行了研究。针对与土压实度的相关特征较多的问题,提出了神经网络方法对压实度进行预测。我们选取所有与压实度相关的特征作为模型的输入变量,分别将漫反射率变化率、灰度均值变化率、吸收系数、散射系数、对比度、平均亮度、一致性、均匀性、能量、相关度、第三阶矩值、平均对比度、平滑度和熵共14个特征作为第一组原始变量;而漫反射率变化率、灰度均值变化率、吸收系数、散射系数、相关、逆差矩、小梯度优势、大梯度优势、灰度分布的不均匀性、灰度平均、梯度平均、灰度均方差、梯度均方差和惯性共14个特征作为第二组原始变量。并通过主成分分析,将原始数据中减少为5个主成分因子,然后分别利用这两组特征数据建立预测模型,并进行预测,将预测结果与环刀法结果比较,第一组特征的预测值的平均绝对误差为0.0937和平均相对误差为10.08%,第二组特征的预测值的平均绝对误差为0.0714和平均相对误差为7.71%;第二组特征的预测值比第一组特征的预测精度高,因此,本文使用第二组特征所建立的预测模型,且其预测精度表明,用BP神经网络模型预测土的压实度是可行的。最后在实验条件不变的情况下,采集另外不同的土样数据,对所建立的BP神经网络预测模型进行了验证,验证后的平均绝对误差为0.0862和平均相对误差为8.76%,结果表明:在实验条件不变、研究对象为粘土、假定密实度是均值的情况下,同时受到试验的操作误差和激光图像噪声等因素的影响下,可认为利用激光图像技术检测土的压实度是可行的。
The degree of compaction of the soil is the most important indicator of quality ofconstruction foundation construction.However,as the testing work is heavy and needs to beaccurate, fast, convenient and real-time, therefore the research of non-destructive testing ofthe degree of compaction of the soil becomes a hot issue.In this paper, the non-destructivetesting detection method of the degree of compaction of the soil which is based on the laserimage will be researched by using the photovoltaic technology and computer technology. Themain tasks are as follows:
     First, in this paper, the current research situation and the main problems of testingtechnology of the degree of compaction of soil and laser imaging technology are summedup, and the shortcomings of the method of testing soil compaction are also pointed out. Theevaluation method of soil compaction and compaction theory are discussed from the aspectsof measurements of soil moisture content, optimum moisture content and maximum drydensity and the main factors of soil compaction are systematically analysed.And similaritiesand differences of the organizational structure of indigenous organizations and biological arecomparatively analysed. laser propagation in the soil organization and laser imaging arestudied by drawing on the experience of the theory of laser transmission rule and laserimaging in biological tissue. The paper also analyses the optical properties of the soilorganization and photonic radiative transfer equation in the organization and uses the epitaxialboundary conditions diffusion approximation theory for solving the transport equation.According to the law of the transmission of the laser in the soil organization and its imagingtheory and through soil tissue laser image, the optical parameters of the soil organizationsrelated to their degree of compaction and the change rate of laser image gray value can befound out.The basic principles of the laser image-based detection systems of soil compactiondegree, system components and the key technologies of testing are studied and analyzed.
     Secondly, I did some research about whether the diffusion approximation theory can beapplied to the transfer equation solving and obtain the optical parameters of soil. The paperanalysed Monte Carlo method and simulation, then used the Monte Carlo method to simulatethe propagation of light in the soil organization,and finally analysed and compared thesimulation results with the diffusion approximation theory results.The result of thecomparison shows: the maximum average absolute error is0.0497and the maximum average relative error is10.44%between two. The results show that using the radiation propagationtheory and diffusion theory to obtain the optical properties of soil is feasible.
     Then, the paper studied the test and results of the laser image on the soil tissue.According to the soil tissue sample obtained through the compaction test, and in accordancewith the law of the transmission of the laser in the soil organizations and imaging theory,the laser image is collected by using the laser image detection system through the soilorganizations;The location of the center of the image can be found out through existingimage processing method. aimed at the problems about the processing steps and slow-speedof existing image processing method, the paper put forward the Matlab GUI interfaceinteraction approach,which reduces the processing steps as well as improve the speed. And thedistribution of diffuse light on the surface of the soil tissue of different moisture content isalso analysed. The experimental results show that the scattering and distribution of light in thesoil tissues is mainly decided by the optical characteristics of the soil organization; theabsorption and scattering coefficients of the soil tissue can be calculated by using thediffusion theory equation and the least-squares method. And then the change rate of thediffuse reflectance of the soil tissue, absorption coefficient, scattering coefficient, The changerate of the laser image gray value and correlation of soil compaction degree are analysed,Diffuse reflectance change rate increases with the increase of the degree of compaction,Grayrate of change has a downward trend with the rise of the degree of compaction.Absorptioncoefficientu atends to decrease as the degree of compaction increases.Scattering coefficientu shas an increasing trend as the degree of compaction increases. At the same time,the existingtexture features algorithm of the laser image is analysed and new image texture featuresalgorithm is put forward.The result is that the uniformity of image texture, energy, the3rdorder moment value, related and inverse difference moment have a tendency to increase withthe increase of the degree of compaction.However,small gradient strengths, gradientadvantage, the uneven distribution of gray, gray average, average gradient gray variance,gradient variance, inertia correlation, contrast, average brightness, average contrast,smoothness, consistent and entropy value decrease with the increase of the degree ofcompaction trend.
     Finally, the paper studies how to use the BP neural network to predict the degree ofcompaction and test verification.Because of the so many characteristics of the degree of soil compaction,therefore, the neural network prediction and evaluation of the degree ofcompaction is raised. We selected all characteristics related to the degree of compaction asinput variables of the neural network model. The diffuse reflectance rate of change, the graymean rate of change, the absorption coefficient, scattering coefficient, contrast, an averageluminance of consistency, uniformity, energy, correlation, the third order moment value, theaverage contrast, smoothness and entropy are treated as the first set of original variables.Thediffuse reflectance rate of change the gray mean rate of change, the absorption coefficient,scattering coefficient, related deficit moment, the advantages of small gradients, gradientstrengths, the uneven distribution of gray, gray average gradient average grayvariance,gradient variance and inertia are treated as a second set of the original variables.And throughthe principal component analysis (PCA), the original data was reduced to five principalcomponents factor.The contribution rate of the main component factors of characteristic datain the first group is97.3%,The contribution rate of the main component factors ofcharacteristic data in the second group is98.6%, and then respectively use these two sets offeature data to establish BP neural network prediction model to predict the degree ofcompaction of soil samples and compare the predicted results with those of Cutting Ringmethod.The average absolute error of the predicted value of characteristic data in the firstgroup was0.0937and the average relative error is10.08%.The average absolute error of thepredicted value of characteristic data in the second group is0.0714and the average relativeerror is7.71%. the predicted value of characteristic data in the second group is moreaccurate than those of the first set.So,this paper uses the characterization data in the secondset to establish prediction model.And the prediction accuracy shows that using the BP neuralnetwork model to predict soil compaction is feasible.The BP neural network prediction modelwas also verified by a different soil data.The verifIied average absolute error is0.0862and theaverage relative error of8.76%,which proves that using laser imaging to detect soilcompaction is feasible.
引文
[1] JTG E40-2007.公路土工试验规程[S].北京:人民交通出版社,2007
    [2]杨怡,陈梦成等.核子密度仪在高速公路中的应用[J].公路与汽运,2005,5:95-96
    [3]杨成林.瑞雷波勘探[M].北京:地质出版社,1993
    [4] ThomsonW T. Transmission of elastic waves through a stratified solid medium[J]. APPI·Phys,1950,67(12):89-93
    [5] RoseB,JH. A note on the computation of Rayleigh wave dispersion curves for layered elasticmedia[J]. BullseismsocAm,1964,53(3):1013-1019
    [6]宋先海.瞬态瑞雷波反演横波的SVD算法及其应用[J].地质与勘探,2004,10(1):10-13
    [7]刘江平.浅震技术在大堤防(隔)渗墙质量检测中的应用[J].物探与化探2004,(4)37-41
    [8]顾炳其,马荣贵.路基压实度快速测定的瞬态冲击频谱分析法[J].西安公路交通大学学报,1997(4):37-41
    [9]徐刚,盛安连,姜松等.新颖的路基压实度测定方法的研究[J].农业机械学报,2001,32(3):20-23
    [10]张超,郑南翔,王建设.路基路面试验检测技术[M].北京:人民交通出版社,2004
    [11]贺杰.压路机机载压实度检测仪技术发展趋势[J].中国公路.建设市场专刊,2004,10:74-75
    [12]申建德,谭南林,苏树强等.基于DSP的车载式压实度实时检测系统设计[J].国外电子测量技术,2006,25(7):53-55
    [12]申建德,谭南林,苏树强等.基于DSP的车载式压实度实时检测系统设计[J].国外电子测量技术,2006,25(7):53-55
    [13]王振花.车载式压实度计的研究开发[D].西安:长安大学,2002
    [14]刘吉,马道坤,曾庆猛.车载行进式农田土壤压实度实时测量系统[J].中国农业大学学报,2007,12(6):71-74
    [15]张智明.压实度计及其试验研究[D].西安:长安大学,2005
    [16]袁斌,张静,郭玲玲.道路压实度实时检测仪[J].商品与质量,2010,10:15-16
    [17] Hilton,P.J.Laser Image Detection System(LIDS),laser based imaging [A].Proceedings of SPIEThe International Society for Optical Engineering[C].United States:Int Soc for OpticalEngineering,1991:27-31
    [18]侯瑞锋.农产品组织中光输运规律的初步研究[J].农业工程学报,2005,9(21):12-15
    [19] G.G.Dull,R.G.Leffler,G.S.Birth (member ASAE),et al[J]. Instrumentfor,2000,3:10-14
    [20] D.C.Slaughter, Nondestructive Determinationof Intermal Quality in Peachesans Nectarines[J].Transactions of the ASAE,1995,38(2):617-623
    [21] J.Lammertyn, B.Nicolay.Non-Destructive Measurement of Acidity, Soluble Solids, andFirmness of Jonagold Apples Using NIR-Spectro scopy[J]. Transactions of the ASAE,1998,41(4):1089-1094
    [22] R.Lu. Predicting Firmness and Sugar Content of Sweet Cherries Using Near-Infrared DiffuseReflectance Spectroscopy[J].Transactions of the ASAE2001,44(5):1265-1271
    [23] Luis E.Rodrigues-Saona, Fredrick S.Fry, Michael A.Mclaughlin etal. Rapid Analysis ofSugars in Fruit Juices by FT-NIR Spectroscpy[J]. Crbohydrate Research,2001,336:63-74
    [24] Tsuyoshi Temma,Kenkoh Hanamatsu FujitoshiShinoki.Development of a portable nearinfraredsugar measuring instrument[J].Near Infrared Spectrosc,2002,(10):77-83
    [25] V.Andrew McGlone, Robert B.Jordan,Paul J.Mar tinsen. Vis/NIR estimation at harvest ofpre-and post-storage quality indices for’Royal Gala’ apple [J].Postharvest Biology andTechnology,2002,(25):135-144
    [26] Cogdill R P, Hurburgh C R, Rippke G R, Single-kernel maize analysis by near-infraredhyperspectral imaging[J]. Transactions of ASAE,2004,47:301-320
    [27] Paul Martinsen, Peter Schaare. Measuring soluble solids distribution in kiwifruit usingnear-infrared imaging spectroscopy[J]. Postharvest Biology and Technology,1998,14:271-281
    [28] Chen P.,Nattuvety V.R. light transmittance through a region of an intact fruit[J]. Transactionof the ASAE,1980,23(2):19-522
    [29] Iwayan Budiastra,Yoshio Ikeda,Takahisa Nishizu, Optical methods for quality evaluation offruits(Part I)—Optical Properties of selected fruits using the Kubelka-Munk theory and theirrelationships with fruit maturity and sugar content[J].Journal of Japanese Society ofAgricultural Machinery,1998,60(2):117-128
    [30] Fraser D.G..,Robert B.J.Rainer K.et al., Light distribution inside mandarin fruit duringinternal quality assessment by NIR spectroscopy[J]. Postharest Biology and Technology,2003,27:185-196
    [31]应金品,孙威.患有明显边界线肿瘤的生物组织中光输运的蒙特卡罗法模拟[J].中国生物医学工程学报,1996,15(2):36-39
    [32]姚宏,李圭白等.蒙特卡罗方法在水污染控制理论中的应用前景[J].哈尔滨工业大学学报,2004,36(1):101-108
    [33]侯瑞锋,黄岚等.农产品组织中光输运规律的初步研究[J].农业工程学报,2005,21(9):203-206
    [34] Chen B Q,Stamnes K,Stamnes J J.Validity of the diffusion approximation in bio-opticalimaging[J].2001,40(34):6356-6366
    [35]刘小林,张睿,鲍鸿吉等.时间分辨反射确定生物组织光学性质的方法研究[J].生物物理学报,2000,17(1):209-215
    [36]刘小林,张睿,鲍鸿吉等.两点法测量组织光学特性中有效时间的选择[J].激光生物学报,2000,9(4):246-251
    [37]李晖,谢树森.生物组织的可见光与近红外光散射模型[J].光学学报,1999,19(12):1661-1666
    [38]李晖,谢树森.生物组织光学折射率[J].激光与红外,1999,29(1):51-55
    [39]邓小元,邢达.光子密度波在正常和异常生物组织中传输的模拟研究[J].光子学报,2000,29(12):1057-1060
    [40]丁海曙,王峰.近红外光子在生物组织中迁移的仿真及应用[J].清华大学学报,1999,39(9):5-8
    [41]王峰,丁海曙.用近红外光谱技术实现生物组织含氧量的无损检测[J].清华大学学报,1999,39(7):16~19
    [42]陆燧丽,毛慈波.光在组织中传输的光强分布的蒙特卡罗模拟[J].华中理工大学学报,1995,23(7):56~58
    [43]应金品,孙威.患有明显边界线肿瘤的生物组织中光输运的蒙特卡罗法模拟[J].中国生物医学工程学报,1996,15(2):36~39
    [44]唐贵林,吕海宝等.人体组织中光的漫反射理论与仿真研究[J].量子电子学报,2002,19(3):1007~5461
    [45]胡淑芬,刘木华,林怀蔚.基于激光图像的水果表面农药残留检测试验研究[J].江西农业大学学报,2006,28(6):872-876
    [46]刘木华,程仁发,赵杰文.苹果硬度品质的光谱图像检测技术研究[J].食品科学,2008,3:418-422
    [47]陈育彦,屠康.基于激光图像分析的苹果表面损伤和内部腐烂检测[J].农业机械学报,2009,40(7):133-136
    [48]祝诗平,王一鸣,张小超.农产品近红外光谱品质检测软件系统的设计与实现[J].农业工程学报,2003.7,19(4):175-200
    [49]陈世铭,张文宏,谢广文.汁糖度检测模式之研究[J].农业机械学刊,1998,7(3):41~60
    [50]何东健,前川孝昭,森岛博.水果内部品质在线近红外分光检测装置及试验[J].农业工程学报,2001,17(1):21~23
    [51]王晋国,于晓明,徐春龙等人.应用探地雷达数据提取填土路基含水率的方法[J].西北大学学报(自然科学版),2010,2(40):61-65
    [52] W.V.ping,P.E.Miehael Leonard,Zenghai Yang.Lbaoratory Simulation of Field CompaetionCharacteristies[J].COLLEGE OF ENGINEERING Tallhaassee,2003,3:32-31
    [53] Hua Li. The family of compaction cuvres for fine grained soils and their engineeringbehaviors[J]. University of Alberta,2000.11:10-15
    [54]张克恭,刘松玉.土力学[M].北京:中国建筑工业出版社,2001
    [55]胡佑周.生物组织光学参数测量[D].天津大学,2005
    [56]张小娟.基于P3近似理论的空间分辨漫反射研究[D].天津:天津大学,2005
    [57]赵友全,范世福,曹文新.生物组织光学特性参数及其描述[M].国外医学生物医学工程分册,2000,23(2):76-79
    [58] Kahneman, Daniel and Amos Tversky. Prospect Theory:An Analysis of Decision UnderRisk[J]. Econometrica,1979,47:263-291
    [59]石丸,黄润恒,周诗健等.随机介质中波的传播和散射[M].北京:科学出版社,1986
    [60] K.M.Case and P.F.Z weifel. LinearTransport Theory[M]. Addison-Wesley, Reading, Mass.,1967,ChaP.2
    [61] Richard C.Haskell,Lars O.Svaasnad.Boundary conditions for the diffusion equation[J].radiative transfer.1994,11:2727-2741
    [62] Flock S T,J acque s S T, et al. Optical propertie s of in2tralipid:A phantom medium for lightpropagation studie s[J]. Lasers in Surgery and Medicine,1992,12:510-519
    [63] Alwin Kienle and Michael S.Patterson.Improved solutions of the steady-state and thetime-resolved diffusion equations for reflectance from a semi-infinite turbid medium[J].Opt.Soc.Am.1997,14:246-254
    [64] A.H.Hielscher,S.L.Jacques,L.Wang,and F.K.Tittel,The influence of boundary conditions onthe accuracy of diffusion theory in time-resolved reflectance spectroscopy of biologicaltissue[J].Phys.Med.Biol.1995,40:1957-1975
    [65] Van Staveren Hugo J,. Moe s,Christian J M, et al. Light scattering in Intralipid210%in thewavelength range of400-1100nm[J]. Applied Optics,1991,30:4507-4514
    [66]张连顺,张春平等.生物组织光学特性无损测量的模拟研究[J].光电子·激光.1999,70:360-254
    [67] Tu,K.,R.De Busscher,J.De Baerdemaeker,and E.Schrevens.1995. Using laser beam as lightsource to study tomato and apple quality non-destructively. In: Proc [J]. Food ProcessingAutomation IV Conference,1995,43(3):528-536
    [68] Paul Martinsen, Peter Schaare. Measuring soluble solids distribution in kiwifruit usingnear-infrared imaging spectroscopy.[J]. Postharvest Biology and Technology,1998,14:271~281
    [69]戚康男.统计光学导论[M].南开大学出版社,1987
    [70] Bellon V; Vigneau J L; Leclercq M.Feasibility and performances of a new multiplexed,fastand low-cost fiberoptic NIR spectrometer for the online measurement of sugar infruits[J].Applied Spectroscopy,19934,7:1079-1083
    [71] Lindquist C,Pifferi A,Berg R ef al. Reconstruction of diffuse photon-density waveinterference in turbid media from time resolved transmittance measuremenets Appl[J]. Phys.Lett,1996,69:1674-1673
    [72] Daniele Contini,Fabrizio Martelli,and Giovanni Zaccanti. Photon migration through a turbidslab described by a model based on diffusion approximation Theory [J]. Applied Optics1997,36:4587-4599
    [73] Briesmeister JF. MCNP—A general Monte Carlo N-particle transport code. Version5,Volume1: Overview and theory[J]. Los Alamos: National Laboratory,2003,76(55):214-321
    [74] Keijzer M, Star W M, Storchi P R M. Optical diffusion in layered media[J]. Appl.Opt.,1988,27(9):1820-1824
    [75] Lindquist C,Pifferi A,Berg R ef al. Reconstruction of diffuse photon-density waveinterference in turbid media from time-resolved transmittance measuremenets Appl[J]. Phys.Lett,1996,69:1674-1673
    [76] Schmitt J M,zhou G x,Walker E C et al. Multilayer model of photon diffusion in skin[J].0pt.Soc.Am.A1990,7:2141-2153
    [77] Svaasand L.O,Norvang L T,Fiskerstrand E J et al. Tissue parameters determining hte visualappearance of normal skin and port-wine stains [J].Laser Med. Sci.,1995,10:55-65
    [78]唐贵林,吕海宝,陈长水等.人体组织中光的漫反射理论与仿真研究[J].量子电子学报,2002,19(3):226-230
    [79]张连顺,张春平,王新宇等.生物组织光学特性参数无损测量的模拟研究[J].量子电子学报,2002,19(4):318-322
    [80] LI Zhongming,LIU Xiaohua. The theoretical analysis of thermal interaction between laserand bio2tissue[J]. Journal of Optoelectronics Laser,2002,13(8):860-863
    [81] Wang L, Jacqlles S.L, zheng L. MCML Monte Carlo modeling of light transport in multi—1ayered tissues[J]. Computer Methods and Programs in Medicine,1995,47:131-146
    [82]张连顺,张春平,王新宇等.两层生物组织光学特性参数无损测量的模拟研究[J].发光学报,2003,24(1):56-60
    [83]张连顺.光学相干层析成像系统的实验研究[J].德州学院学报,2002,18(2):15-18
    [84]张连顺.生物组织光学特性参数测量原理及设计[J].《德州学院学报》,2001,17(4):16-20
    [85] Tu,K.,R.De Busscher,J.De Baerdemaeker,and E.Schrevens.1995. Using laser beam as lightsource to study tomato and apple quality non-destructively. In: Proc [J]. Food ProcessingAutomation IV Conference,1995,43(3):528-536
    [86]杨士敏.长安大学工程机械学院动力学实验室.工程机械地面力学实验指导书[M].西安:长安大学工程机械学院,2006:16-19
    [87]冈萨雷斯.数字图像处理第2版[M].北京:电子工业出版社,2005
    [88]邸旭,于伟莉,刘智颖等.激光光斑中心位置计算方法的研究[J].长春理工大学学报(自然科学版),2008,31(3):9-12
    [89]孔兵,王昭,谭玉山.基于圆拟合的激光光斑中心检测算法[J].红外与激光工程,2002,31(3):275-279
    [90]谢中华. MATLAB XY统计分析与应用[M].北京:北京航空航天大学出版社,2010.21-27
    [91] Tamura H,Mori S, Yamawaki T. Texture features corresponding to visual percep tion[J]. IEEETransactions on Systems, Man, and Cybernet2ics,1978, SMC-8(6):460-473
    [92]洪继光.灰度梯度共生矩阵纹理分析方法[J].自动化学报,1984,10(l):22-25
    [93] Jia Guu Leu. On Indexing the Periodieity of Image Textures[J]. Image and VisionComputing,2001(19):987-1000
    [94] Haralick, R.M., Shanmugam, K., Dinstein, I. Texture features for image classification.IEEE Transactions on Systems[J], Man and Cybernetics,1973,3(6):610-621
    [95]张广军.机器视觉[M].北京:科学出版社,2005
    [96]姜健飞,胡良剑,唐俭德等.数值分析及其MATLAB实验[M].北京:科学出版社,2004
    [97]高秀娟.基于主成分分析与神经网络的肝病预测分析[D].湖南:中南大学,2005
    [98] K.S.Thyagarajan, Tom Nguyen, Charles Persons. A Maximum Likelihood Approach toTexture Classification Using Wavelet Transform[J]. In Proc. IEEE Int.Conf. on ImageProcessing,1994:640-644
    [99] T.Loveard, V.Ciesielski. Representing classification Problems in genetic programming[C]. InProc. Congr. Evolutionary Computation,2001,3:107-1077
    [100]飞思科技产品研发处理技术与应用中心编著. MATLAB6.5辅助神经网络分析与设计
    [M].电子工业出版社,2003
    [101]蒋先刚.数字图像模式识别工程软件设计[M].中国水利水电出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700