路基填土压实试验及现场碾压动应力测试分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过调研振动压实技术的相关文献,分析了路基的振动压实的原理;采用试验手段,在实验室针对小型冲击夯进行了室内模型填筑压实试验;在京沪高速铁路高资路桥过渡段工点,采用冲击夯和振动压路机,开展了现场碾压过程的动应力测试。通过对数据的处理和分析,得到了以下试验结论:
     (1)振动压路机在桥台台背附近进行碾压,振动压路机的振幅对桥台台背承受的动应力及分布规律有重要影响,表现出随振动轮与桥台距离的增大而呈减小的趋势;振动压路机沿桥台台背横向碾压施工,振动轮侧缘距桥台台背大于1.5m后,桥台台背承受的动应力较小;振动压路机在台背附近沿线路纵向碾压施工,振动轮前缘距桥台台背大于1m后,振动荷载对桥台台背基本没有影响。
     (2)振动压路机的振动状态对路基碾压土层内的动应力分布有显著影响。试验中YZ18JC型振动压路机在强振作用下的最大动应力约为静压的1.8倍;振动压路机在对路基的压实过程中,路基土层中的动应力在振动轮下最大,在测试范围内0.3m-1.2m衰减均超过90%,其竖向影响深度约为1.2m,横向振动轮左右0.5m。振动压路机的碾压速度对路基碾压土层内的动应力分布影响不大。
     (3)小型冲击夯在桥台台背附近进行压实作业,桥台台背H=0.3m处所承受的动应力最大值为32.5 kPa与YZ18JC型振动压路机在桥台台背附近横向强振碾压测试的最大值31.1kPa相当;小型冲击夯在路基进行压实作业,其在H=0.3m深度处,动应力最大值已经达到106.06 kPa,约为YZ18JC型振动压路机在强振工况下的1/3,故其采用其压实时,宜采用较薄的压实摊铺厚度;小型冲击夯对高速铁路基床填料(级配碎石)能够进行有效的压实,通过控制级配碎石的分层填筑厚度20cm和最佳含水率5.27%,最大的干密度可达2.42g/cm3,灌砂法检测压实系数≥0.97,K30地基系数为278-384 MPa/m。其压实效果完全达到高速铁路设计规范中对基床填料的压实规定。
     (4)将振动压路机对路基的作用力简化为线荷载,将路基简化为半无限空间体,采用Boussinesq计算路基碾压土层中的动应力。在静碾工况下,将测试值进行曲线拟合发现,动应力大致呈对数衰减规律,实测碾压土层内动应力分布曲线的趋势和形态与Boussinesq计算结果大致相同;在振动工况下,由于忽略了路基的刚度和阻尼,计算结果大于实测结果,实测值约为计算值的75%倍,其衰减规律与Boussinesq解一致。
This dissertation dicuss the mechanism of vibratory compaction by the research of relevant documents of vibratory compaction technology. We made two experiments:a model of soil filling test is made by vibration plates indoor and dynamic vibrational stress test in field compaction on gaozi site of Beijing-Shanghai high-speed railway. Though data processing and analysis, conclusions are made below.
     (1)When the vibratory roller is rolling on the bridge back, its working condition can change the distribution of dynamic stress of bridge back. The dynamic stress decrease when the distance between the vibration wheel and bridge back increase.when using transverse rolling construction, the sphere of influence is mainly the distance between lateral margin of the vibration wheel and bridge back,that is about 0-1.5m.while using Longitudinal rolling, the sphere of influence is mainly the distance between lateral margin of the vibration wheel and bridge back,that is below lm.
     (2)The different working conditions of vibratory roller have a strong influence on the distribution of dynamic stress of subgrade. The maximum dynamic stress under the condition of YZ18JC strong vibration is about 1.8 times that under static pressure. In the compaction process, under the vibration wheel is the largest distribution of dynamic stress. The sphere of influence of the vibration wheel on the vertical orientation is 0-1.2m, on the horizontal orientation is 0.5m.
     (3)When the vibration plates is making a vibration compaction on the bridge back, the maximum dynamic stress the bridge back bear (H=0.3m,the dynamic stress is 32.5 kPa) is as much as that of the YZ18JC vibratory roller test value, when the vibration plates is making a vibration compaction on the subgrade, the maximum dynamic stress under 0.3m can reach 106.06 kPa, is about a third of the value under the condition of weak vibration. The compaction paving thickness can't be too large, small vibration plates can compact bedding packing (graded broken stone) effectively.By the control of the filling layer thickness 20cm and the optimum water content 5.27%, the compaction factor will be greater than 0.97,the maximum dry density will reach 2.42 g/cms3,and the foundation coefficient will be 278-384 MPa/m. The Compaction effect totally reach the specified value on the bedding packing compaction of the Design of high-speed railway.
     (4)Simplify the force vibratory roller to the foundation to a line load and use Boussinesq.J to calculate the additional stress. Compare the calculated value with the measured value, and make a curve match. A conclusion is made; When the vibration roller static passes on the subgrade, the dynamic stress is about Logarithmic attenuation. The distribution of dynamic stress of subgrade match the Boussinesq calculate results. When the vibration roller vibratory passes on the subgrade. as ignoring the stiffness and damping of the subgrade, the measured value is about 75% of the calculate results, the dynamic stress's attenuation match the calculated value.
引文
[1]中华人民共和国铁道部.高速铁路设计规范(试行).中国铁道出版社.2010.
    [2]罗强,蔡英.高速铁路路桥过渡段技术处理措施的研究[J].铁道工程学报,1999,(3):30-33.
    [3]Forssblad.L,土石填方的振动压实[M]著,甘杰贤等译.人民交通出版社,1986.
    [4]张毅.桥背涵侧压实设备的研究[D].长安大学硕士学位论文,2003.
    [5]杨人凤.压实领域历史发展与最新技术动态.建设机械技术与管理[J],2005,(12).
    [6]李冰等,焦生杰.振动压路机与振动压实技术[M].人民交通出版社,,2001.
    [7]张世英,陈元基.筑路机械工程[M].机械工业出版社,1998.
    [8]Michael Mooney,Dietmar Adam. Vibratory Roller Integrated Measurement of Earthwork Compaction:An Overiew. Field Measurements in Geomechanics,FMGM2007.
    [9]谢欣然.振动加速度与土壤压实状况关系分析[D].重庆交通大学硕士学位论文,2009.
    [10]刘晓婷.仿冲击振动压实机理的试验研究[D].长安大学博士学位论文,2005.
    [11]王向峰,曹新文,程燕.武广客运专线路涵过渡段振动压实试验研究[J].铁道建筑,2009(5):89-92.
    [12]张志峰,冯忠绪,张春燕.振动压路机诱发地面振动衰减规律的研究[J].中国工程机械学报,2004,2(3):259-262.
    [13]张志峰,郝飞,冯忠绪.振动轮下土壤的竖向应力分布[J].武汉理工大学学报,2009,33(6):1087-1090.
    [14]韩丁,黄晓明,高英.振动压路机不同参数对上基压实效果的分析[J].公路交通科技,2009,26(8):1-5.
    [15]支喜兰,江晓霞,沙爱民.路基面层振动压实作用下的低基层应力[J].长安大学学报,2003,23(3):33-36.
    [16]赵明华,曾广冼,刘江波.填石料的振动压实变形特性及压实机理试验研究[J].铁道科学与工程学报,2006.3(4):41-45.
    [17]米隆.基底模量对路基振动压实能量影响的数值计算分析[J].铁道学报,2008,30(6):69-74.
    [18]T.S.Yahoo,Selig,E,T. Fundamentals of Vibratory Compaction of Soil,Proceedings. Ninth International Conference on Soil Mechanics and Foundation Engineering,1977.2.
    [19]Selig,E,T,T.S.Yahoo. Dynamics of vibratory roller compaction[J]. Journal of Geotechnical Eng.Division [J],1979,105(10):1211-1231.
    [20]Selig,E,T. Unified System for Compactor Performance Specification[J]. Transactions, Society of Automotive Engineers,1972.
    [21]Patrick K. Miller, Robert V. Rinehart, and Michael A. Mooney. Measurement of Static and Dynamic Soil Stress and Strain using In-ground Instrumentation. Proceedings of Geo Denver 2007.2.
    [22]Michael A. Mooney and Robert V. Rinehart.In Situ Soil Response to Vibratory Loading and Its Relationship to Roller-Measured Soil Stiffness[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(8)1022-1031.
    [23]J.L. Pan, A.R. Selby. Simulation of dynamic compaction of loose granular soils. Advances in Engineering Software,2002.33:631-640.
    [24]Broms.B. Lateral earth pressures due to compaction of cohesionless soils. Reprints and Preliminary reports, Swedish Geotechnical Institute,1973.
    [25]Ingold,T,S. Lateral earth pressures induced by compaction. International Conference on Compaction,1980.
    [26]Jams M.Duncan and Raymond B.Seed. Compaction-Induced Earth Pressures under K0-Conditions[J]. Journal of Geotechnical Engineering,1986,112(1):1-22.
    [27]Jams M.Duncan,G..W.Wlilliams A.L.Sehn and Raymond B.Seed. Estimation Earth Pressures Due to Compaction[J]. Journal of Geotechnical Engineering, 1991,117(12):1833-1847.
    [28]Earth manual. Bureau of Reclamation. Denver,U,S,A.
    [29]Standard specifications for transportation materials and methods of sampling and testing. Adopted by The American Association of State Highway and Transportation Officials. Washington D.C,U.S.A.
    [30]Broms, B.and Forssblad, L. Classification of soils with reference to compaction. Swdish Geotechnical Institute,1968.
    [31]张泓,闻邦椿.振动压路机压实机理的研究[J].建筑机械,2000(3):25-27.
    [32]Marsal.R.J. Large-scale testing of rockfill materials[J]. Journal of Soils Mechanics and Foundation Division.American Society of Civil Engineers,1967.3.
    [33]刘汉龙,秦红玉,高玉峰.堆石粗粒料颗粒破碎试验研究[J].岩土力学,2005,26(4):562-566.
    [34]范小彬.连续压实控制技术及压实度计在振动压路机上的应用[J].筑路机械与施工机械化,2003,(5):39-41.
    [35]Tsang-Jiang Chen'andYung-Show Fang. Earth Pressure due to Vibratory Compaction[J]. Journal o f Geotechnical and Geoenvironmental Engineering,2008,134(4):437-444.
    [36]中华人民共和国铁道部.铁路工程上工试验规程.中国铁道出版社,2006.
    [37]李德葆,陆秋海.工程振动试验分析[M].清华大学出版社,,2004.
    [38]应怀樵.波形和频谱分析与随机数据处理[M].中国铁道出版社,1985.
    [39]王中琦.岩土工程测试技术[M].建筑工业出版社,1988.
    [40]范生波.高速铁路无砟轨道路基动响应测试分析[D].西南交通大学硕士学位论文,2010.
    [41]吴再光.韩国城.随机土动力学概论[M].大连理工大学出版社,1992.
    [42]沈恒范.概率论与数理统计教程[M].高等教育出版社,2003.
    [43]杨茂兴.小样本容量测量数据中粗差的剔除[J].计量与测试技术,2005,32(1):27-28.
    [44]张立祥,罗强,刘钢,刘潇潇,张胜利.基于正交设计的土压力传感器匹配误差分析[J].传感器与微系统,2001,30(3):50-53.
    [45]张胜利.土压力传感器与土介质相互作用特性分析[D].西南交通大学硕士学位论文,2009.6.
    [46]钱家欢,殷宗泽.土工原理与计算[M],1996.
    [47]K.L.Johnson著.接触力学[M]徐秉业,罗雪福,刘信声译.高等教育出版社,1992.
    [48]陈希哲.土力学地基基础[M].清华大学出版社,2005.
    [49]张延华,许阳明MATLAB使用指南[M].科学技术文献出版社,1998.
    [50]张宜华.精通MATLAB5[M]清华大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700