用户名: 密码: 验证码:
磺化PPES复合纳滤膜制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂萘联苯聚醚砜(PPES)是本组研发的一类新型高性能工程塑料,玻璃化转变温度达305℃,耐高温可溶解,并具有良好的成膜性能、机械性能和化学稳定性能;经过磺化改性的杂萘联苯聚醚砜(SPPES)不仅成为了荷电材料,而且改善了其亲水性,是制备耐高温、高性能纳滤膜的优良材料。
     在本研究组前期研究基础上,本文选择磺化度(D.S.)为0.87的SPPES作为复合膜涂层材料,以PPESK超滤膜为基膜,制备耐高温高效复合纳滤膜,重点研究复合膜涂层浸涂稀溶液配方及制备工艺对复合膜结构性能的影响。通过实验确定SPPES的最佳浓度为6%,根据溶解度参数计算和实验结果显示乙二醇甲醚和丙酮混合溶剂是SPPES浸涂稀溶液的理想溶剂。PEG200是理想的有机小分子添加剂,其最佳添加量在10%左右;LiCl作为理想的无机添加剂,其添加量控制在1%以内为宜;添加5%非质子极性溶剂DMAc,可同时提高复合膜的脱盐率和水通量;以丙三醇作为交联剂制得的SPPES复合膜的性能较优,交联剂丙三醇的最佳添加量为30%。复合膜在100℃下经30min热处理,对Na_2SO_4水溶液的脱盐率为96%,相应的水通量为73 L/(m~2h)。
     利用衰减全反射红外谱图研究了SPPES复合膜的表面化学结构,利用非平衡热力学模型及静电位阻模型(ES模型)计算了SPPES纳滤膜的膜孔结构参数。考察了SPPES复合纳滤膜对不同无机盐的分离性能,其对无机盐的脱除顺序为Na_2SO_4>MgSO_4>NaCl>MgCl_2,这是典型的荷负电纳滤膜的分离特性。SPPES复合膜具有良好的涂层稳定性,复合膜在沸水中30min,性能基本不变;复合膜水通量随操作压力的提高呈现线性上升的趋势,脱盐率在低压时随压力升高而增大,超过1.0Mpa后趋于稳定;复合膜具有良好的耐压密性,常温运行150min,其压密斜率为0.35;将SPPES复合膜在50mg·L~(-1)的H_2O_2水溶液中连续浸泡6天后测试,其脱盐率仅下降3%,说明复合膜具有良好的抗氧化能力;SPPES复合膜可在高温下运行,当操作温度由20℃升高到100℃时,其水通量增幅达到4倍多,而脱除率基本不变。综上,SPPES复合纳滤膜是一种综合性能优良的耐高温、高效分离膜。
Poly(phthalazinone ether sulfone)(PPES)is an excellent engineering plastic with high-glass transition temperature(305℃),good solubility,hydrophilicity,chemical resistance and mechanical properties.Sulfonated modified not only let PPES become a charged material, but also improve hydrophilic properties of it,so SPPES is an excellent material for preparing good performance and heat resistance nanofiltration membrane.
     Based on our team previous research,SPPES(D.S.= 0.87)is chose as coating material of composite membrane,by which and PPESK UF membrane,composite nanofiltration membrane is prepared.Studies are focused on components of coating solution and preparation technics.According to experiment results,the best concentration of SPPES of coating film is 5%.The results of solubility parameter method and observation experiment show that mixed EGME and acetone is the better solvent;PEG200 is the ideal organic additive,the quantity of which is about 10%;LiC1 is the better inorganic additive,the quantity of which is below 1%; appending of DMAc enhance the water flux and rejection rate of composite membrane.The performance of composite membrane prepared by glycerin as cross-linking reagent is enhance d obviously,the proper addition is about 30%.About thirty minutes heat-treating at 100℃, the composite membrane obtain that rejection rate is 96%and water flux is 73 L/(m~2h).
     The chemical structure of SPPES composite membrane surface is studied by FT-IR,the membrane pore structure parameters are calculated according to the irreversible thermodynamic model and the electrostatic and steric-hindrance(ES)model.The property of separating different inorganic salt solution is studied.The inorganic electrolytes rejection of SPPES composite membrane ranks:Na_2SO_4>MgSO_4>NaCl>MgCl_2,which is typical characteristics of a negatively charged NF membrane.The water flux has linear increasing trend with pressure increase and the rejection rate tend to be stable when the pressure reaches up to 1.0 Mpa.The composite membrane has excellent pressure resistance.The composite membrane could hold stable membrane separation performance when it was in the 50mg·L ~(-1)H_2O_2 solution.When the operating temperature is improved from 20℃to 100℃,the water flux enhances more than 4 times and rejection rate decreases a little,which show that SPPES composite membrane has outstanding heat resistance.According to results above,SPPES composite nanofiltration membrane is a kind of excellent performance and heat-resistance composite membrane.
引文
[1]时均,袁权,高从堦.膜技术手册.北京:化学工业出版社,2001.
    [2]张守海,蹇锡高,杨大令.新型耐高温分离膜用高分子材料.现代化工,2002,22(S1):203-205.
    [3]孙福强,崔英德.膜分离技术及其应用研究进展.化工科技,2002,10(4):58-63
    [4]Marcel Mulder(荷兰)著,李琳译.膜技术基本原理(第二版).北京:清华大学出版社,1999.
    [5]王湛.膜分离技术基础.北京:化学工业出版社,2000.
    [6]安树林.膜科学技术实用教程.北京:化学工业出版社,2005.
    [7]周金盛,陈观文.纳滤膜技术的研究进展.膜科学与技术.1999,19(4):1-8.
    [8]Erisson P.Nanofiltration extends the range of membrane filtration,Envionmental Process,1988,7(1):58-61.
    [9]Pertersen R J.Composite reverse osmosis and nanofiltration membranes,J.Membr.Sci.,1993,83(1):81-150.
    [10]Linde K,Joensson A.Nanofiltration and salt solutions and landfill leachate,Desalination,1995,103(3):223-232.
    [11]OH N W,JEGAL J,LEE K H.Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile(PAN).Ⅱ.Preparation and characterization of polyamide composite membranes,J.Appl.Polym.Sci.,2001,80(14):2729-2736.
    [12]Du R H,Zhao J S.Properties of poly(N,N-dimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane,J.Membr.Sci.,2004,239(2):183-188.
    [13]蒲通,曾作祥.高分子纳滤膜的制备技术.分子通报.2001,(3):57-63.
    [14]Wei J,Jian X G,Wu C H et al.Influence of polymer structure on thermal stability of composite membranes,J.Membr.Sci.,2005,256(1-2):116-121.
    [15]Yaroshchuk A E,Vovkogon Y A.Pressure-driven transport of ternary electrolyte solutions with a common colon through charged membranes,Numerical analysis,J.Membr.Sci.,1994,86(1-2):19-37.
    [16]Alami-Younssi S,Larbot A,Persin M et al,Rejection of mineral salts on a gamma alumina nanofiltration membrane Application to environmental process,J.Membr.Sci.,1995,102,123-129.
    [17]Chaufer B,Rabiller-Baudry M,Guihard L et al.Retention of ions in nanofiltration at various ionic strength,Desalination,1996,104(1-2),37-46.
    [18]Perry M,Linder C.Intermediate reverse osmosis ultrafiltration(RO UF)membranes for concentration and desalting of low molecular weight organic solutes,Desalination,1989,71(3):233-245.
    [19] Schirg P, Widmer F. Characterisation of nanofiltration membranes for the separation of aqueous dye-salt solutions, Desalination, 1992, 89 (1): 89-107.
    [20] Levenstein R, Hasson D, Semiat R. Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes, J. Membr. Sci., 1996, 116 (1): 77-92.
    [21] Spielger K S, Kedem O. Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Desalination, 1966, 1 (4): 311-326.
    [22] Wang X L, Tsuru T, Nakao S et al. The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes, J. Membr. Sci., 1997, 135 (1): 19-32.
    [23] Ismail A F, Hassan A R. The deduction of fine structural details of asymmetric nanofiltration membranes using theoretical models, J. Membr. Sci., 2004, 231 (1-2): 25-36.
    [24] Nakao, S. Determination of pore size and pore size distribution: 3. Filtration membranes, J. Membr. Sci., 1994, 96 (1-2): 131-165.
    [25] Wang X L, Tsuru T, Togoh M et al. Evaluation of pore structure and electrical properties of nanofiltration membranes, J. Chem. Eng. Japan, 1995, 28 (2): 186-192.
    
    [26] 王晓琳,中尾真一.纳滤膜的电解质截留率及其带电特性.南京化工大学学报,1999,21(2):11-15.
    
    [27] Christoforou C C, Westermann-Clerk G B, Anderson J L. The streaming potential and inadequacies of the Helmholtz equation, J. Colloid. Interf. Sci., 1985,106 (1): 1-11.
    
    [28] Westermann-Clerk G B, Anderson G L. Experimental verification of the space charge model for electrokinetics in charged microporous membranes, J. Electrochem. Soc., 1983,130 (4): 839-847.
    
    [29] Oldham I B, Young FJ, Osterle J F. Streaming potential in small capillaries, J. Colloid Sci., 1963, 18 (4): 328-336.
    [30] Morrision F A Jr, Osterle J F. Electrokinetic energy conversion in ultrafine capillaries, J. Chem. Phys., 1965, 43 (6): 2111-2115.
    [31] Gross R J, Osterle J F. Membrane transport characteristics of ultrafine capillaries, J. Chem. Phys., 1968, 49 (1): 228-234.
    [32] Fair JC, Osterle J F. Reverse electrodialysis in charged capillary membranes, J. Chem. Phys., 1971, 54 (8): 3307-3316.
    [33] Neogi P, Ruckenstein E. Viscoelectric effects in reverse osmosis, J. Colloid Interf. Sci., 1981, 79 (1): 159-169.
    [34] Sasidhar V, Ruckenstein E. Electrolyte osmosis through capillaries, J. Colloid Interf. Sci., 1981, 82 (2): 439-457.
    [35]Sasidhar V,Ruckenstein E.Anomalous effects during electrolyte osmosis across charged porous membranes,J.Colloid Interf.Sci.,1982,85(2):332-362.
    [36]Hijnen H J M,Van Daalen J,Smit J A M.The application of the space-charge model to the permeability properties of charged microporous membranes,J.Colloid Interf.Sci.,1985,107(2):525-539.
    [37]Smit J A M.Reverse osmosis in charged membranes.Analytical predictions from the space-charged model,J.Colloid Interf.Sci.,1989,132(2):413-424.
    [38]Meyer K H,Sievers J F.La Permeabilite des membranes 1.Theorie del a Permeabilite Ionique,Helv.Chim.Acta,1936,19:649.
    [39]Teorell T.Transport processes and electrical phenomena in ionic membranes,Prog.Biophys.Biophys.Chem.,1953,3:305-369.
    [40]Kobatake Y,Kamo N.Transport process in charged membranes,Prog.Poly.Sci.Japan,1973,5:257-301.
    [41]Hoffer E,Kedem O.Hyperfiltration in charged membranes.The fixed charged model,Desalination,1967,2(1):25-39.
    [42]Tsuru T,Nakao S,Kimura S.Calculation of ion rejection by extended Nernst-Planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions,J.Chem.Eng.Japan,1991,24:511-517.
    [43]Tsuru T,Urairi M,Nakao S et al.Reverse osmosis of single and mixed electrolytes with charged membranes.Experiment and analysis,J.Chem.Eng.Japan,1991,24:518-523.
    [44]Wang X L,TsuruT,Nakao S et al.Electrolyte transport through nanofiltraion membranes by the space-charge model and the comparison with Teorell-Meyer-Sievers model,J.Membr.Sci.,1995,103(1-3):117-133.
    [45]Bowen W,Mukhtar H.Characterisation and prediction of separation performance of nanofiltration membranes,J.Membr.Sci.,1996,112(2):263-274.
    [46]周金盛,陈观文.CA/CTA共混不对称纳滤膜分离特性的研究.膜科学与技术,1999,19(1):34-39.
    [47]周金盛,陈观文.CA/CTA共混不对称纳滤膜制备过程中的影响因素探讨.膜科学与技术,1999,19(2):22-26.
    [47]Bowen W R,Doneva T A,Yin H B.Polysulfone-sulfonated poly(ether ether)ketone blend membranes:systematic synthesis and characterization,J.Membr.Sci.,2001,181(2):253-263.
    [49]Bowen W R,Doneva T A,Yin H B.The effect of sulfonated poly(ether ether ketone)additives on membrane formation and performance,J.Membr.Sci.,2002,145(1-3):39-45.
    [50]李旭祥.分离膜制备与应用.北京:化学工业出版社,2004.
    [51]梁雪梅,陆晓峰,刘光全等.界面缩聚法制备聚芳酯复合纳滤膜的研究Ⅱ.基膜的制备.华东理工大学学报,1999,25(3):297-301.
    [52]宋玉军,刘福安,杨勇等.纳滤膜的制备及应用技术研究进展.化工科技,1999,7(3):1-7.
    [53]高从堦,鲁学仁,莫剑雄.荷电的反滲透和超滤膜.水处理技术,1987,13(3):140-14
    [54]Ramzl H L,Abdelhamid B A,Ezdine F.Change of the performance properties of nanofiltration cellulose acetate membranes by surface adsorption of polyelectrolyte multilayers.Desalination,2004,163(1-3):193-202.
    [55]Randa H,Ezzedine F,Mohamed S R.Properties of cellulose acetate nanofiltration membranes,Application to brackish water desalination.Desalination,2004,167(3):403-409.
    [56]Khulbe D C,Feng C,Matsuura T,Study of the structure and transport of asymnletrie Polyamide membranes for reverse osmosis using the eleetronspin resonance(ESR)method.Desalination,2003,154(1):1-8.
    [57]Chung T S,Xu Z L.Asymmetric hollow fiber membranes prepared from miscible polybenzimidazole and polyetherimide blends.J Membr.Sci,1998,147(1):35-47.
    [58]Kim K J,Chowdhury G,Matsuura T.Low pressure reverse osmosis performances of sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)thin film composite membranes:67effect of coating conditions and molecular weight of polymer.J.Membr.Sci.2000,179(1):43-52.
    [59]Neol M,Letrun R E,Bouchard C R.Nanofiltration of NaCl solutions using a SPPO membrane(BQ01)Part 1,Membrane characterization and separation mechanisms.Desalination.2003,155(3):229-242.
    [60]Denizli A,Tanyolac D,Salih B.Adsorption of heavy-metal ions on Cibacron Blue F3GA-Immobilized microporous polyvinylbutyral- based affinity membranes.J Membr Sci,137(1):1-8.
    [61]吴雪梅,贺高红等.磺化-制备聚合物荷电膜材料的有效方法.高分子材料科学与工程.2005,(4):10-13.
    [62]Kim I C,Choi JG,Tak TM,Sulfonated polyethersulfone by heterogeneous method and Its membrane performance.J Appl Polym Sci,1999,74:2046-2055.
    [63]Dai Y,Jian X G,Zhang SH,et al.Thin film composite(TFC)membranes with improved Therma lstability from sulfonated poly(phthalazinone ether sulfone ketone)(SPPESK)J.Membr Sci,2002,207:189-197.
    [64]黄嘉.聚醚砜、磺化聚醚砜血液净化膜材生物相容性的研究[博士学位论文].成都:四川大材料工程学院,1999.
    [65]俞三传,高从堦,鲁学仁等.磺化聚醚砜复合半透膜的研制.膜科学与技术,1995,15(2)32-37.
    [66]Plummer,C W,Kimura G,LaConti A B.Development of Sulfonated Polyphenylene Oxide Membrane for Reverse Osmosis.Research and Progress RePort No.551,Offiee of Saline Water,United States DePartment of Interior:1970.
    [67]Agarwal A K,Huang R Y M.Studies on the enhancement of Separation characteristics of sulfonated poly(phenylene oxide)/polysulfone thin film composite membranes for reverse osmosis applications.Ⅱ.Effects of nitromethane and the chemical treatment combined with gamma-ray irradiation.Angew Makromol Chem.1988,163(1):15-21.
    [68]Hamza A,Chowdhury G,Matsuura T,Sourirajan S.Sulphonated poly(2,6-dimethyl-1,4-phenylene oxide)- polyethersulphone composite membranes Effects of composition of solvent system,used fo PreParing casting solution,on membrane-surface structure and reverse-osmosis performance.J Membr Sci.1997,129,55-64.
    [69]Ikeda K,Yamamoto S,Ito H.Sulfonated polysulfone composite semipermeable membranes And Process for producing the same.United States Patent.4,818,387.1989.
    [70]DaiY,JianXG,ZhangSH,etal.Thin film composite(TFC)membranes with improved thermal stability from sulfonated poly(phthalazinone ether sulfone ketone)(SPPESK).J.Membr.Sci,2002,207:189-197.
    [71]Zhang S H,Jian X G,Dai Y.Preparation of sulfonated poly(phthalazinone ether sulfone ketone)composite nanofiltration membrane.J Membr Sci,2005,246:121-126.
    [72]李连超,马成良,谭惠民等.磺化聚醚酮复合纳滤膜的制备.水处理技术,2005,31(10):13-16.
    [73]俞三传,金可勇,高从堦.膜软化及其应用.工业水处理.2000,20(11):10-13.
    [74]宋玉军,刘福安,杨勇等.纳滤膜的制备及应用技术研究进展.明胶科学与技术,2001,21(3):149-155.
    [75]Carrier S,Theoleyre M A,Decloux M.Treatment of sugar decolorizing resin regeneration waste using nanofiltration,Desalination,1997,113(1):7-17.
    [76]Manttari M,Nuortila-Jokinen J,Nystrom M.Evalualion of nanofiltration membranes for filtration of paper mill total effluent,Filtr.Sep.,1997,34(3):275-280.
    [77]Katselnik P,Morcos S Y.Reduction of nickel in plating operation effluent with nanofiltration,Plat.Surf.Finish.,1998,85(1):46-47.
    [78]刘梅红,姜坪.膜法染料废水处理试验研究.膜科学与技术,2001,21(3):50-52.
    [79]Cassano A,Drioli E,Molinari R.Recovery and reuse of chemicals in unhairing,degreasing and chromium tanning processes by membranes,Desalination,1997,113(2-3):251-261.
    [80]Archer A C,Mendes A M,Boarentura R A R.Separation of an anionic surfactant by nanofiltration,Environ.Sci.technol.,1999,33(16):2758-2764.
    [81]Karakulski K,Morawski A W.Treatment of spent emulsion from a cable factory by an integrated UF/NF membrane system,Desalination,2002,149(1-3):163-167.
    [82]Thanuttamavong M,Yamamoto K,Oh J I et al.Rejection characteristics of organic and inorganic pollutants by ultra low-pressure nanofiltration of surface water for drinking water treatment,Desalination,2002,145(1-3):257-264.
    [83]Bowen W R,Doneva T A,Yin H B.Separation of humic acid from a model surface water with PSU/SPEEK blend UF/NF membranes,J.Membr.Sci.,2002,206(1-2):417-429.
    [84]Visvanathan C,Marsono B D,Basu B.Removal of THMP by nanofiltration:Effects of interference parameters,Water Research,1998,32(12):3527-3538.
    [85]Nabetani H.Development of a membrane system for highly concentrated fruit juice,Membrane,1996,21(2):102-108.
    [86]Matsubara Y,Iwasaki K,Nakajima M et al.Recovery of oligo-saccharides from steamed soybean waste water in tofu processing by reverse osmosis and nanofiltration membranes,Biosci.Biotech.Biochem.,1996,60(3):421-428.
    [87]鲍元兴,孙蔚榕,杨维亚.低聚异麦芽糖的纳滤分离技术和色谱分离技术.无锡轻工业大学学报,2001,20(4):351-355.
    [88]毕可英,刘玉荣.纳滤技术浓缩分离1,6-二磷酸果糖氯化钠水溶液的研究,水处理技术,1995,21(5):271-273.
    [89]王湛,周翀.膜分离技术基础.北京:化学工业出版社,2006.
    [90]高从堦,张建飞,鲁学仁等.纳滤纯化和浓缩染料试验.水处理技术.1996,22(3):147-150.
    [91]柴红,周志军,陈欢林.纳滤膜脱盐浓缩染料研究.高校化学工程学报,2000,5(14):461-464.
    [92]戴英,朱秀玲,赛锡高等.新型聚醚砜酮超滤膜的制备及性能研究.大连理工大学学报,199739(4):509-513.
    [93]Snow M JH,Winter D,Buekingham R,et al.techniques for extreme conditions:high temperature reverse osmosis and nanofiltration.Desalination,1996,150(1):57-61
    [94]Hildebrand J H,Scott R L.The solubility of Non-Electrolytes[M].NewYork:Reinhold.,1949.
    [95]Hansen C M.The three dimensional solubility parameter-key to paint component affinities,J.Paint Technol.,1967,39(5):104-511.
    [96]朱厂乐,刘茉娥等.膜科学与技术[J].杭州:浙江大学出版社,1992,(4):1
    [97]蹇锡高,孟跃忠,郑海滨,Allan S.Hay.中国,93109180.2,1995.
    [98]黄方,杨龙,乐以伦.磺化聚醚砜溶度参数的确定.四川大学学报(工程科学版),2001,33(3):75-78
    [99]Barley E B,Nelson T P,and Seigliano J M.Three-dimensional solubility parameters and their relationship to internal pressure measurements in polar and hydrogen bonding solvents.J Paint Technol,1971,43:35.
    [100]蹇锡高,张守海,戴英,等.新型磺化聚醚砜酮复合纳滤膜[J].膜科学与技术,2001,21(1):11-14.
    [101]王珺.磺化杂萘联苯聚醚砜复合纳滤膜的研究:(硕士学位论文).大连:大连理工大学,2007.
    ##无参考文献内容

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700