基于二维压差式矢量水听器的方位估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,声波兼有标量场和矢量场。与传统的声压水听器相比,矢量水听器既能获得声场中的声压这一标量信息,又能获得声场中质点振速这一矢量信息,更多的信息量必然带来矢量水听器更好的信号处理效果。单个的声压水听器由于只能获得声场中的声压这一标量信息,因此不具备指向性,所以不能进行信号方位的估计,而单个矢量水听器由于能够以空间共点、时间同步测量声场中的声压和振速信息,因此具备信号方位估计的能力。本文以二维压差式矢量水听器为研究对象,对单个的二维压差式矢量水听器信号方位估计做了理论推导、计算机仿真和试验数据分析。主要内容如下:
     1.回顾了矢量水听器及其信号处理技术的发展,对同振型矢量水听器及压差式矢量水听器工作原理进行了介绍,并建立了单个同振型及压差式矢量水听器信号模型,给出了不同组合下的二维矢量水听器波束形成仿真。
     2.对声场中声压和质点振速之间的相关性做了分析,提出了基于单个二维压差式矢量水听器的多目标分辨算法,该算法有效地利用了平面波声场中声压和质点振速的相关性,在声压及振速分量之间形成一组相关方程,通过对这组相关方程的优化来实现对信号方位角度的估计。文中针对窄带非相关信号、宽带信号和相干信号下的相关方程分别进行了推导。同时对已知干扰方位角度情况下的多目标分辨也给出了推导,其中目标信号包括窄带和宽带非相关信号。
     3.首次对各向同性白噪声条件下的二维压差式矢量水听器声压和振速之间相关方程处理增益进行了推导和分析,并对不同信号方位角度下的相关方程误差进行了仿真。推导是在窄带信号条件下获得的,但其结果在宽带信号条件下也是成立的。在信号个数较少的情况下,可以根据推导结果选择误差相对较小的相关方程来进行优化求解。
     4.针对本文声压和振速之间非线性相关方程组,提出运用遗传算法、差异进化算法及混合差异进化算法进行优化求解。对三种算法基本原理及步骤进行了介绍,并针对本文中要解决的多参数优化问题,对这三种方法的收敛速度、收敛精度及运算时间进行了比较。
     5.针对本文所运用的基于解相关方程的信号方位估计方法进行了仿真试验,并运用试验数据对算法进行了验证。仿真以两信号分辨为主,分别对窄带非相关信号、宽带非相关信号和窄带相干信号下的信号方位分辨进行了仿真,同时对多于两目标情况下的方位估计误差进行了仿真。利用西北工业大学航海学院消声水池试验数据得出了矢量水听器在不同频率下的指向性图,并对单个信号源方位估计运用声能流方估计法进行了验证;利用冯家山水库试验数据对两个非相关窄带信号、两个非相关宽带信号以及已知干扰方位条件下的信号方位估计算法进行了验证;利用舟山海试数据对实际中的宽带信号多目标分辨算法和已知干扰方位下的目标方位估计算法进行了验证。
It is well known that sound wave has both scalar quantity field and vector quantity field. Compared with the pressure hydrophone, vector transducer can provide both the information about pressure (scalar quantity) and particle velocity (vector quantity) of the sound field, which offers more possibilities for signal processing. A single pressure hydrophone is omni-directional and can not be used to estimate the DOA of acoustic signal. But single vector transducer can be used to measure the pressure and particle velocity at some point of acoustic field simultaneously, so a single vector transducer can achieve the estimation of DOA. In this thesis, the theoretical deduction, computer simulation and analysis of experimental data, about estimation of multi-source parameters with single vector transducer for pressure gradient, transducer, using method of correlation equations are given. The main contents are:
     1. The development of vector transducer and corresponding methods of signal processing is reviewed. The working principle of co-vibrating type and pressure-gradient type of vector transducers are studied, and their mathematical models are established. The direction patterns of 2-dimensional vector transducer for different type of combination are given by simulation.
     2. The correlation of pressure and particle velocity of acoustic field is studied. A multi-sources distinguishing method is presented. A series of correlation equations are obtained for the correlating of pressure and particle velocity in plane wave, and DOA of sound sources are obtained by solving this system of equations. In this thesis, the system of correlation equations is solved respectively for narrowband uncorrelated signal, broadband signal and correlated signal are studied. The multi-sources distinguishing method with known direction interfere is presented, for both uncorrelated narrowband and broadband cases.
     3. It is the first time to study the gain in SNR using correlation of pressure and particle velocity for two-dimensional pressure-gradient vector transducer, under background of isotropic white noise, and the accuracy of solution of correlation equations at different arrival angel is simulated. Although the conclusion is deduced at narrowband case, but it keeps force also for broadband signal. According to the study, correlation equations with smaller error should be chosen to estimate the DOA in case of less sources.
     4. GA (Genetic Algorithms), DE (Differential Evolution) and HDE (Hybrid Differential Evolution) are applied on the optimization of non-linear correlated function of pressure and particle velocity, the principle and steps of the three methods are introduced, the convergence speed, convergence precision and costing time of three methods are compared based on the optimization problem which needs to be solved in this thesis.
     5. Computer simulation and experimental data processing are applied with the DOA estimation based on solving correlation functions. Computer simulation is given mainly for the case of two sources, including uncorrelated narrowband signal, broadband signal and correlated signal. The estimation error of DOA in case of more than two sources is also provided. Directional pattern of vector transducer at different frequency is measured in anechoic tank of Northwestern Polytechnical University, and direction estimation of single source is verified by method of sound energy flux. Direction estimation method of two uncorrelated narrowband signals, broadband signal and sound signal with known direction interference are verified by experimental data of getting from experiment carried in Feng-Jiashan reservoir. Multiple broadband sources distinguishing and DOA estimation of signal interfered by known direction angle interference is verified by experimental data getting from experiment carried in sea area of Zhou-Shan.
引文
[1] 陈湍石.声强测量及应用.噪声与振动控制,1987,vol.8
    [2] F.J.Fahy. Sound intensity. The university, Southampton, UK.
    [3] E.G.Richarason. Technical aspects of sound. 中译本
    [4] C.B. Leslie, J. M. Kendall and J. L. Jones. Hydrophone for measuring particle velocity.J.Acoust.Soc.Amer.,1956,28(4): 711-715
    [5] Boyer G L. Instrumentation for measuring underwater acoustic intensity, J. Acoust. Soc. Amer., 1960,vol.32,pp. 1519
    [6] B.D. Kerler. Gradient hydropone flow noise. J. Acoust. Soc. Amer. 1972, vol.62
    [7] C.L. LeBlanc. Handbook of Hydrophone Element Design Technology. NUSC Technical Report 5813 Naval Underwater Systems Center, New London, CT, 1978.
    [8] R.D. Marciniak. Unidirectional underwater sound pressure-gradient transducers. IEEE Trans. Sonics Ultrason. SU-18920,89-95(April 1971)
    [9] Pessy A. Feldman. Construction of a fiber gradient hydrophone using a nichelion configuration. J.Acoust.Soc.Arner.,1980,vol.80, pp.700
    [10] Fiber optic gradient hydrophones. J.Acoust.Soc. Amer,1985,vol.77, pp.2190
    [11] L.M.Lyamher. Polarication fiber-optic sound pressure grdient sensor. S.P.A.36(3)pp.317
    [12] U.S.Patent 4547870. Velocity hydrophone.
    [13] M.A.Josserand and C.Maerfeld. PVF2 velocity hydrophones. J.Acoust. Soc.Amer., 1985, vol.3, pp.861
    [14] Robert L.Townsend, Amherst, N.H. Tilt compensation for acoustic transducing system.. United States Patent., 4179682.,Dec.18,1979
    [15] Thomas E.Woodruff, Nashua, N.H., Underwater direction finding system. United States Patent,3987404.,Oct.19,1976
    [16] V.A.Shchurov. Coherent and diffusive fields of underwater acoustic ambient noise. J.Acoust.Soc.Amer,1991,90(2):991-1001
    [17] V.A.Shchurov. The interaction of energy flows of underwater ambient and a local source. Natural Physical Sources of Underwater Sound. Kluwer Academic Publishers, pp. 93-109, 1993.
    [18] Thomas B.Gabrielson, David L. Gardner, A simply neutrally buoyant sensor for direct measurement of particle velocity and intensity in water. J.A.S.A,Vol 97 NO.4,P2227, April 1995
    [19] A.Nehorai and E.Paldi. Acoustic vector-sensor array processing. IEEE Transactions on Signal Processing, 1994,42(9):2481-2491
    [20] A. Nehorai, K. C. Ho, and B. Tan. Minimum-noise-variance beamforrner with an eletromagnetic vector sensor, in Proc. IEEE Intl Conf. On Acoust., Speech, and Sig. Proc.(ICASSP98), 1998, pp. 2021-2024
    [21] A.Nehorai and E.Paldi. Vector-sensor array processing for electromagnetic source localization. IEEE Transactions on Signal Processing, 1994,42(2):376-398
    [22] B.Hochwald and A.Nehorai. Identifiability in array processing models with vector-sensor applications. IEEE Transactions on Signal Processing, 1996,44(1):83-95
    [23] M.Hawkes and A.Nehorai. Acoustic vector-sensor beamforming and capon direction estimation. IEEE Transactions on Signal Processing, 1998,46(9):2291-2304
    [24] M. Hawkes and A. Nehorai. Acoustic vector-sensor beamforming and Capon direction estimation, in Proc. Int. Conf. Acoust., Speech, Signal Process.(ICASSP), Detroit, MI, May 1995, pp. 1673-1676.
    [25] M.Hawkes and A. Nehorai. Acoustic vector-sensor beamforming and Capon direction estimation. Tech. Rep. UIC-EECS-96-4, Dept. Elect. Eng. Comput. Sci., Univ. Illinois at Chicago, Nov. 1996.
    [26] M.Hawkes and A.Nehorai. Effects of sensor placement on acoustic vector-sensor array performance. IEEE Journal of Oceanic Engineering, 1999,24(1):33-40
    [27] M. Hawkes and A. Nehorai. Snrface-mounted acoustic vector-sensor array processing, in Proc. IEEE Intl Conf On Acoust., Speech, and Sig. Proc.(ICASSP96), pp.3710-3713, Atlanta, GA, May 1996.
    [28] M. Hawkes and A. Nehorai. Bearing estimation with acoustic vector-sensor arrays. presented at Acoust Velocity-Sensor Focused Workshop, Mystic, CT, Sept. 1995, pp. 345-358.
    [29] M.Hawkes and A.Nehorai. Acoustic vector-Sensor processing in the presence of a reflecting boundary. IEEE Transactions on Signal Processing, 2000 48(11):2981-2993
    [30] K.T.Wong and M.Zoltowski. Extended-aperture underwater acoustic multisource azimuth/elevation direction-finding using uniformly but sparsely spaced vector hydrophones. IEEE Journal Oceanic Engineering., 1997,22(4):659-672
    [31] K.T.Wong and M.Zoltowski, Closed-form underwater acoustic direction-finding with arbitrarily spaced vector hydrophones at nnknown locations. IEEE Journal of Oceanic Engineering., 1997,22(3): 649-658
    [32] K.T. Wong and M. D. Zoltowski. Orthogonal velocity-hydrophone ESPRIT for sonar source localization, in Proc. MTS/IEEE Oceans Conf., Fort Lauderdale, FL, Sept. 1996, vol. 3, pp. 1307-1311.
    [33] K.T. Wong and M. D. Zoltowski. ESPRIT-based extended-aperture source localization using velocity-hydrophones. in Proc MTS/IEEE Oceans Conf., Fort Lauderdate, FL, Sept. 1996, vol. 3, pp. 1427-1432.
    [34] K.T.Wong and M.D.Zoltowski. Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones. IEEE Transactions on Signal Processing, 1999,47(12):3250-3260
    [35] K.T.Wong and M. Zoltowski. High accuracy 2D angle estimation with extended aperture vector sensor arrays. IEEE. Intl Conf On Acoust., Speech, and Sig. Proc.(ICASSP96), Atlanta, GA, 1996, pp. 2789-2792
    [36] M. Kanda. An electromagnetic near-field sensor for simultaneous electric and magnetic-field measurements. IEEE Trans, on Electromag. Compat., 1984, vol. 26, pp. 102-110
    [37] M. Kanda and D. Hill.A three-loop method for determining the radiation characteristics of an electrically small source.IEEE Trans.on Electromag. Compat., 1992,vol. 34, pp. 1-3
    [38] K.C. Tan, K. C. Ho, and A. Nehorai. Uniqueness study of measurements obtainable with arrays of electromagnetic vector sensors. IEEE Transactions on Signal Processing, 1996,vol. 44, pp. 1036-1039
    [39] K.C. Tan, K. C. Ho, and A. Nehorai. Linear Independence of Steering Vectors of an Electromagnetic Vector sensor. IEEE Transactions on Signal Processing, 1996,vol.44, pp.3099-3107
    [40] K.C. Ho, K. C. Tan, and B. Tan. Efficient method for estimating directions-of-arrival of partially polarized signals with electromagnetic vector sensors. IEEE Transactions on Signal Processing, vol. 45, pp. 2485-2498.
    [41] M. Zoltowski and K. Wong. Polarization diversity and extended-aperture spatial diversity to mitigate fading-channel effects with a sparse array of electric dipoles or magnetic loops, in Proc. IEEE 1997, Int. Vehic. Tech. Conf., pp. 1163-1167
    [42] P.H. Chua, C. M. S. See, and A. Nehorai. Vector-sensor array processing for estimating ang1es and times of arrival of multipath communication signals, in Proc. IEEE Intl Conf on Acoust. Speech, and Sig. Proc. (ICASSP98),1998,pp. 3325-3328
    [43] K.J. Bastyr, Gerald C. Lauchle, James A. McConnell, Development of a Velocity underwater acoustic intensity sensor. J. Acoust. Soc. Am. 1999, 106(6)
    [44] Benjamin A. Cray, Russell A. Christman. Acoustic and Vibration Performance Evalutions of a Velocity Sensing Hull Array. 1996 American Institute of Physics, pp. 177-188.
    [45] Peter J. Stein, Steven E. Euerle, Richard K. Menoche,Richard K.Menoche, Robert E. Janiesch. Pressure Gradient Sensors for Bearing Determination in Shallow Water Tracking Ranges. 1996 American Institute of Physics, pp. 359-373
    [46] Benjamin A. Cray, Albert H. Nnttall. Directivity Factors for Linear Arrays of Velocity Sensors. J. Acoust. Soc. Am. 2001, 110(1): 324-331
    [47] Jiang Zhe, Intensity Streamlines and Vorticity Streamlines in Three-Dimensional Sound Field. 2000 Acoutical Society of America, pp. 725-730.
    [48] V.A.Shchurov. Modem state and prospects for use of underwater acoustic intensity measurements. Preprint. Vladivostok: Pacific Oceanological Institute FEBRAS, 1998.
    [49] V.A.Shchurov. The properties of the vertical and horizontal power flows of the underwater ambient.J.Acoust.Soc.Amer.,1991,90(2): 1002-1004
    [50] V.A.Shchurov. Ambient noise energy motion in the near-surface octan layer. Recent Advances in Underwater Acoustics, Proc.I.O.A. 1991,vol,13, part 3. Weymouth, UK. pp.250-256
    [51] V.A.Shchurov., Ilvichev V.I., Khvorostov Y.A.Ambi yichey V.I.,Khyorostov.Y.A.Ambient noise anisotropy in horizontal plane. Proc. ICA-14, E1-10. 1992, Beijing, China
    [52] V.A.Shchurov. et. al. The ambient noise energy motion in the near-surface in ocean wake-guide. Journal de Physique IV. colloque C5, supplement au Journal de Physique Ⅲ. France.1994. V. 4. C-1273
    [53] V.A.Shchurov. et al. Peculiarities of forming underwater combined acoustic receiver noise immunity. Natural Physical Processes Associated with Sea Surface Sound. University of Southampton, UK. 1997. pp. 28-35
    [54] V.A.Shchurov. Up-to-Date state and outlook for the intensity measurement method in underwater acoustics. Proc. 16-th Intern. Congr. On Acoust./ 2aUW21, USA. 1998. pp. 989-990.
    [55] Vladimir A. Shchurov, Marianna V. Kuyanova. Use of Acoustic Intensity Measurements in Underwater Acoustics. Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences.
    [56] V.A. Shchurov, V. P. Dzyuba, M. V. Kuyanova, A. V. Shchurov. A Possible Mechanism of Dynamic Ambient Ocean Noise Horizontal Energy Flow Forming. Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences.
    [57] V.A. Shchurov. Investigation of the acoustic noise field in the ocean using the vector-phase techniques, in Utilization of the Vector-Phase Technique in Ocean Acousticss, edited by V. A. Shchurov (DVO AN SSSR,VIadivostok, 1989), pp. 5-47(in Russian).
    [58] Benjamin A.cray and Albert H.nutrall. A comparison of vector-sensing and scalar-sensing linear arrays. NUWC_NPT Technical Report 10632, 1997
    [59] G.L.G'Spain et al. Simultaneous measurement of infrasonic acoustic particle velocity and acoustic pressure in the ocean by freely drifting Swallow floats.IEEE Journal of Oceanic Engineering.1991 16(2): 195-207
    [60] G.L.D'Spain et al. Initial analysis of the data from the vertical DIFAR array, Proc. Oceans'92. Newport Rhode Island. 1992, 346-351
    [61] G.L.D'Spain and W.S.Hodgkiss. Array processing with acoustic measurements at a single point in the ocean. J.Acoust. Soc. Am. 1992, 91(4):2364-2365
    [62] G.L.D'Spain and W.S.Hodgkiss. Further comments on beamforming with acoustic measurements at a single point in the ocean. J. Acoust. Soc. Am.1993, 93(4): 2375-2376
    [63] G.L.D'Spain and W.S.Hodgkiss. The polarization of acoustic particle motion in the ocean. J. Acoust. Soc. Am. 1991, 90(4): 2300-2301
    [64] G.L.D'Spain. Relationship of underwater acoustic intensity measurements to beamforming. Canadian Acoust. 1994, 22(3): 157-158
    [65] G.L.D'Spain. Polarization of acoustic particle motion in the ocean and its relation to vector acoustic intensity. Proc. IWAET-2. Harbin. China. 1999,149-164
    [66] G.L.D'Spain, W.S.Hodgriss and G.L.Edmonds. Energetics of the deep ocean's infrasonic sound field. J. Acoust. Soc. Am. 1991. No. 89(3):1134-1158
    [67] G.L.D'Spain.The simultaneous measurement of infrasonic acoustic particle velocity and acoustic pressure in ocean by freely drifting swallow floats, Journal of Oceanic Engineering. 1991,16(2):195-207
    [68] G.L.D'Spain et al. Initial analysis of the data from the vertical DIFAR array,in Proc. Mast. Oceans Tech. (Oceans'92), Newport, RI, Oct. 1992, pp.346-351
    [69] Malcolm Hawkes. Issues in acoustic vector-sensor processing. Yale University, Auguest, 2000
    [70] D.Rahamim, R.Shavit and J.Tabrikian. Coherent source localization using vector sensor arrays. IEEE conf on A coustics, Speech and signal processing,2003,pp.v141-v144
    [71] Kwok-Chiang He, Kah-Chpe Tan,Wee Set. A study of the resolvability of vector-sensor array in direction-of-arrival estimateion. IEEE ICCS, 1994,Singapore,pp.34-39
    [72] Kwok-Chiang He, Kah-Chpe Tan, and A.Nehorai. Estimating directions of arrival of completely and incompletely polarized signals with electromagnetic vector sensors. IEEE Trans.Signal Processing, 1999, vol.47, pp.2845-2852
    [73] J.E.Evans, J.R.Johnson and D.F.Sun. High resolution angular spectrum estimation techniques for terrain scattering analysis and angle of arrival estimation. In Proc. Ist ASSP Workshop Spectral Estimat., Hamilton Ont.Canada,1981 ,pp. 134-139
    [74] L.C.Godara. Beamforming in the presence of correlated arrivals using structured correlation matrix. IEEE Trans. on Acoustic, Speech and Signal Processing, 1990,vol. 38 ,pp. 1-15
    [75] Indukumar and V.U.Reddy. A note on redundancy averaging. K.C.IEEE Trans.on Signal Processing, 1992,vol.40,pp.466-469
    [76] J. Clay Shipps and Bruce M.Abraham. The Use of Vector Sensors for Underwater Port and Waterway Security. Sensors for Industry. Conference. New Orleans, Louisiana, USA, 2004, pp.27-29
    [77] Thomas Wong, Michael D.Zoltowski. Self-Initiating MUSIC-Based direction finding and polarization estimation in spatio-polarizational beamspace, IEEE Transactions on Attennas and Propagation, 2000 48(8):1235-1245
    [78] Lanmei Wang, Guisheng Liao and Hongyang Wang.A new method for estimation of gain and phase uncertainty of an electromagnetic vector sensor.2005 IEEE International Symposium on microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceedings,pp.712-715
    [79] J.Li and R.T.Compton,Jr., Angle and polarization estimation using ESPRIT with a polarization sensitive array. IEEE Trans. Antennas Propagat., 1991,vol.39,pp. 1376-1383
    [80] R.D.Marciniak. Unidirectional underwater-sound Pressure-Gradient transducer. IEEE Trans.on Sonics and Ultrasonics, 1971, Vol.SU-18, pp.89-95
    [81] C.B.Leslie, J.M.Kendall, and J.L.Jones. Hydrophone for measuring particle velocity. J.Acoust.Soc.Am., 1956,28(4):711-715
    [82] A.Banner, Simple velocity hydrophones for bioacoustic application. J.Acoust.Soc.Am., 1992,53(4): 1134-1136
    [83] R.S.Woollett. Diffraction constants for Pressure Gradient Transducers. J.Acoust.Soc.Am., 1982,72(4):1105-1113
    [84] O-H.Bjor and H.J.Krystad. A velocity microphone for sound intensity measurement. Proc.Autumn Conference 1982, Institute of Acoustices, Edinburgh, 1982,pp.B7.1-B7.5
    [85] S.A.Nordby and O-H.Bjor. Measurement of sound intensity by use of a dual channel real-time analyzer and special sound intensity microphone. Proc.Inter-Noise 84.ed.G.C.Maling. Noise Control Foundation, New York,1984,pp. 1107-1110
    [86] M.A.Josserand and C.Maerfeld. PVF2 velocity Hydrophone. J.Acoust. Soc.Am., 1985, 78(3):861-867
    [87] G.Rasmussen. Intensity-its measurement and uses. Sound and Vibration, 1989, vol.23, pp.12-21
    [88] P.Rasmussen. Source location using vector intensity measurements. Sound and Vibration, 1989,vol.23, pp.28-33
    [89] J.K.Thompson and D.R.Tree. Finite difference approximation errors in acoustic intensity measurements. J.Sound and Vibration, 1981, 75(2):229-238
    [90] P.Stoica and A.Nehorai. Performance study of conditional and unconditional Direction-of Arrival estimation. IEEE Trans. Acoust., Speech, Signal Processing, 1990, vol.ASSP-38, pp.1783-1795
    [91] C.Esmersoy. Polarization analysis, rotation and velocity estimation in three-component VSP. In Vertical Seismic Profiling, Part B: Advanced Concepts, M.N.Toksoz and R.R.Stewart,eds., pp.236-255, London: Geophysical Press,1984
    [92] M.J.Berliner & J.F.Lindberg. Acoustic particle velocity sensors: design,performance & applications, woodbury,N.Y.:AIP Press, 1996
    [93] M.Hawkes & A.Nehorai. Hall-mounted acoustic vector-sensor processing. IEEE Asulomar Conference on Signals Systerns and Computers,1996,pp.1046-1050
    [94] J. Li. Direction and Polarization Estimation Using Ar-rays with Small Loops and Short Dipoles.IEEE fians.Antennas Propagat., 1993, Vol.41,pp.379-387
    [95] J.Krolik, D.N.Swingler. Forcused wideband array processing via spatial resampling. IEEE Trans.on ASSP, 1990, ASSP-38(2):356-360
    [96] M.A.DOron, A.J.Weiss. On focusing matrices for wideband array processing. IEEE Trans.on ASSP, 1992, ASSP-40(6): 1295-1302
    [97] B.Friedlander, AJ.Weiss. Direction finding for wideband signals using an interpolated array. IEEE Trans. ASSP, 1993, ASSP-41(1):414-417
    [98] L.G.Weiss. Wavelets and wideband correlation processing. IEEE Signal Processing Magazine, 1994,pp. 13-22
    [99] Bienvenu G, Lopp L. Decreasing high resolution method sensitivity by convertional beamformer processing, in Proc.of Int.Conf.on Acoustic, Speech and Signal Processing, 1984,pp.332.1-332.4
    [1001 CC. Ko, J. Zhang, and A. Nehorai, Separation and tracking of multiple broadband sources with one electromagnetic vector sensor, IEEE Trans. on Aerospace and Electronic Systems, 2002, Vol. 38, pp.1109-1116
    [101] Ward DB, Keenedy RA,and Willamson RC. FIR filter design for frequency invariant beamformers. IEEE Signal Processing Leetters, 1996,3(3): 69-71
    [102] Ward DB, Keenedy RA. Broadband DOA estimation using frequency invariant beamforming. IEEE Trans. Signal Processing, 1998, 64(5): 1463-1469
    [103] A. Dogandzic and A. Nehorai. Cramér-Rao bounds for estimating range, velocity, and direction with an active sensor array. IEEE Trans. on Signal Processing, 2001, Vol. SP-49, pp. 1122-1138
    [104] MS. Bartlett. Smoothing periodogranss from time series with continuous spectra nature, 1948, pp. 686-687
    [105] E. D. Di Claudio and R. Parisi. WAVES: Weighted average of signal subspaces for robust wideband direction finding. IEEE Trans. on Signal Processing, 2001 (10): 2179-2191
    [106] M. Viberg, B. Ottersten, and T. Kailath. Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Trans. on Signal Processing, 1991 (11): 2436-2449
    [107] M. Viberg and A. L. Swindlehurst. A Bayesian approach to auto-calibration for parametric array signal processing. IEEE Trans. on Signal Processing, 1994(12): 3495-3507
    [108] 刘铮.双水听器声强测量系统研究.哈尔滨船舶工程学院硕士论文,1994
    [109] 陈洪娟.压电圆盘弯曲式同振型矢量水听器.哈尔滨工程大学硕士论文,2002
    [110] 孟洪.矢量水听器及联合信号处理研究.哈尔滨工程大学硕士论文,2002
    [111] 田初军.声强水雷引信技术研究.海军工程大学博士学位论文,1997
    [112] 李春旭.声压、振速联台信号处理.哈尔滨工程大学博士论文,2000
    [113] 孙贵青.矢量水听器检测技术研究.哈尔滨工程大学博士论文,2001
    [114] 郭龙祥.声强流高阶谱分析.哈尔滨工程大学硕士学位论文,2001
    [115] 乔钢.基于矢量传感器的水声通信技术研究.哈尔滨工程大学博士论文,2004
    [116] 陈新华.矢量阵信号处理技术研究.哈尔滨工程大学博士论文,2004
    [117] 陈洪娟.中频小型矢量水听器.哈尔滨工程大学博士论文,2005
    [118] 张保嵩.宽带接收水声基阵优化设计研究.西北工业大学博士学位论文,1999
    [119] 杨益新.声呐波束形成与波束域高分辨方位估计技术研究.西北工业大学博士论文,2002
    [120] 陈华伟.低空目标声测无源定向理论与算法研究.西北工业大学博士论文,2004
    [121] 邹士新.稳健匹配场反演与噪声抑制技术研究.西北工业大学博士论文,2006
    [122] 洪连进.三维矢量水听器的研究.哈尔滨工程大学博士后研究工作报告,2001
    [123] 杨士莪.单矢量传感器多目标分辨的一种方法.哈尔滨工程大学学报,2003,24(6):591-595
    [124] 李启虎.水声学研究进展.声学学报,2001,26(4):295-301
    [125] 贾志富.同振球型声压梯度水听器的研究.应用声学,1997,16(3) 20-25
    [126] 贾志富.采用双迭片压电敏感元件的声压梯度水听器,传感器技术,1997,(1):22-29
    [127] 惠俊英,李春旭等.声压和振度联合信号处理抗相干干扰.声学学报,2000,25 (50):389-394
    [128] 惠俊英,刘宏等.声压振速联合信息处理及其物理基础初探.声学学报,2000,25 (4):303-307
    [129] 孙贵青,杨德森等.矢量水听器在水下目标低频辐射噪声测量中的应用.哈尔滨工程大学学报,2001,22(5):5-9
    [130] 孙贵青,杨德森等.基于矢量水听器的水下目标低辐射噪声测量方法研究.声学学报.2002,27(5):429-434
    [131] 孙贵青,杨德森等.基于矢量水听器的最大似然比检测和最大似然方差估计.声学学报,2003,28(1):66-72
    [132] 孙贵青,杨德森等.基于矢量水听器的声压和质点振速的空间相关系数.声学学报,28(6):509-513
    [133] 孙贵青,李启虎.声矢量传感器信号处理.声学学报,2004,29(6):491-498
    [134] 孙贵青,李启虎.声矢量传感器研究进展.声学学报.2004,29(11):481-489
    [135] 时胜国,杨德森.矢量水听器的源定向理论及其定向误差分析.哈尔滨工程大学学报,2003,vol.2
    [136] 何祚镛,何元安等.双水听器水声声强测量系统的误差分析和校准.声学学报,2000,25(3):235-241
    [137] 方世良,魏占海等.声矢量传感器目标方位估计.东南大学学报,2002,32 (5):688-691
    [138] 江南.基于水声矢量传感器阵的波达方向估计.贵州科学,2002,20 (4):153-158
    [139] 江南,黄建国等.基于矢量传感器阵列空间谱DOA估计.大连理工大学学报,2003,43(4):500-504
    [140] 杜选民,高源.矢量水听器阵处理技术研究.舰船科学技术,2003,25(6):27-29
    [141] 江南,黄建国等.单矢量水听器DOA估计算法研究.2004,25(4):87-90
    [142] 何心怡,蒋兴舟.矢量水听器线列阵的被动合成孔径技术.武汉理工大学学报,2003,27(6):799-803
    [143] 王大成,郭丽华等.基于矢量水听器阵的恒定束宽波束形成起的原理与设计.声学技术,2004,23(4):205-209
    [144] 田坦,齐娜.矢量水听器阵波束域MVDR方法研究.哈尔滨工程大学学报,2004,25(3):295-298
    [145] 张揽月,杨德森.基于MUSIC算法的矢量水听器阵源方位估计.哈尔滨工程大学学报,2004,25(1):30-33
    [146] 张揽月,杨德森.矢量水听器扩展孔径线阵方位估计技术.哈尔滨工程大学学报,2004,25(6):714-718
    [147] 邓大新,林春生.基于单个矢量水听器的二维波达方向估计.武汉理工大学学报,2005,29(1):97-100
    [148] 陈华伟,赵俊渭等.基于声压振速联合信息处理的测向方法研究.声学与电子工 程.2002 (3):13-17
    [149] 孟洪,周利生等,组合矢量水听器及其成阵技术研究.声学与电子工程.2003 (1):15-20
    [150] 刘伯胜,田宝晶.矢量传感嚣估计目标方位的误差的仿真研究.哈尔滨工程大学学报,2003,24(5):491-494
    [151] 陈洪娟,洪连进.基于压电加速度计的同振型矢量水听器的设计.传感器技术,2003,vol.3
    [152] 姚直象,惠俊英等.用单个矢量水听器基于DEMON线谱的双目标分辨.应用声学,2005,24(3):171-176
    [153] 姚直象,惠俊英等.基于单矢量求听器似种方位估计方法.海洋工程,2006,24(1):122-127
    [154] 杨士莪.水声传播原理.哈尔滨工程大学出版社,第1版.1994
    [155] 何祚镛,赵玉芳.声学基础.国防工业出版社.1986
    [156] 李启虎.声呐信号处理引论(第二版).海洋出版社,2000
    [157] 张贤达,保铮.通信信号处理,国防工业出版社.2000
    [158] 张贤达.信号处理中的线性代数.科学出版社,1997
    [159] 孙超,李斌.加权子空间拟合法理论与应用.西北工业大学出版社,1994
    [160] 刘孟庵,连立民编著.水声工程.浙江科学技术出版社,2002
    [161] 惠俊英编著.水下声信道.国防工业出版社,1992
    [162] 李贵斌.声呐基阵设计原理.海洋出版社,1993
    [163] 王小平,曹立明.遗传算法.西安交通大学出版社,2002
    [164] 周明,孙树栋.遗传算法原理及应用.国防工业出版社,2002
    [165] 刘伯胜,雷家煜.水声学原理.哈尔滨船舶工程学院出版社,1993
    [166] 洪申译(R. J. 尤立克著).水声原理.哈尔滨船舶工程学院出版社,1990
    [167] 《数学手册》编写组.数学手册.高等教育出版社,1979
    [168] E. Brrokner. Phased array radar, Scientific American, V252, 1985, pp. 94-102
    [169] J. T. Mayhan. Nulling limitations for a multiple-bean antenna. IEEE Trans. On AP, 1976, vol. 24, pp. 769-779
    [170] L. D. Gerald, Aspain William S. Hodgkiss. The simultaneous measurement of infrasonic acoustic particle velocity and acoustic pressure in the ocean by freely drifting swallow floats. IEEE Journal of Ocean Engineering, 1991 160: 195
    [171] Brue M. Abraham. Low-cost dipole hydrophone for use in towed arrays acoustic particle velocity sensors. Design Performance and Application, 1995, pp. 189
    [172] V. A. Shchurov. The Interaction of Energy Flows of Underwater Ambient Noise and Local Source. J. A. S. A., 1991, 90(2): 1002-1004.
    [173] Thomas B. Gabrielson, David L. Gardner. A Simple Neutrally Buoyant Sensor for Direct Measurement of Particle Velocity and Intensity in Water. J. A. S. A., 1995, 97(4): 2227
    [174] C. B. Leslie, F. M. Kendall. Hydrophone for measuring particle velocity. J. A. S. A., 1956, vol. 28, pp. 711
    [175] K. A. DeJong. Adaptive system design: a genetic approach. IEEE Trans Syst, Man, and Cybernitics, 1980, 10(9): 566-574
    [176] J. J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE Trans Syst. Man, and Cybernietics, 1986, SMC-16(1): 122-128
    [177] J. D. Schaffer and A. Morishma. An adaptive crossover mechanism for genetic algorithms, in Proc. Second Int. Conf Genetic Algorithms, 1987, pp. 36-40
    [178] L. Davis. Adapting operator probabilities in genetic algorithms. Proc. Third Int. Genetic Algorithms, 1989, pp. 61-69
    [179] M. Srinivas and L. M. Patnaik. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transactions on syetems, man and cybernetics, 1994, 24(4): 656-667
    [180] R. Stom, K. Price. Differential Evolution -a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. [EB/OL]. http://http.icsi.berkeley.edu/~storn/litera.html
    [181] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained parameter optimization problem. Evolutionary Computation, 1996, 4(1): 1-32
    [182] J. H. Kim and H. Myung. Evolutionary programming techniques for constrained optimization problems. IEEE Trans. Evolutionary Computation, 1997, 1(2): 129-140
    [183] M. J. Tank and B. C. Sun. Coevolutionary augmented Lagrangian methods for constrained optimization. IEEE Trans. Evolutionary Computation, 2000, 4(2): 114-124
    [184] J. P. Chiou and F. S. Wang. Hybrid method of evolution algorithms for static and dynamic optimization problems with application to a fedbatch fermentation process. Computers & Chemical Engineering, 1999, vol. 23, pp. 1277-1291
    [185] 杨坤德,马远良.用差异进化算法进行海洋环境参数反演.西北工业大学学报,2003,21(3):289-293
    [186] 邹士新,马远良等.用模拟退火差异进化算法进行匹配场反演.系统仿真学报,2005,17(6):1376-1379
    [187] 邹士新,杨坤德等.几种优化算法在浅海匹配场反演中的性能比较.声学技术,2005,24(1):4-9
    [188] 邹士新,马远良等.一种高效并行的匹配场反演混合优化算法.西北工业大学学报,2005,23(4):465-468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700