矢量水听器测向技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矢量水听器较传统声压水听器有诸多优势。本文从矢量水听器指向性出发,提出了矢量水听器波束锐化和利用锐化波束测向。针对水听器指向性,研究了在理想条件下,单矢量水听器、二元矢量水听器阵的偶极子指向性和单边指向性,并进行了计算机仿真。文章还提出了多种矢量水听器指向性锐化的方法,通过这些方法在低频形成恒定束宽窄指向性。在文章的最后针对不同的处理方法利用仿真和实测数据进行结果验证。全文主要工作如下:
     第一章是绪论部分。对矢量水听器的国内外发展现状进行介绍。
     第二章从工作原理和理论上对两种矢量水听器进行了分析。对压差式矢量水听器的计算模型、接收信号的数学模型、方位角和俯仰角的计算进行了详细的推导。
     第三章深入研究了矢量水听器波束形成。对矢量水听器单边、双边指向性以及指向性的电子旋转进行理论推导。
     第四章主要介绍了自适应信号处理算法。对LMS算法计算机仿真进行数学建模。
     第五章利用多种方法对波束锐化进行了仿真研究。对消声水池和冯家山水库采集的试验数据进行处理,对仿真结果做出分析。
     第六章总结了论文所作的工作,提出了本文的创新点和进一步努力的一些意见和建议。
     总之,文章从理论、仿真、试验数据处理等方面对矢量水听器波束锐化进行研究,结果表明,它可以大大提高矢量水听器分辨多目标的能力和测向精度。
Compared with the pressure hydrophone, vector sensors have many advantages. In this dissertation, we study directivity of acoustic vector sensor to sharp a narrow directivity and use it to estimate direction. The dipole and single-side directivity of single vector sensor or two elements vector array are studied and simulated in computer. Several methods of sharp a narrow beamwidth is presented and used to form a narrow directivity. All the methods are verified by computer simulations and real-data processing. The main content can be outlined as follows:The first chapter is an introduction. Introduce researches about vector transducer both native and foreign.In the second chapter, we study the working principle of the vector transducer. mainly the calculation mould、 receiving signal mathematic mould、 azimuth and elevation calculation for two-dimensional pressure-gradient vector transducer.In chapter three, we study the vector transducer beamforming algorithm for dipole and single-side, and electron circumgyratetion are given.Chapter four introduce the method of Adaptive Signal Processing, especially the computer simulations and mathematic mould about LMS.In chapter five, several narrow beamwidth processing arc performed using experimental data collected from lake and cistern experiment.In chapter six, summarize the work of this dissertation and some suggestions are advanced.In summary, in this dissertation it is proved by theory deducing、 computer simulations and real-data processing that narrow beamwidth processing can improve the detection precision and mult-targets resolving ability.
引文
[1] Olson H F.System responsive to the energy flow in sound wves. U.S. Patent. 1892644,1932.
    [2] Gerald L. D., Aspain William S. Hodgkiss, "The Simultaneous Measurement of Infrasonic Acoustic Particle Velocity and Acoustic Pressure in the Ocean by Freely Drifting Swallow Floats," IEEE J. of Ocean Engineering, vol. 16, pp. 195, 1991.
    [3] Brue M. Abraham, "Low-cost Dipole Hydrophone for use in Towed Arrays Acoustic Particle Velocity Sensors," Design Performance and Application, pp.189, 1995.
    [4] Shchurov V. A., "The Interaction of Energy Flows of Underwater Ambient Noise and Local Source," J.A.S.A. pp.1002-1004 90(2) 1991.
    [5] Thomas B. Gabrielson, David L. Gardner, "A Simple Neutrally Buoyant Sensor for Direct Measurement of Particle Velocity and Intensity in Water," J.A.S.A,vol. 97 NO.4, pp.2227, April 1995.
    [6] Gordienko V A,Ilichev V I,Zaharov L N,vector-phase Methods in Acoustics(in Russian),Moscow,Nauka, 1989.
    [7] Leslie C. B,Kendall F. M, "Hydrophone for measuring particle velocity,"J.A.S.A,vol.28,1956,pp.711.
    [8] M. Hawkes and A. Nehorai, "Bearing estimation with acoustic vector-sensor arrays," presented at Acoust Velocity-Sensor Focused Workshop, Mystic, CT, Sept. 1995; published in 3, pp. 345-358.
    [9] M.Hawkes and A. Nehorai, "Acoustic Vector-Sensor Processing in the Presence of a Reflecting Boundary," IEEE Transactions on Signal Processing, vol.48,pp. 2981 -2993, November 2000.
    [10]K. T. Wong and M. D. Zoltowski, "Orthogonal velocity-hydrophone ESPRIT for sonar source localization," in Proc. MTS/IEEE Oceans Conf., Fort Lauderdale, FL, Sept. 1996, vol. 3, pp. 1307-1311.
    [11]K. T. Wong and M. D. Zoltowski, "ESPRIT-based extended-aperture source localization using velocity-hydrophones," in Proc. MTS/IEEE Oceans Conf., Fort Lauderdate, FL, Sept. 1996, vol. 3, pp. 1427-1432.
    
    [12] K. T. Wong and M. D. Zoltowski, "Root-MUSIC-Based Azimuth-Elevation Angle-of-Arrival Estimation with Uniformly Spaced but Arbitrarily Oriented Velocity Hydrophones," IEEE Transactions on Signal Processing, vol. 47, pp. 3250-3260, December 1999.
    [13] K. T. Wong and M. D. Zoltowski, "Closed-Form Underwater Acoustic Direction-Finding with Arbitrarily Spaced Vector Hydrophones at Unknown Locations," IEEE Journal of Oceanic Engineering, vol.22, pp. 649-658, October 1997.
    [14] A. Nehorai and E. Paldi, "Vector-sensor array processing for electromagnetic source localization," IEEE Transactions on Signal Processing, vol. 42, pp. 376-398, February 1994.
    [15] A. Nehorai and E. Paldi, "Acoustic Vector-Sensor Array Processing" IEEE Transactions on Signal Processing, vol. 42,pp.2481-2491,September 1994.
    [16] A. Nehorai, K. C. Ho, and B. Tan, "Minimum-noise-variance beamformer with an eletromagnetic vector sensor," in Proc. IEEE Intl Conf. On Acoust., Speech, and Sig. Proc.(ICASSP98), pp. 2021-2024, Seattle, WA, May 1998.
    [17] Jiang Zhe, "'Intensity Streamlines and Vorticity Streamlines in Three-Dimensional Sound Field," 2000 Acoutical Society of America, pp. 725-730.
    [18] 刘伯胜,田宝晶,矢量传感器估计目标方位的误差的仿真研究,哈尔滨工程大学学报200.3.10。
    [19] 时胜国,杨德森,矢量水听器的源定向理论及定向误差分析,哈尔滨工程大学学报2003.4。
    [20] 贾志福,三维同振球型矢量水听器的特性及其结构设计,应用声学,2001.4。
    [21] 陈华伟,赵俊渭,郭业才,白银生,基于声压振速联合信息处理的测向方法研究,声学与电子工程,2003.3。
    [22] 孟洪,矢量水听器及联合信号处理研究,哈尔滨工程大学硕士论文,2002。
    [23] 方世良,魏占海,徐步安,毛卫宁,声矢量传感器目标方位估计,东南大学学报2002.9
    [24] 王小平,曹立明,遗传算法,西安交通大学出版社,2002。
    [25] 周明,孙树栋,遗传算法原理及应用,国防工业出版社,2002。
    [26] 刘伯胜,雷家煜,水声学原理,哈尔滨船舶工程学院出版社,1993。
    [27] 洪申译(R.J.尤立克著),水声原理,哈尔滨船舶工程学院出版社,1990。
    [28] 何振亚,自适应信号处理,科学出版社,2002。
    
    [29] 石镇,自适应天线原理,国防工业出版社,1991。
    [30] 程彬彬,二维压差式矢量水听器多目标方位估计算法研究,西北工业大学硕士论文,2004。
    [31] 沈福民,自适应信号处理,西安电子科技大学出版社,2001。
    [32] B.维德罗,S.D.史蒂恩斯,自适应信号处理,四川大学出版社,1989。
    [33] 姚爱红,惠俊英,单矢量传感器倍频窄波束技术研究,哈尔滨工业大学学报,2004.2。
    [34] 陈新华,蔡平,惠俊英等,声矢量阵指向性,声学学报,2003.3。
    [35] 余华兵,刘宏等,小尺度声传感器的指向性锐化技术研究,声学学报,2000.7。
    [36] 乔斌、邢建军、屠庆平,矢量水听器低频低噪声前置电路设计,声学技术,2004.10。
    [37] 杨士莪,单矢量传感器多目标分辨的一种方法,哈尔滨工业大学学报,2003.6。
    [38] Brue M. Abraham, "Low-cost Dipole Hydrophone for use in Towed Arrays Acoustic Particle Velocity Sensors," Design Performance and Application, pp.189,1995.
    [39] Shchurov V. A., "The Interaction of Energy Flows of Underwater Ambient Noise and Local Source," J. A. S. A. pp.1002-1004 90(2) 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700