基于矢量水听器阵的处理技术研究及DSP实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矢量水听器(Vector Hydrophone)有不随频率变化的“8”字形或心脏形指向性,可以同时接收声场声压和振速(v_x,v_y,v_z三个分量)信息,这样矢量水听器相对于常规声压传感器在信息量上就增加了4倍,因此由它构成的矢量阵与传统的声压水听器阵相比,相同尺寸的矢量阵可获得更大的空间增益。
     本文从单个矢量水听器自身的特点出发,探讨单个矢量水听器波束形成的方法,在此基础上,将常规阵的波束形成算法引入矢量水听器阵的波束形成中,初步设计出相应的电路,以满足矢量水听器阵的波束形成的实时实现。
     论文的主要工作如下:
     ◆结合目前国内外矢量水听器的发展,对矢量水听器的分类和特点、单个矢量水听器的波束形成和矢量水听器阵列的波束形成进行了介绍,推导出矢量水听器的信号模型,分析其指向性及其旋转特性,并对单个矢量水听器的波束形成及矢量水听器阵列的波束形成进行了分析和相关的仿真。
     ◆由于论文的主要出发点是实现,本文根据矢量水听器阵列的特点(数据流量、计算量大、实时性强等)提出多处理器结构。在对TMS320VC54X系列处理器的性能进行分析研究后,确定本系统所采用的DSP处理器,并根据一般的多处理器系统结构来选择一种适合本系统的结构;
     ◆设计了矢量水听器阵列波束形成的系统框图和硬件实现电路。本系统各个部分按功能分为模块来设计,实现了对6单元(24路)矢量水听器输出信号的调理、采集、单个矢量水听器波束形成以及后端矢量水听器阵列波束形成运算,在核心逻辑单元(由FPGA构成)中设计灵活的数据流通逻辑,使得终端(后续水声处理设备)能够调用前端(矢量水听器阵列单元)的原始数据。在波束形成单元中设计了良好的扩展接口,可与后端方便的实时通信,系统逻辑单元实现了可重新配置(数据流通路径可配置、算法可配置)功能,使得算法更新、结构重配置得以实现,为后续的研究及实现提供了灵活的硬件基础。
Vector Hydrophone has the heart shaped direction or "8" shaped direction, and has no change in vary frequency, it can receive sound field pressure and vibration velocity( v_x, v_y, v_z) simultaneously, it is forth times in information to pressure
    hydrophone. Comparing with the pressure hydrophone array, Vector Hydrophone array gains much in spatial gain.
    In this dissertation, we study the beamforming method of single Vector Hydrophone, then, introducing the method of conventional array processing to Vector Hydrophone array processing. Before the system simulation, we design the system circuit to accomplish the application.
    The main content can be outlined as follows:
     Introducing the recent development in Vector Hydrophone, algorithm of the signal processing, and the design of the Vector Hydrophone system, studying the type of Vector Hydrophone, single vector hydrophone's beamforming, and the Vector Hydrophone array's beamforming, give out the results of the simulation;
     In this dissertation, we are focus on the application, so we should chose a suitable construction to achieve this aim. So we introduce the general DSP application system, It is mainly about the development of DSP, the application of TMS320VC54X, multi-processor system, then chose a suitable construction to this Multi-DSPs;
     Design the hardware of Vector Hydrophone system. It is mainly about the system block diagram, hardware diagram, front signal amplify circuit, level transform circuit, signal sampling module, achieve the function of 6 elements (24) signal's modulation, sampling, singal Vector Hydrophone beamforming and backend Vector Hydrophone array processing, the logic module (based on FPGA) achieve the function to re-config the signal stream, so the system has the ability of algorithm re-config, and make the further research has a flexible hardware basis.
引文
[1] Keshavarz, Hengameh, " Beam patterns of an underwater acoustic vector hydrophone located near a reflecting boundary " , MTS/IEEE Techno-Ocean' 04: Bridges across the Oceans - Conference Proceedings, 2004, p 585-588.
    [2] Wong, Kainam Thomas; Chi, Hoiming, " Beam patterns of an underwater acoustic vector hydrophone" , IEEE, Los Alamitos, CA, USA, Aug 14-Aug 16 2000.
    [3] Tichavsky, P., " Near-field/far-field azimuth and elevation angle estimation using a single vector hydrophone " , IEEE Transactions on Signal Processing, v 49, n 11, November, 2001, p 2498-2510.
    [4] Wong, Kainam T. , " Closed-form underwater acoustic direction-finding with arbitrarily spaced vector hydrophones at unknown locations " , IEEE Journal of Oceanic Engineering, v 22, n 3, Jul, 1997, p 566-575.
    [5] Shipps, J. Clay , "A miniature vector sensor for line array applications", Oceans Conference Record (IEEE), v 5, 2003, p 2367-2370.
    [6] Whitney, David A. , " Applying vector processing to active sonars for increased accuracy and an expanded operating envelope " , Naval Engineers Journal, v 103, n 3, May, 1991, p 231-239.
    [7] Shipps, J. Clay , " The Use of Vector Sensors for Underwater Port and Waterway Security, The Development and Use of Sensors and Transducers " , from Theory to the Application of New Technology, SIcon/04, 2004, p 41-44.
    [8] Silvia, Manuel T., "A theoretical and experimental investigation of low-frequency acoustic vector sensors " , Oceans Conference Record (IEEE), v 3, 2002, p 1887-1898.
    [9] Wong, Kainam T. , " ESPRIT-based extended-aperture source localization using velocity-hydrophones ",Oceans Conference Record (IEEE), v 3, 1996, p 1427-1432.
    [10]Wong, Kainam T., "Self-initiating MUSIC-based direction finding in underwater acoustic particle velocity-field beamspace" , IEEE Journal of Oceanic Engineering, v 25, n 2, Apr, 2000, p 262-273.
    [11]Nehorai A et al, " Acoustic vector sensor array processing " , IEEE Transaction on Signal Processing, 1994, 42(9):2481—2491.
    
    [12]Gordienko V et al, " Vector phase method in acoustics " , Moscow, Nauka, 1989.
    [13] (?)awkes M et al, "Acoustic vector sensor beamforming and Capon direction??estimation", IEEE Transaction on Signal Processing, 1998, 46(9): 2291—2304.
    [14] D' Spain G L et al, "Energetics of the deep ocean' s infrasonic sound field", J. Acoust. Soc. Am., 1991, 89(3): 1134—1158.
    [15] Shchurov V Aet al, "The interaction of energy flows of underwater ambient noise and local source", J. Acoust. Soc. Am., 1991, 90(2): 1002—1004.
    [16] Hawkes, Malcolm, "Acoustic vector-sensor processing in the presence of a reflecting boundary", IEEE Transactions on Signal Processing, v 48, n 11, Nov, 2000, p 2981-2993.
    [17] Lockwood, Michael E. "Beamformer performance with acoustic vector sensors in air, Journal of the Acoustical Society of America", v 119, n 1, January, 2006, p 608-619.
    [18] 高源,杜选民,声矢量阵阵增益研究,舰船科学技术,2002,25(6):30—34.
    [19] 田坦,齐娜,孙大军,矢量水听器阵波束域MVDR方法研究,哈尔滨工程大学学报,2004,25(3):295—298.
    [20] 孙贵青,李启虎,声矢量传感器研究进展,声学学报,2004,29(6):481—490.
    [21] 惠俊英,刘宏,余华兵,范敏毅,声压振速联合信息处理及其物理基础初探,声学学报,2000,25(4):303—307.
    [22] 冯海泓,梁国龙,惠俊英,目标方位的卢压、振速联合估计,声学学报,2000,25(6):516—520.
    [23] 陈新华,蔡平,惠俊英,声矢量阵指向性,声学学报,2003,28(2):141—144.
    [24] 邓大新,林春生,龚沈光,黄滨.基于单个矢量水听器的二维波达方向估计[J].武汉理工大学学报(交通科学与工程版),2005,(1).
    [25] 张揽月.矢量水听器阵列处理技术研究[D].哈尔滨工程大学,2005.
    [26] 陈华伟,赵俊渭,郭业才,白银生.基于声压振速联合信息处理的测向方法研究[J].声学与电子工程,2002,(3).
    [27] 王逸林,赵羽,蔡平,矢量阵组合增益仿真分析[C].2004年全国水声学学术会议论文集,2004.
    [28] 陈洪娟,洪连进.基于压电加速度计的同振型矢量水听器的设计[J].传感器技术,2003,(3)。
    [29] 何心怡,黄海宁,叶青华,李启虎,蒋兴舟.波束域MVDR高分辨方位估计方法研究[J].武汉理工大学学报(交通科学与工程版),2003,(2).
    [30] 曹治国,下岳环,左峥嵘,桑农,汪国有,张天序.多总线多DSP实时图像处理操作系统的设计与实现.计算机学报,2002,(07).
    [31] 张崇,于晓琳,邓长军.DSP在图像处理中的应用.电子质量,2003,(12).[32] 李勇,徐震,Matlab辅助现代工程数字信号处理,西安电子科技出版社,2002.10.1.
    [33] Ingle VK.Proskis JG,数字信号处理及其Matlab实现,电子工业出版社,1998
    [34] 张雄伟,陈亮,徐光辉,DSP芯片的原理与开发应用(第3版),电子工业出版社,2003.2
    [35] TMS320VC5416 Data Sheet (Rev. J), Texas Instruments Incorporated, 2001
    [36] TMS320VC5416 Bootloader (Rev. D), Texas Instruments Incorporated, 2001
    [37] TMS320C54x DSP Reference Set Vol 1: CPU and Peripherals (RevA), Texas Instruments Incorporated, 2001
    [38] TMS320C54x DSP Reference Set Vol 5: Enhanced Peripherals, Texas Instruments Incorporated, 2001
    [39] Andrew Bateman,Lain Paterson-Stephens,DSP算法、应用与设计,机械工业出版社;中信出版社,2003.7.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700