基于矢量水听器自适应本舰噪声抵消技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矢量水听器较传统声压水听器有诸多优势。本文从矢量水听器的指向性特性出发,对基于矢量水听器的拖曳阵声呐本舰噪声抵消方法进行了研究。针对水听器的指向性,研究了在理想条件下,单个矢量水听器的偶极子指向性和声压、振速联合指向性,并用实验数据进行了指向性图的绘制。针对拖曳阵声呐本舰噪声抑制,文章提出利用矢量水听器端射波束形成器对参考噪声信号进行提取,建立了舰船拖曳声呐自适应本舰噪声抵消系统,从而将自适应噪声抵消器成功运用到本舰噪声抑制的课题上,并通过仿真与实验数据对该方法进行了验证。全文主要工作如下:
     第一章是绪论部分。对矢量水听器以及本舰噪声抑制方法的国内外研究现状进行了介绍。
     第二章从工作原理和理论上对两种矢量水听器进行了分析。对压差式矢量水听器的计算模型、接收信号的数学模型、方位角的计算以及矢量水听器波束形成、单、双边指向性进行理论推导。
     第三章主要介绍了自适应信号处理算法。对LMS算法及自适应噪声抵消器进行研究。
     第四章研究了舰船噪声信号的时频特性,建立了噪声的信号模型,简要对常规的噪声抑制方法进行了介绍,并针对本舰噪声抑制方面介绍了几种典型的理论与方法。
     第五章针对矢量水听器的空间方位特性和接收信号的矢量特性提出了两种基于矢量水听器的拖曳阵声呐本舰噪声抑制的方法并进行了深入研究。
     第六章对第五章提出的自适应本舰噪声抵消系统进行了仿真研究,最后对消声水池采集的试验数据进行处理,对仿真结果作出分析。
     第七章总结了论文所作的工作,提出了本文的创新点和进一步努力的一些意见和建议。
     总之,文章从理论、仿真、试验数据处理等方面对基于矢量水听器的拖曳声呐自适应本舰噪声抵消方法进行研究,结果表明,它可以有效的抵消本舰噪声,提高拖曳式声呐目标定向精度。
Compared with the pressure hydrophone, vector sensors have many advantages. In this dissertation, we study directivity of acoustic vector sensor to research the method of canceling vessel noise that based on towed vector sensors. The dipole and pressure、 vibration velocity combined directivity of single vector sensor are studied and the charts of the directivity are drawn by using the real-data. For resolving the problem of canceling vessel noise, the system of adaptive vessel noise canceling by towed vector sonar presents based on picking-up the noise signal by using end-fire beamforming of vector sensor. Therefore, Adapt noise canceling is used to resolve the problem of canceling vessel noise successfully All the methods are verified by computer simulations and real-data processing. The main content can be outlined as follows:
    The first chapter is an introduction. Introduce researches about vector transducer and vessel noise canceling both native and foreign.
    In the second chapter, we study the working principle of the vector transducer. mainly the calculation mould、receiving signal mathematic mould、azimuth calculation. And then, we study the vector transducer beamforming algorithm for dipole and pressure、 vibration velocity combined directivity.
    The third chapter introduces the method of Adaptive Signal Processing, especially the mathematic model about LMS and Adaptive noise canceling.
    The forth chapter studies the time- frequency character of the vessel noise, introduce the methods of normal noise canceling and vessel noise canceling.
    The fifth chapter presents two method of vessel noise canceling by using the towed vector sensors each based on two characters of the vector sensors.
    In the sixth chapter, the system of adaptive vessel noise canceling by towed vector sonar are performed using experimental data collected from lake and cistern experiment.
    In seventh chapter, summarize the work of this dissertation and some suggestions are advanced.
    In summary, in this dissertation it is proved by theory deducing、 computer simulations and real-data processing that the system of adaptive vessel noise canceling by towed sonar can canceling the vessel noise and advance the DOA (Direction-of-Arrival) precision of the towed vector sonar.
引文
[1] Olson H F.System responsive to the energy flow in sound waves. U.S. Patent. 1892644,1932.
    
    [2] Gerald L. D., Aspain William S. Hodgkiss, "The Simultaneous Measurement of Infrasonic Acoustic Particle Velocity and Acoustic Pressure in the Ocean by Freely Drifting Swallow Floats," IEEE J. of Ocean Engineering, vol. 16, pp. 195, 1991.
    
    [3] Brue M. Abraham, "Low-cost Dipole Hydrophone for use in Towed Arrays Acoustic Particle Velocity Sensors," Design Performance and Application, pp.189, 1995.
    
    [4] Shchurov V. A, "The Interaction of Energy Flows of Underwater Ambient Noise and Local Source," J.A.S.A. pp. 1002-1004 90(2) 1991.
    
    [5] Jiang Zhe, "Intensity Streamlines and Vorticity Streamlines in Three-Dimensional Sound Field," 2000 Acoutical Society of America, pp. 725-730.
    
    [6] Thomas B. Gabrielson, David L. Gardner, "A Simple Neutrally Buoyant Sensor for Direct Measurement of Particle Velocity and Intensity in Water," J.A.S.A,vol. 97 NO.4, pp.2227, April 1995.
    
    [7] Leslie C. B,Kendall F. M, "Hydrophone for measuring particle velocity,"J.A.S.A,vol.28,1956,pp.711.
    
    [8] Gordienko V A ,Ilichev V I,Zaharov L N,vector-phase Methods in Acoustics(in Russian),Moscow,Nauka, 1989.
    
    [9] Thomas B. Gabrielson, David L. Gardner, "A Simple Neutrally Buoyant Sensor for Direct Measurement of Particle Velocity and Intensity in Water," J.A.S.A,vol. 97 NO.4, pp.2227, April 1995.
    
    [10]M.Hawkes and A. Nehorai, "Acoustic Vector-Sensor Processing in the Presence of a Reflecting Boundary," IEEE Transactions on Signal Processing, vol.48,pp. 2981-2993, November 2000.
    [11] K. T. Wong and M. D. Zoltowski, "Closed-Form Underwater Acoustic Direction-Finding with Arbitrarily Spaced Vector Hydrophones at Unknown Locations," IEEE Journal of Oceanic Engineering, vol.22, pp. 649-658, October 1997.
    [12] A. Nehorai and E. Paldi, "Vector-sensor array processing for electromagnetic source localization," IEEE Transactions on Signal Processing, vol. 42, pp. 376-398, February 1994.
    [13] A. Nehorai and E. Paldi, "Acoustic Vector-Sensor Array Processing" IEEE Transactions on Signal Processing, vol. 42,pp.2481-2491 ,September 1994.
    [14] A. Nehorai, K. C. Ho, and B. Tan, "Minimum-noise-variance beamformer with an eletromagnetic vector sensor," in Proc. IEEE Intl Conf. On Acoust., Speech, and Sig. Proc.(ICASSP98), pp. 2021-2024, Seattle, WA, May 1998.
    [15] 刘伯胜,田宝晶,矢量传感器估计目标方位的误差的仿真研究,哈尔滨工程大学学报,2003.10。
    [16] 时胜国,杨德森,矢量水听器的源定向理论及定向误差分析,哈尔滨工程大学学报,2003.4。
    [17] 贾志福,三维同振球型矢量水听器的特性及其结构设计,应用声学,2001.4。
    [18] 陈华伟,赵俊渭,郭业才,白银生,基于声压振速联合信息处理的测向方法研究,声学与电子工程,2003.3。
    [19] 孟洪,矢量水听器及联合信号处理研究,哈尔滨工程大学硕士论文,2002。
    [20] 陈新华,蔡平,惠俊英等,声矢量阵指向性,声学学报,2003.3。
    [21] 刘伯胜,雷家煜,水声学原理,哈尔滨船舶工程学院出版社,1993。
    [22] 洪申译(R.J.尤立克著),水声原理,哈尔滨船舶工程学院出版社,1990。
    [23] 龚耀寰,自适应滤波(第二版)-时域自适应滤波和智能天线,电子工业出版社,2003。
    [24] 石镇,自适应天线原理,国防工业出版社,1991。
    [25] 程彬彬,二维压差式矢量水听器多目标方位估计算法研究,西北工业大学硕士论文,2004。[26] 王伟,基于矢量水听器的目标方位估计,西北工业大学硕士论文,2004。
    [27] 梅红芳,一种矢量水听器拖曳噪声简易抵消方法研究,西北工业大学硕士论文,2004。
    [28] 孟洪,矢量水听器及联合信号处理研究,哈尔滨工程大学硕士论文,2002。
    [29] 王德俊,矢量声场与矢量信号处理理论研究,哈尔滨工程大学硕士论文,2004。
    [30] 沈福民,自适应信号处理,西安电子科技大学出版社,2001。
    [31] B.维德罗,S.D.史蒂恩斯,自适应信号处理,四川大学出版社,1989。
    [32] 邹鲲,袁俊泉,龚亨铱,MATLAB6.x信号处理,清华大学出版社,2002。
    [33] 惠俊英,刘宏,余华兵,范敏毅,声压振速联合信息处理及其物理基础初探,声学学报,2000。
    [34] 丛卫华,刘孟庵,惠俊英,自适应宽带多途干扰抵消的实时处理算法,声学与电子工程,1999。
    [35] 姚爱红,惠俊英,单矢量传感器倍频窄波束技术研究,哈尔滨工业大学学报,2004.2。
    [36] 陈伟华、赵俊渭、郭业才、白银生,基于声压振速联合信息处理的测向方法研究,声学与电子工程,2002。
    [37] 江峰、惠俊英、 蔡平、 梁国龙,自适应线谱干扰抵消器的性能分析及其极窄带实现,哈尔滨工程大学学报,1998。
    [38] 江峰,惠俊英,蔡平,张莉,谐波线谱簇干扰自适应抵消器,声学学报,2000。
    [39] 张璞,黄瑞光,自适应噪声抵消系统的算法讨论与DSP实现研究,噪声控制,2003。
    [40] 陈新华、蔡平、惠俊英、梁国龙,声矢量阵指向性,声学学报,2003。
    [41] 丛卫华、刘孟庵,拖线阵自适应本舰噪声抵消系统,声学与电子工程,1991。
    [42] 宋新见,殷冬梅,惠俊英,基于矢量信号处理的水声定位系统,海洋工程,2003。[43] 孙贵清,杨德森,张揽月,基于矢量水听器的水下目标低频辐射噪声测量方法研究,升学学报,2002。
    [44] 孙贵清,杨德森,时胜国,基于矢量水听器的声压和质点振速的空间相关系数,声学学报,2003。
    [45] 乔斌、邢建军、屠庆平,矢量水昕器低频低噪声前置电路设计,声学技术,2004.10。
    [46] 余华兵,刘宏,潘悦,惠俊英,小尺度声传感器的指向性锐化技术研究,声学学报,2000。
    [47] 方世良,魏占海,徐步安,毛卫宁,声矢量传感器的目标方位估计,东南大学学报,2002。
    [48] 杜选民,高源,孙德龙,王艳,矢量水听器阵处理技术研究,舰船科学技术,2003。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700