基于矢量水听器阵的波束形成及DSP实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矢量水听器较传统的声压水听器有诸多优势,它可以空间共点、同步测量声压和质点振速的各正交分量,从而得到含有声源强度信息和方位信息的声强矢量。矢量水听器比传统的声压水听器可以测量得到更全面的声场信息,为改善传统水声测量或探测设备的性能,解决实际的水声问题拓展了新的思路,因此矢量水听器成为阵列处理领域较为活跃的研究方向之一。
     本论文从矢量水听器本身所具有的特点出发,介绍了单个矢量水听器的波束形成,以此为基础深入研究了矢量水听器阵窄带和宽带恒定束宽波束形成,并在硬件上对此进行了实现。
     全文的主要内容如下:
     1 对矢量水听器的分类进行了讨论,详细介绍了同振式矢量水听器和压差式矢量水听器的结构和工作原理,并推导了两种矢量水听器目标水平方位角和俯仰角的计算公式。
     2 根据矢量水听器所具有的特点,深入研究了矢量水听器窄带波束形成。首先分析了单个矢量水听器接收信号模型及其在不同声压、振速组合下的波束形成;接着详细讨论了矢量水听器阵列的窄带波束形成,给出了任意阵的接收信号模型,并详细研究了不同组合下的阵列波束形成。最后对矢量水听器和常规声压水听器的波束形成作了仿真对比,并加入信号进行了验证,得出矢量水听器阵的波束宽度、旁瓣级和阵增益都优于常规声压水听器阵。
     3 研究了矢量水听器宽带波束形成,详细讨论了基于DC加权的均匀线列阵宽带恒定束宽波束形成(先设计离散频率点上的恒定束宽加权,再设计FIR滤波器拟合这些离散频率上恒定束宽所表示的幅相响应,从而完成时域恒定束宽波束形成器的设计);对任意水听器阵列,应用半定规划的优化方法,设计出具有低旁瓣特征的宽带恒定束宽波束形成器。
     4 研究矢量水听器阵列宽带恒定束宽波束形成的硬件实现。以DSP处理器为中心围绕工程实现这个重点,提出了系统的总体设计方案,在实现细节上进行了
Vector sensor has many advantages compared with the pressure hydrophone. And it can co-locately, simultaneously measure pressure and particle velocity, accordingly, acoustic intensity vector is obtained using those information, which consists of intensity and direction of sources. Vector sensor gains more sound field information than traditional pressure hydrophone, so it opens a new eye on improving the capability of acoustic measurement and resolving actual acoustic problems. Therefore, vector sensor becomes a hot topic in domain of array processing.
    In this thesis, we study thoroughly narrowband and wideband constant beamwidth beamforming based on beamforming of single vector sensor. Moreover, we accomplish the application on hardware.
    The main content is outlined as follows:
    1 Discussed the classification of vector sensor. The structure and working principle of resonance and pressure gradient vector sensor are introduced, and the calculate formula of the two type vector sensor's azimuth and elevation are derived.
    2 Narrowband beamforming is studied thoroughly according to the characteristic of vector sensor. Firstly, analyzing the receiving signal model of single vector sensor and its beamforming under different combination of pressure and particle velocity; then, discussing particularly the narrow beamforming of vector sensor array, proposing the receiving signal model of arbitrary array and studying the beamforming under different combination; at length, by computer simulations, it is shown that vector sensor array is better than traditional pressure sensor on beamwidth、sidelobe level and array gain.
    3 Wideband beamforming of vector sensor array is studied. For uniform linear array, we discuss particularly the wideband constant beamwidth beamforming based on DC weights; for arbitrary vector sensor array, we design a low-sidelobe wideband constant beamwidth beamforming by an optimizing method using semi-definite programming.
    4 Designed and realized the hardware of wideband constant beamwidth beamforming. Focused on the DSP processor, we propose the design scheme of the whole system. In realization details, we apply blocking design. Moreover, we describe the function of every block, the device in block and realization in particular.
引文
[1] "Highlight of Statistical signal and Array Processing,"IEEE Signal Processing, pp. 21-64, Sep.,1998
    [2] (美)弗里德曼,诺曼著:丁振林等编译,1945年以来的美国潜艇:配图解说潜艇设计史,北京,中国船舶信息中心,2000.08
    [3] 第701研究室编辑,安静型潜艇声学设计文集,北京,第701研究所五室出版,2000.10
    [4] The shallow sea war, US Navy Office, 2000
    [5] G. L. G' Spain et al. Simultaneous measurement of infrasonic acoustic particle velocity and acoustic pressure in the ocean by freely drifting swallow floats. IEEE J. Oceanic Eng. 1991, 16(2); 195-207
    [6] G. L. D' Spain and W. S. Hodgkiss. Further comments on beamforming with acoustic measurements at a single point in the ocean. J. Acoust. Soc. Am. 1993,93(4); 2375-2376
    [7] J. Nickles, et al.,A vertical array of directional acoustic sensors, in Proc. Mast. Oceans thru Tech. (Oceans92), pp:340-345, Newport, RI, October 1992
    [8] 陈华为,赵俊渭,基于矢量传感器复声强测量的低空目标二维波达方向估计,声学学报,2004,48(8):2205-2210
    [9] 田坦,齐娜,孙大军,矢量水听器阵波束域MVDR方法研究,哈尔滨工程大学学报,2004,25(3):295-298
    [10] 吕钱浩,杨士莪,张锦中,朴胜春,矢量传感器阵列高分辨率方位估计技术研究,哈尔滨工程大学学报,2004,25(4):440—445.
    [11] Leslie C. B, Kendall F. M, "Hydrophone for measuring particle velocity," J.A.S.A., vol. 28,1956, pp. 711
    [12] Shchurov V.A., "The interaction of energy flows of underwater ambient noise and local source," J.A.S.A. pp. 1002-1004 90(2) 1991
    [13] L.G. Weiss, "Wavelets and Wideband Correlation Processing," IEEE Signal Processing Magazine, pp13-32, January 1994
    [14] 张有为、李少洪,《雷达系统分析》,北京,国防工业出版社,1981
    [15] L. Cohen, "Introduction: A Primer on Time-Frequency Analysis", in Time-Frequency Signal Analysis—Methods and Applications, Edited by B. Boashash, Longman Cheshire, 1992
    [16] 林茂庸,柯有安,《雷达信号理论》,国防工业出版社,1984
    [17] C.L. Dolph, A current distribution for broadside arrays which optimize the relationship between beamwidth and sidelobe level, Proc. IRE, 1946, 34, 335-348
    [18] Vandenberghe L and Boyd S. Semidefinite programming. SIAM Rev.,1996 38(1):49-95
    [19] Hawkes M et al, "Acoustic vector sensor beamforming and Capon direction estimation", IEEE Transaction on Signal Processing, 1998, 46(9):2291—2304.
    [20] Hawkes, Malcolm," Acoustic vector-sensor processing in the presence of a reflecting boundary ", IEEE Transactions on Signal Processing, v 48, n 11, Nov, 2000, p 2981-2993.
    [21] 鲁棒控制——线形矩阵不等式 处理方法 俞立 2002.12第一版 11-14 241-267
    [22] 孙贵青,李启虎,声矢量传感器研究进展,声学学报,2004,29(6):481—490.
    [23] 惠俊英,刘宏,余华兵,范敏毅,声压振速联合信息处理及其物理基础初探,声学学报,2000,25(4):303—307.
    [24] 冯海泓,梁国龙,惠俊英,目标方位的声压、振速联合估计,声学学报,2000,25(6):516—520.
    [25] 高源,杜选民,声矢量阵阵增益研究,舰船科学技术,2002,25(6):30—34.
    [26] 陈新华,蔡平,惠俊英,声矢量阵指向性,声学学报,2003,28(2):141—144.
    [27] 张揽月.矢量水听器阵列处理技术研究[D].哈尔滨工程大学,2005.
    [28] 张崇,于晓琳,邓长军.DSP在图像处理中的应用.电子质量,2003,(12).
    [29] 李勇,徐震,Matlab辅助现代工程数字信号处理,西安电子科技出版社,2002.10.1.
    [30] Ingle VK.Proskis JG,数字信号处理及其Matlab实现,电子工业出版社,1998
    [31] 刘叔军,盖晓华,樊京等,Matlab7.0控制系统应用与实例,机械工业出版社,2006.
    [32] 张雄伟,陈亮,徐光辉,DSP芯片的原理与开发应用(第3版),电子工业出版社,2003.2
    [33] 陈金鹰,陈爱萍,韩喜春等,DSP技术及应用,机械工业出版社,2004.
    [34] 周霖,DSP通信工程技术应用,国防工业出版社,2004.
    [35] TMS320VC5416 Data Sheet (Rev. J), Texas Instruments Incorporated, 2001
    [36] TMS320VC5416 Bootloader (Rev. D), Texas Instruments Incorporated, 2001
    [37] TMS320C54x DSP Reference Set Vol 1: CPU and Peripherals (RevA), Texas Instruments Incorporated, 2001
    [38] TMS320C54x DSP Reference Set Vol 5: Enhanced Peripherals, Texas Instruments Incorporated, 2001
    [39] Andrew Bateman,Lain Paterson-Stephens,DSP算法、应用与设计,机械工业出版社;中信出版社,2003.7.1
    [40] 徐志军,徐光辉,CPLD/FPGA的开发与应用,电子工业出版社,2002.
    [41] 北京理工大学ASIC研究所,VHDL语言100例详解,清华大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700