组合受力钢筋混凝土构件承载力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外研究者对钢筋混凝土构件在、压、弯、剪、扭单一或者二、三种组合受力作用下的研究已比较深入。但是,对/压、弯、剪、扭四种组合受力的共同作用研究还不充分,特别是轴力对于组合受力下钢筋混凝土构件的破坏机理和承载力影响的研究有待深入。目前,国际上缺乏工程界普遍接受的/压弯剪扭组合受力钢筋混凝土构件统一破坏计算理论,各国规范多用经验公式,因此这方面的研究有重要的理论意义与实际应用价值。
     本文通过理论模型推导、试验数据比较和数值模拟分析方法研究轴力对于组合受力下钢筋混凝土构件的破坏机理和承载力影响。
     首先,本文改进应用三维极限平衡理论,通过研究斜扭破坏面空间角度改变考虑轴力对构件组合受力破坏形式和极限承载力的影响。应用混凝土截面微元的多轴受力破坏准则,确定破坏面几何形状,通过几何形状确定的变角度斜扭破坏面的平衡方程建立钢筋混凝土构件组合受力承载力的统一计算模型表达式,并与试验数据相比较。进一步,本文建立数值分析模型,用相关试验结果校核数值分析模型,应用数值模拟分析方法拓宽研究参数,弥补组合受力钢筋混凝土构件试验数据的不足,并与本文建议的理论模型比较。本文通过探索轴力对于组合受力下钢筋混凝土构件的破坏机理和
     承载力变化影响,建立钢筋混凝土构件组合受力破坏的承载力统一计算模型,这一计算模型与试验研究数据比较一致,并与数值分析模型的研究结果一致。论文研究成果可为进一步完善混凝土破坏理论和规范相关计算方法提供参考。
There are rich research results on reinforced concrete structural members under single loading or two and three loading combination of tension, compression, bending, shear and torsion. However, there are few researches on four loading combination of tension/compression, bending, shear and torsion, especially for the axial force effects on the failure mechanism and bearing capacity of reinforced concrete members. Till now, there is not a unified failure model for reinforced concrete members under combined loading which has been commonly accepted worldwide. Many design codes for combined loading are consisted of test data fitting experience formulas. Therefore it is very important to focus research on the unified failure model of RC members under combined loadings.
     The dissertation studies failure mechanism and bearing capacity of the RC members under combined loadings through theoretical investigation, test data comparison and numerical analysis method.
     Firstly, the ultimate equilibrium theory is improved and used to study the influence of axial force to failure mode and ultimate capacity through the variation of the twist failure surface angles. Applying concrete failure criteria on the failure surface, the twist failure surface angles could be determined, and using the three dimensional ultimate equilibrium theory, the unified failure model and formulas for reinforced concrete structural members under the combined loadings could be deduced. The theoretical results are compared with the experimental results and the coordination of both is satisfied.
     Then, the numerical analysis method is used to broaden the research parameters, which could solve the test data lack problem. More attention is paid on the check of numerical modeling with the existed experimental results and numerical analysis results are compared with theoretical results.
     The dissertation suggests the unified failure model for reinforced concrete structural members under combined forces of tension, compression, bending, shear and torsion. The theoretical model fits well with the test data and the numerical analysis results. The research results could be used as references for concrete failure theory and design codes.
引文
[1]王璞,黄真,周岱,碳纤维混杂纤维混凝土抗冲击性能研究[J],《振动与冲击》(已录用)
    [2]王振东,刘加海等,高强混凝土有腹筋构件在弯剪扭复合作用下剪扭工作性能研究[J].哈尔滨建筑大学学报,1998,N3:35-41.
    [3]王振东,施岚青等,桁架理论在钢筋混凝土构件受弯剪扭复合作用分析中的应用,混凝土结构研究报告选集(3),中国建筑科学研究院主编,中国建筑工业出版社,1998:14-26.
    [4]中华人民共和国国家标准,混凝土结构设计规范[C],GB50010-2010,中国建筑工业出版社,2010.
    [5]过镇海,时旭东,钢筋混凝土原理和分析[M],清华大学出版社,2003: 299-316.
    [7]张誉,混凝土结构基本原理[M],中国建筑工业出版社,2000:159-201.
    [8]刘西,结构工程学科的进展与前景[M],中国建筑工业出版社,2008:156-165.
    [9] Thomas T.C. Hsu, Toward a unified nomenclature for reinforced-concrete theory[J]. ASCE Journal of Structural Engineering, 2003: 275-283.
    [10] Thomas T.C. Hsu, Unified approach to shear analysis and design[J], ACI Structural Journal, 2001: 2781-2791.
    [11] Ritter W. Die Bauweise Hennebique[M]. Schweizerishe Bauzeitung: Zurich, 1899.
    [12] M?rsch F, Wayss. Der Eisenbetonbau, seine Anwendung und Theorie[M]. 1 ed.; Neustadt a. d. Haardt: Germany, 1902.
    [13] Collins M P, Mitchell D. Shear and torsion design of prestressed and non-pre-stressed concrete beams[J]. PCI Journal 1980: 32-100.
    [14] Collins M P, Mitchell D. A rational approach of shear design-the 1984 Canadian code provision[J]. ACI Journal 1986: 925-933.
    [15] Hsu TTC, Mo Y L. Softening of concrete in torsional members-theory and tests[J]. ACI Journal 1985: 290-303.
    [16] Hsu TTC, Mo Y L. Softening of concrete in torsional members-design recommendations[J]. ACI Journal 1985: 443-452.
    [17] David X-B,Hsu TTC. Fixed Angle Softened Truss Model for Reinforced Concrete[J]. ACI Structural Journal 1996: 197-207.
    [18] Huang Zhen, Liu Xila:Unified approach for analysis of box-section members under combined actions[J]. ASCE Journal of Bridge Engineering,2007,Vol.12, No.4:494-499.
    [19] Greene, G., Belarbi,A., Model for Reinforced Concrete Members under Torsion, Bending and Shear. I: Theory[J]. ASCE Journal of Engineering Mechanics, Sep.2009:961-969.
    [20] Gvozdev A.A., Lessig N.N., Ruulle L.K., Research on Reinforced Concrete Beams under Combined Bending and Torsion in Soviet Union[J], ACI SP-18, Detroit, 1968:307-336.
    [21] Nielson M.P., Limit Analysis And Concrete Plasticity[J], RENTICE-HALL, INC., Englewood Cliffs, N.J.07632, 2000:15-72.
    [22] Thomas T.C.Hsu, Unified Theory of Reinforced Concrete[J]. CRC Press, Boca Raton, FL, 1998:21-26.
    [23]霍锦锋,钢筋混凝土环型截面构件破坏的统一表达.硕士学位论文,上海交通大学,2004.6: 15-35.
    [24] Greene, G., Belarbi,A., Model for Reinforced Concrete Members under Torsion, Bending and Shear. II: Model Application and Validation[J]. ASCE Journal of Engineering Mechanics,Sep.2009:970-977.
    [25]张誉,陈斌.钢筋陶粒混凝土受扭构件全过程分析[J].同济大学学报,1982.3:47-52
    [26]张誉,黄郁莺.钢筋混凝土构件在扭剪组合荷载下的非线性全过程分析[J].同济大学学报,1985.4:33-38.
    [27]卫云亭,张连德.钢筋混凝土双向偏压方柱的抗扭强度[J].建筑结构,1991.1:22-26.
    [28]徐艳秋,季文玉,许克斌,弯剪扭共同作用下预应力混凝土抗扭极限强度的理论计算方法[J].北方交通大学学报, 1998年2月:101-106.
    [29]徐艳秋,许克斌,刘凤奎,复合受力下混凝土箱梁抗扭承载力计算方法与试验研究[J].中国公路学报,2000年7月:36-40.
    [30]康谷贻,王伟凤,王依群,钢筋混凝土构件受扭承载力新《规范》计算方法刍议[J].东南大学学报,2002:25-29.
    [31]王岚等,“板-桁”模型计算预应力混凝土复合受力构件抗扭强度[J].工程力学, 2005年6月:198-203.
    [32]霍锦锋,刘西钢筋混凝土环形截面构件破坏的统一表达[J].上海交通大学学报,第39卷第11期2005年11月
    [33]刘继明.钢筋混凝土复合受力构件受扭行为和设计方法的研究.西安建筑科技大学博士学位论文,2004
    [34]门进杰,史庆轩,刘继明,钢筋混凝土复合受扭抗扭承载力统一方程的研究[J].西安建筑科技大学学报,2006年4月:227-268.
    [35]刘建航,侯学渊.盾构法隧道[M].北京:中国地铁出版社, 1991.
    [36] Krishna R, Copsey J, Algeo R G, Shirlaw J N. Design ofthe civil works for Singapore’s northeast Line [J].Tunnelling & Underground Space Technology, 1992,(17)3: 433-448.
    [37]车惠民,邵厚昆,李霄萍.部分预应力混凝土:理论设计工程实践[M].西南交通大学出版社:成都, 1992.
    [38] Hsu T T C,ZHANG Li-Xin. Tension stiffen in reinforced concrete member element[J]. ACI Journal 1996: 108-115.
    [39] Al-Nahlwi K A,Wight J K. Beam analysis using concrete tensile strength in truss models[J]. ACI Structural Journal 1992: 284-289.
    [40] Ramirez J A,Breen J E. Evaluation of a modified truss model approach for beams in shear[J]. ACI Structural Journal 1991: 562-571.
    [41] Pang X-B,Hsu TTC. Behavior of reinforced concrete membrane elements in shear[J]. ACI Structural Journal 1995: 665-679.
    [42] Vecchio F J.Disturbed stress field model for reinforced concrete:implementation[J]. Journal of Structural Engineering 2001, 127 (1): 12-20.
    [43] Vecchio F J,Lai D,Shim W, et al. Disturbed stress field model for reinforced concrete:validation[J]. Journal of Structural Engineering 2001, 127 (4): 350-358.
    [44] Hsu TTC. Stresses and crack angles in concrete members elements[J]. Journal of Structural Engineering 1998, 124: 1476-1484.
    [45]赵嘉康,张连德,卫云亭.钢筋混凝土压弯剪扭构件的抗扭强度研究[J].土木工程学报1993年2月,第26卷第1期.
    [46]林咏梅,周小真,张连德.钢筋混凝土双向压弯剪构件在单调扭矩作用下抗扭性能的研究[J].建筑结构学报1996, (01).
    [47]陆新征江见鲸.用ANSYS Solid 65单元分析混凝土组合构件复杂应力[J].建筑结构,2003年6月,第33卷第6期:22-24
    [48]吕西林.《钢筋混凝土结构非线性有限元理论与应用》[M].同济大学出版社,2002年.
    [49]曾攀.《有限元分析及应用》[M].清华大学出版社,2004年6月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700