基于电学及射线成像技术的两相流可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两/多相流体的流动过程不仅是日常生活和自然界的常见现象,而且广泛存在于能源、石油、化工、冶金、制冷、宇航、医药、食品等现代工业过程中。其流动参数的测量,对于国民经济发展、资源的合理有效的利用有重大而深远的意义。然而,在两/多相流的流动过程中,由于相间流动特性差异、相间界面复杂多变,使得多相流参数的精确测量一直是科学研究和工业过程中的热点和难点。因此,课题的研究从多相流可视化测量的角度出发,对多相流的可视化测量手段,特别是层析成像技术进行了研究和分析,开发新型可视化测试传感器用于多相流的过程参数的测量和分析。主要完成的工作如下:
     1、基于FPGA技术及CompcatPCI技术,设计并成功搭建了一套数字化电阻层析成像系统。该系统采用工业标准CompactPCI总线协议,具有稳定性强,传输速度快,可扩展性强等优点。基于FPGA技术实现了数字解调等数字信号处理方法,提高了电阻层析成像系统的数据采集速度。成像实验测试结果证明,该数字化电阻层析成像系统具有1300幅/秒以上的采集速度,60分贝以上的信噪比和良好的成像性能,能够满足导电物质为连续相的大多数工况的检测要求。
     2、基于电容法测量原理,提出了一种基于多段电极的轴向步进法激励模式。仿真结果证明,在该模式下,系统测试得到的数据进行简单的处理后,其特征能够直接进行流型识别,不同液位层流的数据也具有明显的特征。该方法主要考察两相流体容性信息在由局部测量到全局测量过程中的信息响应特征。
     3、基于电容法测量原理,开发了可应用于环形流通区域中两相流的可视化测量的环域局部聚焦成像传感器。传感器的灵敏度分析和仿真成像结果表明,该传感器具有良好的灵敏度;通过传感器的测量数据,无需进行复杂的成像算法,可直接进行环域两相流分布的成像,提供了一种针对环域流通工况下两相流的可视化测试方法。
     4、利用Wire-Mesh传感器和超快X射线成像传感器进行了垂直上升管道气液两相流的泡状流和弹状流的实验。对试验数据进行处理分析,提取出截面相含率的径向分布,气相速度的径向分布和气泡大小分布等特征。实验分析结果证明,利用Wire-Mesh传感器和超快X射线成像传感器,在测量流体流动瞬时过程,具有较高的空间分辨率和时间分辨率,提供了一种测量快速流动两相流瞬态参数测量的可行性方法。通过该两种传感器图像数据提取的气相含率径向分布具有很高的一致性,偏差在4%以内;利用相关算法能够计算出气相速度径向分布;在得到气相截面含率和气相速度后,可以进行气泡大小计算,最终得到气泡大小分布情况,结果显示,在测量气泡大小分布时,在泡状流流型下,两种传感器能够得到非常一致的结果。
The two/multi phase flow process is not only frequently encountered in natureand human being life, but also occurs widely in the energy, petroleum, chemical,metallurgical, refrigeration, aerospace, pharmaceutical, food and other modernindustrial processes. Measuring the process parameters of the two/multi phase flow isnot only very important to the development of the national economy, but also of greatsignificance to human resources being efficiently used. However, because of thedifferent flow characteristics and complicated instantaneous change interface betweentwo phases, precise measurement of the process parameters of two phase flow hasalways been a hotspot and difficult point in scientific research and industryapplication. Therefore, the purpose of this research is, on the basis of the conceptionof visualization measurement of multiphase flow, to investigate and analyze the mainvisualization measurement methods, especially tomography techniques, and todevelop new visualization measurement sensors for measuring and analyzingmultiphase flow. The research has been conducted by four steps as follows:
     1. New digital electrical resistance tomography system based on FPGA andCompactPCI industry standard bus has been built. By using the CompactPCI industrystandard bus protocol, the new system has the advantages of excellent operationalstability, high-speed data transportation, good extended performance, etc. Because ofthe application of FPGA chips, the digital demodulation and other signal digitalmodules have easily been realized, hence the speed of the data acquisition system hasbeen improved substantially. The imaging experiment result showed that the systemhad a high data acquisition speed which was above1300frames per second, a signalto noise ratio which was above60dB and an outstanding image reconstructionperformance. The new system could meet the measurement needs of most industrialprocesses with continuous conductive materials.
     2. The axial step exciting method of segmented electrodes based on thecapacitance measurement principle has been developed. The simulation experimentsproved that the characteristics of the processed dataset obtained by the excitingmethod could directly identify the flow pattern. In addition, the data characteristics ofstratified flows with different liquid levels proved to be very obvious. The method is mainly used to investigate the response of the capacitance materials whenmeasurement fields are extended from the local to the global.
     3. Based on the electrical capacitance measurement principle, an annular fieldfocusing capacitance sensor has been developed. The sensor has been used for thevisualization of two phase flows in the annular flow field. The performance analysisof the sensor showed good sensitivity. The imaging simulation proved that the signalof the sensors could be used to obtain images of the two phase distribution in theannular flow field directly without any complicated imaging reconstruction algorithm.To sum up, a visualization method for the two phase flow in an annular pipe has beenestablished.
     4. Based on the combination of the Wire-Mesh and ultra fast X-ray tomographysensors, the co-current vertical gas-liquid flow experiments, especially the bubbly andslug flow measurement experiments, have been executed. After processing andanalyzing the tomography data, the radial cross-section gas fraction and velocity aswell as the bubble size distribution of the two phase flows have been extracted andcalculated. The experiment results showed that, because of the high space and timeresolution of the sensors, the combination of the wire-mesh sensor and ultra fast X-raytomography sensor could provide an effective method for measuring the dynamicparameters of the high-speed transient two-phase flow. The maximum deviation of thegas fraction profiles was4%, which indicated very good agreement. The gas phasevelocity radial profile could be evaluated by using the cross-correlation of the gasfraction from the two sensors. With the gas fraction and velocity data, the bubblescould be identified and the bubble size, bubble equivalent diameter and bubble sizedistribution could be extracted. When measuring bubbly flow using the two sensors,the bubble size distributions indicated good agreement.
引文
[1]中华人民共和国国民经济和社会发展第十二个五年(2011—2015年)规划纲要,2011
    [2]中华人民共和国国家中长期科学和技术发展规划纲要(2006—2020年),2006
    [3]陈学俊,多相流热物理研究的进展,西安交通大学学报,1994,28(5):1~8
    [4]林宗虎,气液两相流和沸腾传热,西安:西安交通大学出版社,1992
    [5]林宗虎,变幻流动的科学-多相流体力学,北京:清华大学出版社,广州:暨南大学出版社,2000
    [6]林宗虎,管路内气液两相流特性及其工程应用,西安:西安交通大学出版社,1992
    [7]劳力云,郑之初,吴应湘,李东晖,关于气液两相流流型及其判别的若干问题,力学进展,2002,32(2):235~249
    [8]车德福,李会雄,多相流及其应用,西安:西安交通大学出版社,2007
    [9]马龙博,张宏建,周洪亮等,基于差压法的油水两相流测量,浙江大学学报(工学版),2007,41(2):365~368
    [10]Xu LJ, Zhou WL, Li XM, Wet gas flow modeling for a vertically mountedVenturi meter, Measurement Science and Technology,2012,23(4):045301(9pp)
    [11]李伟,基于V型内锥的水平管多相流流量测量研究:[硕士学位论文],天津;天津大学,2008
    [12]Zhang F, Dong F, Tan C, High GVF and low pressure gas-liquid two-phase flowmeasurement based on dual-cone flowmeter, Flow Measurement andInstrumentation,2010,21(3):410~417
    [13]胡金海,刘兴斌,薛国民等,涡轮流量计对水平三相流的实验响应,测井技术,2006,30(6):497~499
    [14]李永光,蔡祖恢,李美玲等,利用涡街特性测量气液两相流流量与组分方法的研究,仪器仪表学报,1998,19(2):185~188
    [15]徐苓安,杨惠莲,张涛等,夹钳式超声相关流量计及其在液/固两相流测量中的应用,仪器仪表学报,1993,14(3):257~262
    [16]张立伟,冀海峰,黄志尧等,小通道小流量企业两相流热式测量方法的研究,仪器仪表学报,2010,31(8):223~226
    [17]朱小倩,科氏流量计两相流测量含气率影响规律及修正方法的研究:[硕士学位论文],东营;中国石油大学,2011
    [18]Seeger M, Coriolis flow measurement in two phase flow, Computing and ControlEngineering Journal,2005,16(3):10~16
    [19]黄志尧,王保良,史志才等,软测量技术在多相流检测中的应用,仪器仪表学报,2001,22(3):421~424
    [20]李海青,软测量技术原理及应用,北京:化学工业出版社,2000
    [21]Hestroni G, Handbook of Multiphase Systems, Washington:HemispherePublishing Corprration,1982
    [22]李海青,两相流参数检测及其应用,杭州:浙江大学出版社,1991
    [23]郑建英,朱云,流化床中颗粒尺寸的模糊测量模型,计量学报,1999,20(3):203~207
    [24]Willis M J, Montague G A, Di Massimo C, et al, Artificial neural networks inprocess estimation and control, Automatical,1992,28(6):1181~1187
    [25]贾志海,牛刚,王经,基于神经网络的两相流流型识别方法研究,高校化学工程学报,2005,19(3):368~372
    [26]黄志尧,李海青,气固两相流中基于神经网络的固相质量流量检测方法的研究,仪器仪表学报,1996,17(5):465~469
    [27]王雷,冀海峰,黄志尧,基于ECT传感器和模式识别的气液两相流空隙率测量新方法研究,仪器仪表学报,2005,26(6):557~561
    [28]孙斌,王二朋,郑永军,气液两相流波动信号的时频谱分析研究,物理学报,2011,60(1):014701
    [29]Elperin T, Klochko M, Flow regime identification in two-phase flow usingwavelet transform, Experiment in Fluids,2002,32(6):674~682
    [30]韩骏,董峰,李伟等,油水两相流质量流量小波网络软测量模型研究,工程热物理学报,2009,30(5):807~810
    [31]肖楠,金宁德,基于混沌吸引子形态特性的两相流流型分类方法研究,物理学报,2007,56(9):5149~5157
    [32]吴贤国,黄志尧,王保良等,分形技术在气固流化床起始流化状态研究中的应用,浙江大学学报(工学版),2001,35(3):289~292
    [33]郑桂波,金宁德,两相流流型多尺度熵及动力学特性分析,物理学报,2009,58(7):4485~4492
    [34]Gao ZK, Jin ND, Complex network from time series based on phase spacereconstruction, Chaos,2009,19(3):033137
    [35]Abouelwafa M S A, Kendall E J M, The measurement of component ratio inmultiphase system using alpha-ray attenuation, Journal of Physics E: ScientificInstrum ents,1980,13(3):341~345
    [36]Abro E, Johansen G, Improved void fraction determination by means ofmultibeam gamma-ray attenuation measurements, Flow Measurement andInstrumentation,1999,10(2):99~108
    [37]Fischer F, Hampel U, Ultra fast electron beam X-ray computed tomography fortwo-phase flow measurement, Nuclear Engineering and Design,2010,240(9):2254~2259
    [38]Hanzevack E L, Bower Jr C B, Ju C H, Study of two-phase flow by laser imageprocessing, AIChE Journal,1987,33(12):2003~2007
    [39]Mychkovsky A G, LDV Measurements and Analysis of Gas and Particulate PhaseVelocity Profiles in a Verticle Jet Plume in a2D Bubbling Fluidized Bed:
    [Doctor’s Dissertation], Michigan; University of Michigan,2010
    [40]Gladden L F, Akpa B S, Anadon L D, et al, Dynamic MR imaging of single-andtwo-phase flows, Chemical Engineering Research and Design,2006,84(4):272~281
    [41]Conrads H G, Klupsch V, Halm A, Microwave measurement device for definingthe load of a two-phase flow, United States Patent, US6771080B2,2004-08-03
    [42]Mittleman D M, Jacobsen R H, Nuss M C, T-ray imaging, IEEE Journal ofselected Topics in Quantum Electronics,1996,2(3):679~692
    [43]徐苓安,相关流量测量技术,天津:天津大学出版社,1988
    [44]Williams R A, Beck M S, Process Tomography: Principles, Techniques andApplications, Butterworth-Heinemann, Oxford,1995
    [45]谭超,基于多传感器融合的两相流参数测量方法:[博士学位论文],天津;天津大学,2009
    [46]张福生,两相流参数多传感器测量方法研究:[博士学位论文],天津;天津大学,2010
    [47]Vallée C, H hne T, Prasser H-M, et al, Experimental investigation and CFDsimulation of horizontal stratified two-phase flow phenomena, NuclearEngineering and Design,2008,238(3),637~646
    [48]鲁钟琪,两相流与沸腾传热,北京:清华大学出版社,2002
    [49]John R T, Wolverine Engineering Data Book III, Decatur: Wolverine TubeInc.,2004
    [50]Taitel Y, Barnea D, Dukler A E, Modeling flow pattern Transsition for steadyupward gas-liquid flow in vertical tubes, AIChE,1980,26(3):345~354
    [51]Hewitt G F, Measurement of two-phase flow parameters, London: AcademicPress,1978
    [52]Lin P Y, Flow regime transitions in horizontal gas-liquid flow, Ph.D. Thesis,Urbana, University of Illinois at Urbana-Champaign,1984
    [53]Mandhane J M, Gregory G A, Aziz K A, A flow pattern map for gas-liquid flowin horizontal pipes, International Journal of Multiphase Flow,1974,1(4):537~553
    [54]Taitel Y, Dukler A E, A model for predicting flow regime transitions in Horizontaland near horizontal gas-liquid flow, AIChE Journal,1976,22(1):47~55
    [55]Barnea D, Shoham O, Taitel Y, Flow pattern transition for gas-liquid flow inhorizontal and inclined pipes, Comparison of experimental data with theory,International Journal of Multiphase Flow,1980,6(3):217-225
    [56]Kelessidis V C, Dukler A E, Modelling flow pattern transitions for upwardgas-liquid flow in vertical concentric and eccentric annuli, International Journalof Multiphase Flow,1989,15(2):173~191
    [57]Julia J E, Hibiki T, Flow regime transition criteria for two-phase flow in a verticalannulus, International Journal of Heat and Fluid Flow,2011,32(5):993~1004
    [58]Collier J G, Thome J R, Convective boiling and condensation,3rd, OxfordScience Publications,1994
    [59]吕崇德,热工参数测量与处理,北京:清华大学出版社,2001
    [60]郭烈锦,两相与多相流动力学,西安:西安交通大学出版社,2002
    [61]Herman G T, Image Reconstruction from Projections: Implementation andApplications, Germany: Springer-Verlag Berlin Heidelberg,1979
    [62]Webb S, Historical experiments predating commercially available computedtomography, The British Journal of Radiology,1992,65(777):835~837
    [63]Cormack A M, Representation of a Function by Its Line Integrals, with SomeRadiological Applications, Journal of Applied Physics,1963,34(9):2722~2727
    [64]Barber D C, Brown B H, Applied potential tomography, Journal of Physics E:Scientific Instruments,1984,17(9):723~733
    [65]Plaskowski A, Beck M S, Krawaczynski J S, Flow imaging for multi componentflow measurement, Transactions of the Institute of Measurement and Control,1987,9(2):108~112
    [66]Riu P, Rossell J, Pallas-Areny P, Multifrequency electrical impedancetomography as an alternative to absolute imaging, Proceedings of the firstmeeting of the European Concerted Action on Process Tomography, Manchester,1992,19~28
    [67]Wang M, Dickin F J, Beck M S, Improved electrical impedance tomography datacollection system and measurement protocols. Proceedings of the first meeting ofthe European Concerted Action on Process Tomography, Manchester,1992,40~53
    [68]Ceccio S L, George D L, A Review of Electrical Impedance Techniques for theMeasurement of Multiphase Flows, Journal of fluids engineering,1996,118(2):391~399
    [69]Dickin F, Wang M, Electrical resistance tomography for process applications,Measurement Science and Technology,1996,7(3):247~260
    [70]Huang S M, Plaskowski A, Xie C G, et al, Capacitance-based tomographic flowimaging system, Electronics Letters,1988,24(7):418~419
    [71]Korjenevsky A, Cherepenin V, Sapetsky S, Magnetic induction tomography:experimental realization, Physiological Measurement,2000,21(1):89~94
    [72]Feng J, Okamoto K, Tsuru D, et al, Visualization of3D gas density distributionusing optical tomography, Chemical Engineering Journal,2002,86(3):243~250
    [73]Snyder R, Hesselink L, High speed optical tomography for flow visualization,Applied Optics,1985,24(23):4046~4051
    [74]Xu L J, Han Y T, Xu L A, et al, Application of ultrasonictomography tomonitoring gas/liquid flow, Chemical Engineering Science,1997,52(13):2171~2183
    [75]徐立军,气/液两相流在线监测用超声层析成像技术及系统的研究:[博士学位论文],天津;天津大学,1996
    [76]Ollinger J M, Fessler J A, Positron Emission Tomography, IEEE SignalProcessing Magazine,1997,14(1):43~55
    [77]Hjertaker B H, Maad R, Schuster E, et al, A data acquisition and control systemfor high-speed gamma-ray tomography, Measurement Science and Technology,2008,19(9):094012
    [78]Bieberle A, Schleicher E, Hampel U, Data acquisition system for anglesynchronized γ-ray tomography of rapidly rotating objects, Measurement Scienceand Technology,2007,18(11):3384~3390
    [79]Semenov S Y, Svenson R H, Boulyshev A E, et al, Microwave Tomography:Two-Dimensiorial System for Biological Imaging, IEEE Transactions onBiomedical Engineering,1996,43(9):869~877
    [80]Fischer F, Hoppe D, Schleicher E, et al. An ultra fast electron beam x-raytomography scanner. Measurement Science and Technology,2008,19(9):094002(11pp)
    [81]Tsourlos P, Szymanski J E, Ogilvy R D and et al., Inversion of earth resistivitydata from the multi-electrode RESCAN system, Extended abstracts of the57thMeeting of the European Association of Exploration Geophysicists, Glasgow,Scotland,1995, Volume1, P027
    [82]徐管鑫,电阻抗成像技术理论及应用研究,[博士学位论文]:重庆;重庆大学,2004
    [83]Henderson R, Webster J, An Impedance Camera for Spatially SpecificMeasurements of the Thorax, IEEE Transaction on Biomedical Engineering,1978,BME25(3):250~254
    [84]Brown B H, Seagar A D, The Sheffield data collection system, Clinical Physicsand Physiological Measurement,1987,8(Supplement A):91~97
    [85]Smith R W M, Freeston I L, Brown B H, A real-time electrical impedancetomography system for clinical use-design and preliminary results, IEEETransactions on Biomedical Engineering,1995,42(2):133~140
    [86]Brown B H, Barber D C, Leathard A D, et al, High frequency EIT data collectionand parametric imaging, Innovation and Technology in Biology and Medicine,15(special1):1~8
    [87]Wilson A J, Milnes P, Waterworth A R, et al, Mk3.5: a modular, multi-frequencysuccessor to the Mk3a EIS/EIT system, Physiological Measurement,2001,22(1):49~54
    [88]Xie C G, Plaskowski A, Beck M S,8-electrode capacitance system fortwo-component flow identification-Part1: Tomographic flow imaging, IEEProceedings,1989,136(4):173~183
    [89]Xie C G, Plaskowski A, Beck M S,8-electrode capacitance system fortwo-component flow identification-Part2: Flow regime identification,Tomographic flow imaging, IEE Proceedings,1989,136(4):184~190
    [90]Huang S M, Xie C G, Thorn R, et al, Design of sensor electronics for electricalcapacitance tomography, IEE Proceedings G: Circuits, Devices&Systems,1992,139(1):83~88
    [91]Xie C G, Huang S M, Holy B S, et al, Electrical capacitance tomography for flowimaging: system model for development of image reconstruction algorithms anddesign of primary sensors, IEE Proceedings G: Circuits, Devices&Systems,1992,139(1):89~98
    [92]Yang W Q, Beck M S, Byars M, Electrical capacitance tomography-from designto application, Measurement and Control,1995,28(9):261~266
    [93]Yang W Q, Hardware design of electrical capacitance tomography systems,Measurement Science and Technology,1996,7(3):225~232
    [94]Yang W Q, York T A, New AC-based capacitance tomography system, IEEProceedings: Science, Measurement&Technology,1999,141(1):47~53
    [95]Yang W Q, Further developments in an ac-based capacitance tomography system,Review of Scientific Instruments,200172(10):3902~3907
    [96]York T A, Phua T N, Reichelt L, et al, A miniature electrical capacitancetomography, Measurement Science and Technology,2006,17(8):2119~2129
    [97]Dickin F J, Resistive EIT-Design Reports and Indication if Industrial Applications,ECAPT’93(1993European Concerted Action on Process Tomography),1993,221~224
    [98]Xu L A, Jiang Z C., Performance Analysis of the UMIST MK1b ElectricalImpedance Tomography System, ECAPT’94(1994European Concerted Actionon Process Tomography),1994,114~119
    [99]Abdullah M Z, Electrical impedance tomography for imaging conductingmixtures in hydrocyclone separators, Ph.D. thesis, UMIST,1993
    [100] Wang M, Dickin F J, Beck M S, Improved electrical impedance tomographydata collection system and measurement protocols, In Tomography Techniquesand Process Design and Operation,65~88
    [101] Wang M, Electrical impedance tomography on conducting walled processvessels, Ph.D. thesis, UMIST,1994
    [102] Dickin F and Wang M, Electrical Resistance Tomography for ProcessApplication, Measurement Science&Technology,1996,7(3):247~260
    [103] Wang M, Dickin F J, Mann R, Electrical resistance tomographic sensingsystems for industrial applications, Chemical Engineering Communications,1999,175(1),49-70
    [104] Williams R A and Beck M S, Process Tomography—Principles, Techniquesand Applications, London: Butterworth-Heinemann,1995
    [105] Ma X. and et al, Hardware and software design for an electromagneticinduction tomography (EMT) system for high contrast metal process applications,Measurement Science and Technology,2006.17(1):111~118
    [106] Hoyle B S, Jia X, Podd F J W, Design and application of a multi-modalprocess tomography system, Measurement Science and Technology,2001,12(8):1157~1165
    [107] Ma Y, Holliday N, Dai Y, et al, A high performance online data processingEIT system, in Proc.3rd World Congress Industrial Process Tomography,2003,27~32
    [108] Wang M, Ma Y X, Holliday N, et al, A high-performance EIT system, IEEESensor Journal,2005,5(2):289~299
    [109] Nahvi M, Hoyle B S, Wideband electrical impedance tomography,Measurement Science and Technology,2008,19(9):094011
    [110] Jia J, Wang M, Schlaberg H I, A novel tomographic sensing system for highelectrically conductive multiphase flow measurement, Flow Measurement andInstrumentation,2010,21(3):184~190
    [111] Gisser D G, Isaacson D, Newell J C, Theory and performance of an adaptivecurrent tomography system, Clinical Physics and Physiological Measurement,1988,(Supplement A):35~41
    [112] Newell J C, Gisser D G, Isaacson D, An Electric Current Tomography, IEEETransactions on Biomedical Engineering,1988,35(10):828~833
    [113] Cook R D, Saulnier G J, Gisser D G, et al, ACT3: A High speed, HighPrecision Electrical Impedance Tomograph, IEEE Transactions on BiomedicalEngineering,1994,41(8):713~722
    [114] Liu N, ACT4: a high-precision, multi-frequency electrical impedancetomography, Ph.D. thesis, Rensselaer Polytechnic Institute,2007
    [115] Wilkinson A J, Randall E W, Durrett D, The Design of a1000Frames perSecond ERT Data Capture System and Calibration Technoques Employed, inProc.3r d World Congress Industrial Process Tomography,2003,504~509
    [116] Wilkinson A J, Randall E W, Cilliers J J, et al, A1000-MeasurementFrames/Second ERT Data Capture System With Real-Time Visualization, IEEESensors Journal,2005,5(2):300~307
    [117] Wilkinson A J, Randall E W, Long T M, et al, The design of an ERT systemfor3D data acquisition and a quantitative evaluation of its performance,Measurement Science and Technology,2006,17(8):2088~2096
    [118] Savolainen T, Kaipio J P, Karjalainen P A, et al, An electrical impedancetomography measurement system for experimental use, Review of ScientificInstruments,1996,67(10):3605~3609
    [119] Savolainen T, Heikkinen L M, Vauhkonen M, et al, A Modular, AdaptiveElectrical Impedance Tomography System, in Proc.3rd World CongressIndustrial Process Tomography,2003,50~55
    [120] Heikkinen L M, Kourunen J, Savolainen T, et al, Real time three-dimensionalelectrical impedance tomography applied in multiphase flow imaging,Measurement Science and Technology,2006,17(8):2083~2087
    [121] Kourunen J, Savolainen T, Lehikoinen A, et al, Suitability of a PXI platformfor an electrical impedance tomography system, Measurement Science andTechnology,2009,20(1):015503
    [122] Vauhkonen M, Lionheart W R B, Heikkinen L M, A MATLAB package forthe EIDORS project to reconstruct two-dimensional EIT images, PhysiologicalMeasurement,2001,22(1):107~111
    [123] Oh T I, Woo E J, Holder D, Multi-frequency EIT system with radiallysymmetric architecture: KHU Mark1, Physiological Measurement,2007,28(7):S183~S196
    [124] Halter R J, Hartov A, Paulsen K D, A Broadband High-Frequency ElectricalImpedance Tomography System for Breast Imaging, IEEE Transactions onBiomedical Engineering,200855(2):650~659
    [125] Oh T I, Wi H, Kim D Y, et al, A fully parallel multi-frequency EIT systemwith flexible electrode configuration: KHU Mark2, Physiological Measurement,2011,32(7):835~849
    [126]邵嘉庆,电阻层析成像系统的开发及研究应用:[硕士学位论文],天津;天津大学,1999
    [127]马艺馨,电阻层析成像技术及其在气/液两相泡状流检测中的应用::[博士学位论文],天津;天津大学,1999
    [128]刘小平,电阻层析成像技术在两相流参数检测中的应用研究:[硕士学位论文],天津;天津大学,2001
    [129]邓湘,基于层析成像技术的智能化两相流测量系统研究:[博士学位论文],天津;天津大学,2001
    [130]王文辉,基于DSP的电阻层析成像系统研究:[硕士学位论文],天津;天津大学,2004
    [131] Xu Y B, Dong F and et al, A novel ERT system based on DSP and CPLD,Proceedings of the Fourth International Conference on Machine Learning andCybernetics, Guangzhou,2005,18~21
    [132]何永勃,电阻抗(ECT/ERT)双模态层析成像技术研究:[博士学位论文],天津;天津大学,2006
    [133] Tan C, Dong F, Wang B B, Multi-Plane Electrical Resistance TomographySystem Based on Parallel Data Acquisition Strategy, Proceedings of the26thChinese Control Conference,2007,26-31
    [134] Cui Z Q, Wang H X, Tang L, A specific data acquisition scheme for electricaltomography, IEEE International Instrumentation and Measurement TechnologyConference,2008,12~15
    [135] Cui Z Q, Wang H X, Chen Z Q, et al, A high-performance digital system forelectrical capacitance tomography,2011,22(5):055503
    [136] Zhang Z Q, Dong F, Xu C, et al, A kind of Electrical Resistance Tomographysystem, International Conference on Electric Information and ControlEngineering (ICEICE),2011,2885~2888
    [137] Zhang Z Q, Dong F, Xu C, Data Acquisition System Based on CompactPCIBus and FPGA for Electrical Resistance Tomography, Chinese Control andDecision Conference (CCDC),2011,3538~3543
    [138] Dong F, Xu C, Zhang Z Q, et al, Design of Parallel Electrical ResistanceTomography System for Measuring Multiphase Flow, Chinese Journal ofChemical Engineering,2012,20(2):368~379
    [139] Huang Z Y, Wang B L, Li H Q, Application of electrical capacitancetomography to the void fraction measurement of two-phase flow, IEEETransactions on Instrumentation and Measurement,2003,52(1):7~12
    [140]黄海波,基于双极性脉冲电流激励的电阻层析成像系统的研制及其在两相流测量中的应用研究:[硕士学位论文],杭州;浙江大学,2004
    [141] Zhu J P, Wang B L, Huang Z Y, et al, Design of ERT system, Journal ofZhejiang University-Science A,2005,6(12):1446~1448
    [142]刘铁军,黄志尧,王保良等,基于双极性脉冲电流技术的电阻层析实时成像系统,传感器技术学报,2005,18(1):66~69
    [143] Wang B L, Huang Z Y, Li H Q, Design of high-speed ECT and ERT system,Journal of Physics: Conference Series,2009,147(1):012035
    [144] Huang Z Y, Jiang W W, Zhou X M, et al, A new method of capacitivelycoupled contactless conductivity detection based on series resonance, Sensors andActuators B: Chemical,2009,143(1):239~245
    [145] Wang B L, Hu Y Y, Ji H F, et al, A novel electrical resistance tomographysystem based on C4D technique, IEEE International Instrumentation andMeasurement Technology Conference (I2MTC),2012,1929~1932
    [146]姚丹亚,用于流化床的电容层析成像系统的研究:[博士学位论文],北京;清华大学,1994
    [147] Grohse E W, Analysis of gas-fluidized solid systems by x-ray absorption,AIChE Journal,1955,1(3):358~365
    [148] Rowe P N, Partridge B A, An X-ray study of bubbles in fluidised beds,Transactions of the Institution of Chemical Engineers,1965,43:157~175
    [149] Bennett A W, Hewitt G F, Kearsey H A, et al, Flow Visualization Studies ofBoiling at High Pressure, Proceedings of the Institution of Mechanical Engineers,180:1~11
    [150] De Vuono A C, Schlosser P A, Kulacki F A, et al, Design of an Isotopic CTScanner for Two Phase Flow Measurements, IEEE Transactions on NuclearScience,1980,27(1):814~820
    [151] Schlosser P A, De Vuono A C, Kulacki F A, et al, Analysis of high-speed CTscanners for non-medical applications, IEEE Transactions on Nuclear Science,1980,27(1):788~794
    [152] MacCuaiq N, Seville J P K, Gilboy W B, et al, Application of gamma-raytomography to gas fluidized beds, Applied Optics,1985,24(23):4083~4085
    [153] Banholzer W F, Spiro C L, Kosky P G, et al, Direct Imaging of TimeAveraged Flow Patterns in a Fluidized Reactor Using X-ray ComputedTomography, Industrial and Engineering Chemistry Research,1987,26(4):76~767
    [154] Vinegar H J, Wellington S L, Tomographic imaging of three-phase flowexperiments, Review of Scientific Instruments,1987,58(1):96~107
    [155] Seo Y C, Gidaspow D, An X-ray-y-Ray Method of Measurement of BinarySolids Concentrations and Voids in Fluidized Beds, Industrial and EngineeringChemistry Research,1987,26(8):1622~1628
    [156] Hori K, Kawanishi K, Hmamura H, et al, A High Speed X-ray ComputedTomography Scanner for MultipuiFose Flow Visualization and hIeasurement,Proceeding of The4th International Topical Meeting on Nuclear Thelma1Hydraulics, Operation and Safety: Taipei Taiwan,1994
    [157] Hori K, Fujimoto T, Kawanishi K, Application of cadmium telluride detectorto high speed X-ray CT scanner, Nuclear Instruments and Methods in PhysicsResearch Section A,1996,380(1-2):397~401
    [158] Hori K, Fujimoto T, Kawanishi K, Development of Ultra-Fast X-rayComputed Tomography Scanner System, IEEE Transactions on Nuclear Science,1998,45(4):2089~2094
    [159] Johansen G A, Fr ystein T, Hjertaker B T, et al, The development of a dualmode tomography for three-component flow imaging, The Chemical EngineeringJournal and the Biochemical Engineering Journal,1995,56(3):175~182
    [160] Hammer E A, Three-component flow measurement in oil/gas/water mixturesusing capacitance transducers, PhD Thesis, University of Manchester,1983
    [161] Johansen G A, Fr ystein T, Hjertaker B T, et al, A dual sensor flow imagingtomographic system, Measurement Science and Technology,1996,7(3):297~307
    [162] Hjertaker B T, Maad R, Schuster E, et al, A data acquisition and controlsystem for high-speed gamma-ray tomography, Measurement Science andTechnology,2008,19(9):094012
    [163] Maad R, Hjertaker B T, Johansen G A, et al, Dynamic characterization of ahigh speed gamma-ray tomography, Flow Measurement and Instrumentation,2010,21(4):538~545
    [164] Bieberle A, Kronenberg J, Schleicher E, et al, Design of a high-resolutiongamma-ray detector module for tomography applications, Nuclear Instrumentsand Methods in Physics Research Section A,2007,572(2):668~675
    [165] Hampel U, Hristov H V, Bieberle A, et al, Application of high-resolutiongamma ray tomography to the measurement of gas hold-up distributions in astirred chemical reactor, Flow Measurement and Instrumentation,2007,18(5-6):184~190
    [166] Hampel U, Speck M, Koch D, et al, Experimental ultra fast X-ray computedtomography with a linearly scanned electron beam source, Flow Measurementand Instrumentation,2005,16(2-3):65~72
    [167] Bieberle M, Schleicher E, Fischer F, et al, Dual-plane ultrafast limited-angleelectron beam x-ray tomography,2010,21(3):233~239
    [168] Bieberle M, Barthel F, Menz H-J, et al, Ultrafast three-dimensional x-raycomputed tomography, Applied Physics Letters,2011,98(3):034101
    [169] Fischer F, Hoppe D, Schleicher E, et al, An ultra fast electron beam x-raytomography scanner, Measurement Science and Technology,2008,19(9):094002
    [170] Hampel U, Fischer F, Schleicher E, et al, Ultra Fast Scanned Electron BeamX-Ray CT for Two-Phase Flow Measurement, An International Conference on theApplications of Computerized Tomography,2009,1050:144~150
    [171]王化祥,郝魁红,徐丽荣等,多相流分相含率检测,仪器仪表学报,2004,25(03):336~339
    [172]郝魁红,基于低能射线多相管流测量技术研究:[博士学位论文],天津;天津大学,2004
    [173]王化祥,戴鹏,郝魁红等,基于Geant4的多相流CT系统优化设计,天津大学学报,2008,11(3):1293~1298
    [174]郝魁红,赵林,曹咏娜等,基于CdZnTe低能探测器的γ射线16通道探测系统,核技术,2008,31(11):869~872
    [175] Meyer-Baese U(美)著,刘凌译,数字信号处理的FPGA实现,北京:清华大学出版社,2006
    [176]席成洲,一种开放的工业计算机标准—CompactPCI,测控技术,1998,17(1):7~11
    [177]冯慈璋,马西奎,工程电磁场导论,北京:高等教育出版社,2000
    [178]刘国强,赵凌志,蒋继娅,Ansoft工程电磁场有限元分析,北京:电子工业出版社,2005
    [179]毕德显,电磁场理论,北京:电子工业出版社,1985
    [180]张志强,董峰,许聪,用于气液两相流测量的正弦电流激励源的设计,电源技术,2010,34(7):687~690
    [181]张志强,张金波,基于DDS/SOPC的谐波信号发生器的设计,自动化与仪表,2008(8):16~21
    [182] Zhang Z Q, Dong F, A harmonic signal generator based on DDS and SOPC,Chinese Control and Decision Conference (CCDC),2010,1542~1547
    [183] Ross A S, Saulnier G J, Newell J C, et al, Current source design for electricalimpedance tomography, Physiological Measurement,2003,24(2):509~516
    [184]史学涛,董秀珍,秦明新等,电阻抗参数成像数据采集系统中三种电流—电压转换器的比较,第四军医大学学报,2001,22(1):72~74
    [185]张志强,基于工业标准系统总线的数字化截面数据采集系统:[硕士学位论文],天津;天津大学,2009
    [186]刘军文,基于单电极激励模式的电阻层析成像技术的研究:[硕士学位论文],天津;天津大学,2005
    [187]赵进创,王师等,杂散电容对电容层析成像用电容/电压转换电路灵敏度的影响探讨,仪器仪表学报,2002,22(1):39~41
    [188]任晓容,脉冲信号电缆驱动电路传输性能分析,电子工程师,2002,28(9):32~34
    [189]董峰,电阻层析成像技术在两相流管道测量中的应用:[博士学位论文],天津;天津大学,2002
    [190]王启伟,韩骏,董峰,基于AD7366/AD7367的高速数据采集模块设计,电子技术应用,2008,34(12):89~91
    [191]钱亚明,蒋傲等,基于DSP和FPGA的全数字调制解调器,电子测量技术,2003,15(1):25~26
    [192] Smith R W M, Freeston I L, Brown B H, Sinton A M, Design of a Phasesensitive Detector to Maximize Signal to Noise Ratio in the Presence of GaussianWideband Noise, Measurement Science and Technology,1992,3:1054-1062
    [193]曲志刚,王化祥,勒世久,数字化生物电阻抗成像系统,电子测量与仪器学报,2006,20(4):10~14
    [194] Abouelwafa M S A, Kendall E J M, The Use of Capacitance Sensors forPhase Percentage Determination in Multiphase Pipelines, IEEE Transactions onInstrumentation and Measurement,1980,29(1):24~27
    [195] Hammer E A, Tollefsen J, Olsvik K, Capacitance transducers fornon-intrusive measurement of water in crude oil, Flow Measurement andInstrumentation,1989,1(1):51~58
    [196] Crown C T, Multiphase Flow Handbook, CRC press,2005
    [197] Gamio J C, A comparative analysis of single-and multiple-electrodeexcitation methods in electrical capacitance tomography, Measurement Scienceand Technology,2002,13(12):1799~1809
    [198] Da Silva M J, Schleicher E, Hampel U, Capacitance wire-mesh sensor forfast measurement of phase fraction distrbutions, Measurement Science andTechnology,2007,18(7):2245~2251
    [199] Da Silva M J, Hampel U, A field-focusing imaging sensor for fastvisualization of multiphase flows, Measurement Science and Technology,2009,20(10):104009
    [200] Demori M, Ferrari V, Strazza D, et al, A capacitive sensor system for theanalysis of two-phase flows of oil and conductive water, Sensor and Actuators A:Physical,163(1):172~179
    [201] Johnson I D, Method and apparatus for measuring water in crude oil, UnitedState Patent, No4,644,263,1987
    [202] Prasser H-M, Boettger A, Zschau J, A new electrode-mesh tomograph forgas–liquid flows, Flow Measurement and Instrumentation,1998,9(2):111~119
    [203] Prasser H-M, Scholz D, Zippe C, Bubble size measurement using wire-meshsensors, Flow Measurement and Instrumentation,2001,12(4):299~312
    [204] Richter S, Aritomi M, Prasser H-M, et al, Approach towards spatial phasereconstruction in transient bubbly flow using a wire-mesh sensor, InternationalJournal of Heat and Mass Transfer,2002,45(5):1063~1075
    [205] Prasser H-M, Krepper E, Lucas D, Evolution of the two-phase flow in avertical tube—decomposition of gas fraction profiles according to bubble sizeclasses using wire-mesh sensors, International Journal of Thermal Sciences,2002,41(1):17~28
    [206] Prasser H-M, Misawa M, Tiseanu I, Comparison between wire-mesh sensorand ultra-fast X-ray tomograph for an air–water flow in a vertical pipe, FlowMeasurement and Instrumentation,2005,16(2-3):73~83
    [207] Lucas D, Krepper E, Prasser H-M, Development of co-current air–water flowin a vertical pipe, International Journal of Multiphase Flow,2005,31(12):1304~1328
    [208] Manera A, Prasser H-M, Lucas D, et al, Three-dimensional flow patternvisualization and bubble size distributions in stationary and transient upwardflashing flow,2006,32(8):996~1016
    [209] Fuangworawong N, Kikura H, Aritomi M, et al, Tomographic imaging ofcounter-current bubbly flow by wire mesh tomography, Chemical EngineeringJournal,2007,130(2-3):111~118
    [210] Manera A, Ozar B, Paranjape S, et al, Comparison between wire-meshsensors and conductive needle-probes for measurements of two-phase flowparameters, Nuclear Engineering and Design,2009,239(9):1718~1724
    [211] Da Silva M J, Thiele S, Abdulkareem L, et al, High-resolution gas–oiltwo-phase flow visualization with a capacitance wire-mesh sensor, FlowMeasurement and Instrumentation,2010,21(3):191~197
    [212] Szalinski L, Abdulkareem L A, Da Silva M J, Comparative study of gas–oiland gas–water two-phase flow in a vertical pipe, Chemical Engineering Science,2010,65(12):3836~3848
    [213] Azzopardi B J, Abdulkareem L A, Zhao D, et al, Comparison betweenElectrical Capacitance Tomography and Wire Mesh Sensor Output forAir/Silicone Oil Flow in a Vertical Pipe, Industrial&Engineering ChemistryResearch,2010,49(18):8805~8811
    [214] Da Silva M J, Hampel U, Arruda L V R, et al, Experimental investigation ofhorizontal gas-liquid slug flow by means of wire-mesh sensor, Journal of theBrazilian Society of Mechanical Sciences and Engineering,2011,33(special):237~242
    [215] Sharaf S, Da Silva M J, Hampel U, et al, Comparison between wire meshsensor and gamma densitometry void measurements in two-phase flows,Measurement Science and Technology,2011,22(10):104019(13pp)
    [216]张朝宗,郭志平,张朋,等,工业CT技术和原理,北京:科学出版社,2009
    [217] Chaouki J, Larachi F, Dudukovic M P, Non-Invasive Monitoring ofMultiphase Flows, Elsevier,1997
    [218]庄天戈,CT原理与算法,上海:上海交通大学出版社,1992
    [219] Serizawa A, Kataoka I, Michiyoshi I, Turbulence structure of air-waterbubbly flow II—local properties, International Journal of Multiphase Flow,1975,2(3):235~246
    [220] Zun I, Transverse migration of bubbles influenced by walls in vertical bubblyflow, International Journal of Multiphase Flow,1980,6(6):583~588
    [221] Grace J R, Shapes and velocities of bubbles rising in infinite liquid, ChemicalEngineering Research and Design,1973,51:116~120
    [222] Bhaga D, Weber M E, Bubbles in viscous liquids: shapes, wakes andvelocities, Journal of Fluid Mechanics,1981,105:61~85
    [223] Tomiyama A, Struggle with computational bubble dynamics, MultiphaseScience and Technology,1998,10(4):369~405
    [224] Tomiyama A, Tamai H, Zun I, et al, Transverse migration of single bubbles insimple shear flows, Chemical Engineering Science,2002,57(11):1849~1858
    [225] Wellek R M, Agrawal A K, Skelland A H P, Shape of liquid drops moving inliquid media, AIChE Journal,1966,12(5):854~862
    [226] Lucas D, Tomiyama A, On the role of the lateral lift force in poly-dispersedbubbly flows, International Journal of Multiphase Flow,2011,37(9):1178~1190
    [227] Beck M S, Plaskowski A, Cross Correlation Flowmeters: Their Design andApplication, Bristol England: IOP Publishing Ltd.,1987
    [228] Liu T J, Bankoff S G, Structure of air-water bubbly flow in vertical pipe—I.Liquid mean velocity and turbulence measurements, International Journal of Heatand Mass Transfer,1993,36(4):1049~1060
    [229] Fernandes R C, Semiat R, Dukler A E, Hydrodynamic Model for Gas LiquidSlug Flow in Vertical Tubes, AIChE Journal,1983,29(6):981~989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700