旁路节流调速系统负载变化对液压缸压力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以单出杆液压缸为执行元件的旁路节流调速系统为研究对象,在旁路上分别串接节流阀和调速阀。当负载发生阶跃变化时,对液压缸无杆腔压力p_1的变化进行了试验研究。
     通过试验研究得出系统在不同的流量阀开度、不同溢流阀限定压力下,给系统施加不同的阶跃负载信号,液压缸无杆腔压力p_1的动态变化规律。
     当旁路节流调速系统的旁路上串接节流阀时:
     在固定某一节流阀开度、固定某一溢流阀限定压力、固定某一液压缸活塞工作位置的情况下,随着阶跃负载的增加,液压缸无杆腔压力p_1的超调量和调整时间增加;上升时间和峰值时间减小。
     在固定某一溢流阀限定压力、固定某一液压缸活塞工作位置,固定某一阶跃负载的情况下,随着节流阀开度的增加,液压缸无杆腔压力p_1的超调量和调整时间减小;上升时间和峰值时间增加。
     当旁路节流调速系统的旁路上串接调速阀时:
     液压缸无杆腔压力p_1的动态变化规律与旁路节流调速系统的旁路上串接节流阀时液压缸无杆腔压力p_1的动态变化规律相同。
     通过试验研究得出:旁路节流调速系统中液压缸无杆腔压力p_1的最大超调量选取的经验表格、旁路节流调系统中液压元件主参数(额定压力)计算公式以及选择方法。
     在对旁路节流调速系统液压缸无杆腔压力p_1随负载变化的动态特性进行理论分析时,用解析法建立了以负载F(s)为输入,压力P_1(s)为输出的数学模型,进行时间响应分析,其理论分析结果与试验结果相吻合。
Use the throttle speed governing system with by-pass oil way in which the hydraulic cylinder was the executive as research object in this thesis , the trial research about the effect on the pressure p1 of the hydraulic cylinder chamber without piston-rod when series-connecting throttle or timing valve on the by-pass oil way under the step load changing have made.
    Accorded to the trial research, under different flow area of flow valve and different adjusted pressure of relief valve , conclusion that the regulation of the pressure pt of the hydraulic cylinder chamber without piston-rod varied with the change of step load were as follows:
    When the throttle was series-connected on the by-pass oil-line in the throttle speed governing system with by-pass oil way :
    Under the same fixed flow area , the same settled pressure adjusted by the relief valve and piston-rod in the same fixed position in the hydraulic cylinder , with the incremental value of step load, the pressure p1 highly-adjusted capacity of the hydraulic cylinder chamber without piston-rod and the adjustive time all increased, meanwhile, it's time of rising and peak value time all decreased.
    Under the same settled pressure adjusted by the relief valve, piston-rod in the same fixed position in the hydraulic cylinder and the same fixed value of the step load, with the incremental value of the flow area of the throttle valve, the pressure p1 highly-adjusted capacity of the hydraulic cylinder chamber without piston-rod and the adjustive time all decreased. At the same time , it's time of rising and peak value time all increased.
    When the timing valve was series-connected on the by-pass oil-line in the throttle speed governing system involving by-pass oil way :
    The dynamic changing rule of the pressure p1 of the hydraulic cylinder chamber without piston-rod is just like that of the Pressure p1 of the hydraulic
    
    
    
    cylinder chamber without piston-rod in the throttle speed governing system with the throttle series-connected in the by-pass oil way
    Through trial research, the calculation formula that the pressure highly-adjusted capacity of the hydraulic cylinder chamber without piston-rod varied with the change of step load and the formula about hydraulic elements main parameter (rated pressure) were both made, which had important valuation in selecting the main parameter about this hydraulic system.
    This thesis also have constructed mathematic model based on the analytic method, which used the load as input and the pressure as output. At the same time, it have made theoretic analysis of time response. The theoretic analysis was highly agreed with the experimental result.
引文
1.路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002.
    2.雷天觉.新编液压工程手册[M].北京:北京理工大学出版社,1998.
    3.李永堂.液压系统建模与仿真[M].北京:冶金工业出版社,2003.
    4.王广怀.液压技术应用[M].哈尔滨:哈尔滨工业大学出版社,2001.
    5.贾铭新.液压传动与控制[M].北京:国防工业出版社,2001.
    6.章宏甲.液压传动[M].北京:机械工业出版社,2000.
    7.徐元昌.流体传动与控制[M],上海:同济大学出版社,1998.
    8.李志红.出口节流调速系统负载变化对液压缸压力的影响.湖南农业大学硕士毕业论文 2003.7.
    9.邓子龙.QUY50A液压履带起重机提升机构液压系统动态仿真[J].抚顺石油学院学报,第22卷第3期:56~58.
    10.日本液压气动协会编.液压气动手册[M].北京:机械工业出版社,1984.
    11.赵荣.旁路节流调速在CC1000履带起重机回转制动回路中的应用[J].鞍钢技术,1997(02):57~59.
    12.李壮云.葛宜远.液压元件与系统[M].北京:机械工业出版社,1998.1.
    13.朱世久.节流阀和节流调速回路的刚度[J].山东机械,1995(01):46~48.
    14.刘冀民.出口节流调速元件主参数的选择,工程机械,2001(10):34~35。
    15.袁朝辉.液压脉冲设备瞬态分析与试验.机床与液压[J].2004(02):51~53.
    16.吴根茂.实用电液比例技术[M].杭州:浙江大学出版社,1993.
    17.刘世勋.国外液压控制技术发展动向[J].液压与气动,1996(04):3~4.
    18.李运华.近代液压伺服系统控制策略的县长与发展.液压与气动,1995(01):3~6.
    19.许仰曾.液压大系统的性能参数法.甘肃工业大学学报.1988,14(3)
    20.宋俊.液压元件优化[M].北京:机械工业出版社,1999.
    21.王利荣.液压回路动态参数检测系统的研制[J].湖北工学院学报,1993(02):307~310.
    22.张长奇.智能液压仿真系统的研究与开发[J].农机化研究,2003(03):56~58
    23.高佩川.液压技术实验系统测控仿真研究[J].机床与液压,2002(06):245~246.
    
    
    24. Iyengar S. K. R. etal. A Systemetic Approach to the Analysis of Complex Fluid Power Systems. Proceedings of the Fourth International Fluid Power Symposium, 1975.
    25. J. D.Stringer. Hydraulic Analysis[M], Macmillan Press Ltd, 1976.
    26. Dransfiel D P. Hydraulic control systems—Design and Analysis of their Dyanmics. Berlin Springer-Verlag, 1981.
    27.王士刚.液压系统动态仿真模型可视化建模技术研究[J].大连理工大学学报,41卷第2期:201~206.
    28.吴宛青.油船货油阀液压系统的建模与数值仿真[J].大连海事大学学报,第25卷第11期:34~38.
    29. Alleyne, A. (1996). Nonlinear force control of an electro-hydraulic ctuator.Proceedings of the Japan/USA symposium on yexible automation, vol. 1 (pp. 193-200). New York: ASME.
    30. Alleyne, A., & Liu, R.(1999b). Nonlinear force/pressure tracking of anelectrohydraulic actuator, Proceedings of 1999 IFAC world congress, Beijing, China, vol. B(pp. 469-474).
    31.宋俊.关于阀控液压缸建模问题的探讨[J].机床与液压,2002(05):73~74.
    32.江小霞.液压控制系统的动念测试系统[J].液压与气动,2002(11):29~31.
    33.王艾伦.一个复杂非线性液压系统的建模和仿真[J].机械科学与技术,第18卷第4期:521~524.
    34.石红雁.基于面向对象编程技术的工程机械液压系统动态仿真[J].建筑机械,
    35.P.德兰斯菲尔德[澳大利亚]著,大连工学院液压教研室[译].液压控制系统的设计与动态分析[M].北京:科学出版社,1987.
    36.蔡廷文.液压系统现代建模方法[M].北京:中国标准出版社,2002.
    37.李永常.用组合建模理论研究液压锤液压系统动态特性[J].重型机械,1996(04):24~28.
    38.林廷圻,洪国辉.复杂液压系统模型化的系统分析法探讨.全国流体控制工程研究会首届年会,1982.7.
    39.拉塞尔·W·亨克.流体动力回路及系统导论[M],北京:机械工业出版社,1985.
    40.周敏.溢流调速回路压力——流量特性研究[J].液压与气动,1998(01):9~10.
    
    
    41.宋俊.关于阀控液压缸建模问题的探讨[J].机床与液压,2002(05):73~74.
    42.皮爱斌.液压分支管路瞬态响应简化建模方法与实验[J].华南理工大学学报(自然版),1989(04):75~85.
    43.王艾伦.一个复杂非线性液压系统的建模和仿真[J].机械科学与技术,第18卷 第4期:521~524.
    44.林崧.液压系统计算机辅助设计[M].西安:西北工业大学出版社,1992.
    45. K. M. PASSINO and S. YURKOVICH 1998 Fuzzy Control. Reading, MA, Adisson-Wesley.
    46. Heintze, H. (1997). Design and control of a hydraulically actuated industrial brick laying robot. Ph. D. dissertation, Mechanical Engineering, TU Delft, The Netherlands 2001(11): 41~43.
    47. Dean C Kanopp, Ronald C Rosenberg. System Dynamics: AU-nified Approach, John Wiley&Sons, 1975.
    48.w.霍夫曼著,陈鹰译.液压元件与系统的动态仿真[M].杭州:浙江大学出版社,1998.
    49.陈鹰.液压仿真技术的新进展[J].液压与气动,1997(01):4~6.
    50. Ronald C Rosenberg, Dean CKamopp. Introduction to Physical System Dynamics. Mc Graw-Hill Book Company, 1983.
    51. Iyengar SKR. Application of Largescale Systems Analysis Technigues to the Analysis and Design of Hydraulic Ser-vomechanisms. Proceedings of the National Conference of Fluld Power, Volume 29, Annual Meeting, 1975.
    52. A. Ellman, M.J. Vilenius, Methods for simulating the steady-state and dynamic behavior of two-way cartridge valve circuits, SAE J. Commer. Vehicles 99(1990) 384-393.
    53.邓起孝等.流体液压系统现代设计方法[M].北京:中国建筑工业出版社,1985.
    54. Shearer J L. Dynamic Madelling and Control of Enginerfing System. MacMillan Publishing co., 1990.
    55. Yang-Zeng Xu. An FPRC Task Force Report on Performance Rating Approach to Hydraulic component Modeling. The BFPR Journal. 1986, 19: 201—280.
    56.罗艳蕾.利用Matlab实现液压节流调速系统动态特性仿真[J].机械与电子,2001(04):73~75.
    
    
    57.施阳.MATLAB语言精要及SIMULINK动态仿真工具[M].西安:西北工业大学出版计,1997.
    58.高饮和.利用SIMULINK实现液压系统动态仿真[J].电子技术,1999(09):29~30.
    59.刘长年.压伺服系统的分析与设计[M].北京:科学出版社,1987.
    60.杨文华.液控原理[M].北京:学术书科出版社,1990.
    61.王春行.液压控制系统[M].北京:机械工业出版社,1999.
    62.孙虎章.自动控制原理[M].北京:北京广播电视大学出版社,1987.
    63.杨叔子.机械工程控制基础(第四版)[M].武汉:华中科技大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700