微型湿空气透平循环动态模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿空气透平(Humid Air Turbine,简称HAT)循环是新型燃气轮机循环的重要研究发展方向之一。自二十多年前被提出以来,HAT循环的研究经历了循环分析、关键技术研发等过程,目前正在向微、小型系统的原型实验、示范验证迈进。作为机组特性研究的一种手段,动态性能研究在机组运行分析、故障诊断、控制系统的设计调试以及人员培训等工作中都起着重要作用。随着HAT循环的研究发展,从微、小型规模起步进行HAT循环系统动态性能研究,掌握其动态特性及其运行规律成为亟待开展的工作。
     针对这一问题,本文建立了微型HAT循环的动态及其控制系统模型;分析了微燃机简单、回热和HAT循环在启动、变负荷和停机各个典型动态过程的动态性能,比较了控制系统模式、参数以及系统转动惯性、容积惯性和热惯性等因素对系统动态性能的影响。在此基础上,结合本实验室的百千瓦级微型HAT循环原型试验台试验数据,验证了本文动态模拟的准确性。
     本文的主要工作及结果如下:
     ①构建了微型HAT循环各单元部件动态模型,包括压气机、燃烧室、透平、换热器(气/气换热器—回热器和气/水换热器—后冷器、省煤器)、湿化器、转轴转动惯性、容积惯性、气道热惯性、燃料供给系统以及控制系统模型。
     ②建立了微型HAT循环的核心单元—微燃机简单循环的动态模型,进行了启动、变负荷和停机过程等各个典型动态过程的模拟,分析了控制系统模式、参数以及系统转动惯性、容积惯性和热惯性等因素对系统动态性能的影响。结果表明,各种惯性越小,简单循环各个动态过程的响应越快;启动和变负荷动态模拟中可以忽略容积惯性的影响,而在停机过程中,应考虑高温区容积惯性的影响;各个典型过程中均必须考虑热惯性的影响,尤其是高温气道热惯性的影响;在负荷扰动幅度最大的甩负荷过程中,简单循环的转速超调量仍维持在合理的范围内。
     ③建立了微燃机回热循环的动态模型,分析了微燃机简单和回热循环在各个典型动态过程中的差异。结果表明,回热器的热惯性是影响系统平衡稳定性的重要因素,在动态模拟中不能忽略;甩负荷过程中,回热循环必须采取燃料阀门控制措施,以防止较高的转速超调量。
     ④建立了微型HAT循环的动态模型,分析了湿式(启动开始即集成湿化过程)和干式(先以回热状态启动,再切换至湿化状态)两种启动模式的动态特性,对启动、变负荷等各个典型动态过程进行了模拟,并与微燃机简单、回热循环进行了对比。结果表明,干式和湿式两种启动模式均可快速启动;相对于简单、回热循环,新设计HAT循环的启动过程中的压气机运行点远离喘振线;HAT循环中较大的热惯性使得其在各个动态过程中的转速超调量较大;在甩负荷过程中,HAT循环除应采取阀门控制措施外,还需要采取压气机后放气措施,才能有效防止较高的转速超调量。
     ⑤基于极大似然估计法,利用微燃机试验数据反推了厂商保密的压气机特性方程参数、微燃机部件设计参数等特性信息,进而建立了百千瓦级HAT循环原型试验台的动态模型。对各个动态过程的模拟数据和试验数据进行对比,验证了本文动态模拟的准确性。
     上述结果可为微型HAT循环的发展和应用以及控制系统设计提供一定的参考。
Humid Air Turbine (HAT) cycle is an important research direction of new advanced gas turbine cycle. Since been proposed twenty years ago, the thermodynamic analysis and key technology research of HAT cycle have been carried out, and the cycle research will focus on the prototype experiment and demonstration in the near future. As a means of plant performance research, dynamic simulation plays an important role in the plant operation, fault diagnosis, control system design, staff training and so on. With the development of HAT cycle, the dynamic simulation and the dynamic performance analysis of small HAT cycle become important issues to be solved.
     Aiming at this problem, the dynamic model of micro HAT cycle with control system was established; the dynamic performance of simple cycle, recuperative cycle and HAT cycle was analyzed and compared during the startup, load change and shutdown processes; the system performance with different controller modes and parameters, different rotational inertia, volume inertia and thermal inertia was compared respectively. Finally, the dynamic performance during those typical dynamic processes was verified by the results from operating experience in the100kW micro HAT prototype experiment device. The main works and conclusions are as follows:
     1. Key components models of micro HAT cycle were built, including compressor, combustor, turbine, heat exchanger (gas-gas heat exchanger:recuperator and gas-liquid heat exchanger:aftercooler and economizer), humidifier, shaft rotational inertia model, volume inertia model, thermal inertia model, fuel supply system and control system.
     2. The dynamic model of micro simple cycle, which is the key unit of the micro HAT cycle, was built; the dynamic performance of startup, load change and shutdown was analyzed, and the system performance with different controller modes and parameters, different rotational inertia, volume inertia and thermal inertia was compared respectively. It is proved that, a smaller inertia yields a faster response of simple cycle during those typical dynamic processes; during the startup and load change processes, the volume inertia can be ignored, but the volume inertia of the high temperature zone should be considered during the shutdown process; and the thermal inertia should be considered during all those dynamic processes, especially the high thermal inertial; the overspeed of the simple cycle is maintained within reasonable range during the load rejection process, which is the largest load disturbance.
     3. The dynamic model of the micro recuperative cycle was built, the differences between simple and recuperative cycle during those typical dynamic processes, were compared. It is proved that, the thermal inertia of recuperator is so large that cannot be ignored. During the load rejection process, recuperative cycle have to control the gas valve to avoid the high overspeed.
     4. The dynamic model of micro HAT cycle was built, the dynamic performance of two starting sequences, one with the humidification process fully integrated from the beginning (humid mode) and one without (dry mode), was compared, and the differences of simple cycle, recuperative cycle and HAT cycle were compared during startup and load change processes. It is proved that, the two starting sequences can both start quickly. The large thermal inertia of the HAT cycle makes a high overspeed during load change process. During the load rejection process, except for the gas valve control method, it is has to bleed off the compressed air from the compressor, in order to avoid the high overspeed.
     5. Based on the maximum likelihood estimation method, the compressor characteristic model parameters and the design parameters of micro gas turbine's components were estimated from the experimental data; with this information, the dynamic model of the micro HAT cycle based on micro gas turbine was built, and the dynamic simulation processes were validated by the experimental data of the100kW micro HAT prototype experiment device.
     These conclusions provide references for the development, application and control system design of the HAT cycle.
引文
[1]BP, Energy Outlook 2030 [R]. London, United Kingdom,2011 http://www.bp.com.
    [2]林汝谋,蔡睿贤,张娜.跨世纪的HAT热力循环[J].燃气轮机技术,1993,6(2):1-6.
    [3]JONSSON M, YAN J. Humidified Gas Turbines--A Review of Proposed and Implemented Cycles [J]. Energy,2005,30(7):1013-1078.
    [4]MICHAEL M. Combustion Engine and a Method for the Operation Thereof:USA, No.2186706 [P/OL].1940-Jan 9. http://www.freepatentsonline.com/2186706.pdf.
    [5]MORI Y, NAKAMURA H, TAKAHASHI T. A Highly Efficient Regenerative Gas Turbine System by New Method of Heat Recovery with Water Injection [C]; proceedings of the 1983 Tokyo International Gas Turbine Congress, Tokyo, Japan,1983.
    [6]RAO A D. Process for Producing Power:USA, NO.4829763 [P/OL].1989-May 16. http://www.freepatentsonline.com/4829763.pdf.
    [7]林汝谋,方钢,蔡睿贤,等.HAT循环性能分析研究[J].工程热物理学报,1993,14(2):129-132.
    [8]SZARGUT J. Cogeneration of Network Heat in the Set of a Humid Air Turbine [J]. Energy,2002, 27(1):1-15.
    [9]PARENTE J, TRAVERSO A, MASSARDO A F. Micro Humid Air Cycle:Part A— Thermodynamic and Technical Aspects [C]; proceedings of the ASME Turbo Expo 2003, Atlanta, Georgia, USA, June 16-19,2003. ASME Paper NO.GT2003-38326.
    [10]PARENTE J, TRAVERSO A, MASSARDO A F. Micro Humid Air Cycle:Part B Thermoeconomic Analysis [C]; proceedings of the ASME Turbo Expo 2003, Atlanta, Georgia, USA, June 16-19,2003. ASME Paper NO. GT2003-38328.
    [11]RYDSTRAND M C, WESTERMARK M O, BARTLETT M A. An Analysis of the Efficiency and Economy of Humidified Gas Turbines in District Heating Applications [J]. Energy,2004,29(12-15): 1945-1961.
    [12]CORRADETTI A, DESIDERI U, RAO A D, et al. A Novel Concept for Combined Heat and Cooling in Humid Gas Turbine Cycles [C]; proceedings of the 52nd ASME Turbo Expo 2007, Montreal, CANADA, May 14-17,2007. ASME Paper NO. GT2007-27718.
    [13]万逵芳.微小型湿空气透平循环研究[D].北京;中国科学院研究生院(工程热物理研究所),2009.
    [14]魏璠.开式循环吸收式热泵理论及部件实验研究[D].北京;中国科学院研究生院(工程热物理研究所),2008.
    [15]赵丽凤,刘泽龙,张世铮.整体煤气化湿空气透平(IGHAT)循环的性能分析[J].工程热物理学报,2000,21(4):413-416.
    [16]赵丽凤,张世铮,肖云汉.整体煤气化湿空气透平(IGHAT)循环的参数优化[J].工程热物理学报,2001,22(2):141-144.
    [17]庄晓杰.整体煤气化湿化燃气轮机循环热力性能分析[D].北京;中国科学院研究生院(工程热物理所),2010.
    [18]RAO A D, SAMUELSEN G S. A Thermodynamic Analysis of Tubular Solid Oxide Fuel Cell Based Hybrid Systems [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2003,125(1):59-66.
    [19]肖云汉,林汝谋,蔡睿贤.HAT循环的系统优化[J].工程热物理学报,1994,15(2):133-136.
    [20]PEDEMONTE A A, TRAVERSO A, MASSARDO A F. Experimental Analysis of Pressurised Humidification Tower for Humid Air Gas Turbine Cycles. Part A:Experimental Campaign [J]. Applied Thermal Engineering,2008,28(14-15):1711-1725.
    [21]PEDEMONTE A A, TRAVERSO A, MASSARDO A F. Experimental Analysis of Pressurised Humidification Tower for Humid Air Gas Turbine Cycles. Part B:Correlation of Experimental Data [J]. Applied Thermal Engineering,2008,28(13):1623-1629.
    [22]TRAVERSO A. Humidification Tower for Humid Air Gas Turbine Cycles:Experimental Analysis [J]. Energy,2010,35(2):894-901.
    [23]靳海明,蔡颐年,蔡睿贤,等.HAT循环中关键部件——饱和器实验台的研制[J].热能动力工程,1995,10(1):8-12.
    [24]孙晓红,翁史烈,王永泓,等.湿空气透平循环(HAT循环)中饱和器性能实验台的设计[J].船舶工程,1998,(2):21-23,27.
    [25]赵丽凤,张世铮,王逊.HAT循环关键部件-空气湿化器的初步实验性能[J].工程热物理学报,1999,20(6):677-680.
    [26]徐震.HAT循环空气湿化过程研究[D].北京;中国科学院研究生院(工程热物理研究所),2006.
    [27]NILSSON U, EIDENSTEN L, TOLLIN J. Applications for Evaporative Gas Turbines [M].2001.
    [28]LINDQUIST T, THERN M, TORISSON T. Experimental and Theoretical Results of a Humidification Tower in an Evaporative Gas Turbine Cycle Pilot Plant [C]; proceedings of the ASME Turbo Expo 2002, Amsterdam, The Netherlands,2002. ASME Paper NO. GT-2002-30127.
    [29]DALILI F. Humidification in Evaporative Power Cycles [D]. Stockholm; Royal Institute of Technology,,2003.
    [30]AGREN N D, WESTERMARK M O, BARTLETT M A, et al. First experiments on an evaporative gas turbine pilot power plant:Water circuit chemistry and humidification evaluation [C]; proceedings of the 45th International Gas Turbine and Aeroengine Congress and Exhibition, Munich, Germany, May 08-11,2000.
    [31]LINDQUIST T O, ROSEN P M, TORISSON T. Evaporative Gas Turbine Cycle-a Description of a Pilot Plant and Operating Experience [C]; proceedings of the ASME Advanced Energy Systems Division,2000. AES-Vol.40,511-520.
    [32]HIGUCHI S, KOGANEZAWA T, HORIUCHI Y, et al. Test Results From the Advanced Humid Air Turbine System Pilot Plant-Part 1:Overall Performance [C]; proceedings of the ASME Turbo Expo 2008, Berlin, Germany,2008. ASME Paper NO. GT2008-51072.
    [33]ARAKI H, HIGUCHI S, KOGANEZAWA T, et al. Test Results from the Advanced Humid Air Turbine System Pilot Plant-Part 2:Humidification, Water Recovery and Water Quality [C]; proceedings of the ASME Turbo Expo 2008, Berlin, Germany, June 9-13,2008. ASME Paper NO. GT2008-51089.
    [34]ARAKI H, KOGANEZAWA T, MYOUREN C, et al. Experimental and Analytical Study on the Operation Characteristics of the AH AT System [J]. Journal of Engineering for Gas Turbines and Power,2012,134(5):051701.
    [35]NAKANO S, KISHIBE T, ARAKI H, et al. Development of a 150 kW Microturbine System Which Applies the Humid Air Turbine Cycle [C]; proceedings of the ASME Turbo Expo 2007, Montreal, Canada,2007. ASME Paper NO. GT2007-28192.
    [36]KATAGIRI Y, ARAKI H, KOGANEZAWA T, et al. Humidity and Plant Control System for the Advanced Humidified Air Turbine Pilot Plant [C]; proceedings of the International Gas Turbine Congress 2007, Tokyo,2007. Paper No.TS-013.
    [37]倪维斗,徐向东,李政,等.热动力系统建模与控制的若干问题[M].北京:科学出版社,1996.
    [38]崔凝.重型燃机联合循环机组实时动态仿真模型研究与应用[D].保定;华北电力大学,2008.
    [39]赵巍.燃气轮机建模仿真一体化支持系统的研究[D].上海;上海交通大学,2008.
    [40]谢志武,陈德来,翁史烈.面向对象的燃气轮机仿真建模:综述与展望[J].热能动力工程,1998,13(4):243-246.
    [41]谢志武,陈德来,洪波.燃气轮机稳态性能仿真的面向对象设计与实现[J].上海交通大学学报,1998,32(7):58-62.
    [42]谢志武,苏明,翁史烈.可扩展的燃气轮机仿真对象模型[J].航空动力学报,1999,14(2):143-147.
    [43]谢志武,苏明,翁史烈.燃气轮机仿真软件构造方法综述[J].海军工程大学学报,2000,(2):1-7,23.
    [44]ROWEN W I. Simplified Mathematical Representations of Heavy-Duty Gas Turbines [J]. Journal of Engineering for Power,1983,105(4):865-869.
    [45]YEE S K, MILANOVIC J V, HUGHES F M. Overview and Comparative Analysis of Gas Turbine Models for System Stability Studies [J]. IEEE Transactions on Power Systems,2008,23(1): 108-118.
    [46]韦思亮,刘尚明,倪维斗.机械驱动用单轴燃气轮机动态模型研究[J].热能动力工程,2001,16(3):303-307.
    [47]韦思亮,刘尚明,倪维斗.有差调节系统燃气轮机在Matlab/Simulink中的实现[J].动力工程,2001,21(6):1555-1559.
    [48]AGRESTI M, CAMPOREALE S M, FORTUNATO B. An Object-Oriented Program for the Dynamic Simulation of Gas Turbines [C]; proceedings of the ASME TURBO EXPO 2000, Munich, Germany,8-11 May,2000. ASME Paper NO.2000-GT-0042.
    [49]张俊文.单轴燃气轮机动态特性研究[D].保定;华北电力大学,2005.
    [50]崔凝,王兵树,邓勇,等.重型燃机热力系统动态仿真模型[J].中国电机工程学报,2008,28(2):110-117.
    [51]王松岭,张学镭,陈海平,等.基于相似定律外推压气机通用特性曲线的方法[J].动力工程,2007,27(2):169-173,193.
    [52]马文通.燃气轮机及燃气-蒸汽联合循环在部分工况下的仿真研究[D].上海;上海交通大学,2009.
    [53]刘喜超.单轴燃气轮机动态仿真[D].重庆;重庆大学,2006.
    [54]张娜,林汝谋,蔡睿贤.压气机特性通用数学表达式[J].工程热物理学报,1996,17(1):21-24.
    [55]徐钢,林汝谋,邵艳军,等.燃气轮机建模的通用性和精细性研究[J].中国电机工程学报,2005,25(21):106-111.
    [56]冯凤珍,孙允标,余又红.基于神经网络的压气机特性计算新方法[J].计算机与数字工程,2004,32(6):45-47.
    [57]黄流军.基于神经网络的压气机特性的计算[J].柴油机设计与制造,2010,16(4):22-25,43.
    [58]CHACARTEGUI R, S NCHEZ D, MU OZ A, et al. Real Time Simulation of Medium Size Gas Turbines [J]. Energy Conversion and Management,2011,52(1):713-724.
    [59]SEKHON R. Real Time Prognostic Strategies:Application to Gas Turbines [D]. Clemson; Clemson University,2007.
    [60]SCHOBEIRI M T, ATTIA M, LIPPKE C. GETRAN:A Generic, Modularly Structured Computer Code for Simulation of Dynamic Behavior of Aero-and Power Generation Gas Turbine Engines [J]. Journal of Engineering for Gas Turbines and Power,1994,116(3):483-494.
    [61]余又红,王义,孙丰瑞,等.中冷同热循环燃气轮机动态仿真研究[J].计算机仿真,2006,23(6):32-36.
    [62]栾永军,孙鹏,俞世康.船用三轴燃气轮机起动特性研究[J].舰船科学技术,2010,32(8):105-110.
    [63]TRAVERSO A. TRANSEO Code for the Dynamic Performance Simulation of Micro Gas Turbine Cycles [C]; proceedings of the ASME Turbo Expo 2005, Nevada, USA, June 6-9,2005. ASME Paper NO. GT2005-68101.
    [64]CAMPOREALE S M, FORTUNATO B, DUMAS A. Non-linear Simulation Model and Multivariable Control of a Regenerative Single Shaft Gas Turbine [C]; proceedings of the 1997 IEEE International Conference On Control Applications, Hartford, October 5-7,1997. Paper NO. TMO43:10.
    [65]CROSA G, PITTALUGA F, TRUCCO A, et al. Heavy-duty Gas Turbine Plant Aerothermodynamic Simulation Using Simulink [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME,1998,120(3):550-556.
    [66]苏明,陈德来,张园蔚,等.一种燃气轮机模块化非线性仿真模型[J].热能动力工程,1998,13(6):435-437.
    [67]安连锁,张健,王震,等.微型燃气轮机启动特性的模拟与分析[J].电力科学与工程,2008,24(2):20-22.
    [68]张泰岩.基于微型燃气轮机的冷热电联产系统仿真[D].保定;华北电力大学,2006.
    [69]YIN J, JENSEN M K. Analytic Model for Transient Heat Exchanger Response [J]. International Journal of Heat and Mass Transfer,2003,46(17):3255-3264.
    [70]余又红,王义,孙丰瑞,等.回热循环燃气轮机中回热器的动态特性研究[J].海军工程大学学报,2005,17(2):19-22.
    [71]ZHANG H S, WENG S L, SU M. Dynamic Modeling and Simulation of Distributed Parameter Heat Exchanger [C]; proceedings of the ASME Turbo Expo 2005, Nevada, USA, Jun 06-09,2005. ASME Paper NO. GT2005-68293.
    [72]YONGWEN L. Dynamic Modeling and Simulation of Saturators for Humid Air Turbine Cycle [C]; proceedings of the ASME Turbo Expo 2004, Vienna, Austria, June 14-17,2004. ASME Paper NO. GT2004-53415.
    [73]刘永文,苏明,翁史烈.喷水塔饱和器的动态建模与仿真[J].热能动力工程,2004,19(3):285-287.
    [74]杨文滨,苏明.HAT循环中饱和器的动态仿真[J].计算机仿真,2005,22(2):44-47.
    [75]JOHNSON K. Study of humidification and condensation dynamics in an evaporative gas turbine cycle [D]. Lund,2002.
    [76]CEVASCO R, PARENTE J, TRAVERSO A, et al. Off-Design and Transient Analysis of Saturators for Humid Air Turbine Cycles [C]; proceedings of the ASME Turbo Expo 2004, Vienna, Austria, June 14-17,2004. ASME Paper NO. GT2004-53315.
    [77]CARATOZZOLO F, TRAVERSO A, MASSARDO A F. Development and Experimental Validation of a Modelling Tool for Humid Air Turbine Saturators [C]; proceedings of the ASME Turbo Expo 2010, Glasgow, UK, June 14-18,2010. ASME Paper NO. GT2010-23338.
    [78]王敏,李杨,李淑英,等.基于Matlab/Simulink的单轴燃气轮机动态仿真[J].燃气轮机技术,2006,19(4):47-50.
    [79]SEBORG D E, EDGAR T F, MELLICHAMP D A.过程的动态特性与控制[M].第二版ed.北京:电子工业出版社,2006.
    [80]王静,崔国民,李美玲.带回热微型燃气轮机系统动态过程分析[J].热能动力工程,2004,(06):562-566+655.
    [81]王静.能源岛三联供系统动静态仿真研究[D];上海理工大学,2004.
    [82]郎朗.9FA燃气轮机控制系统分析[D].长春;吉林大学,2011.
    [83]郭霞,刘尚明,韦思亮.发电用单轴燃气轮机的模糊控制[J].清华大学学报(自然科学版),2000,40(11):30-34.
    [84]DAHER R. Application of Artificial Intelligence in Gas Turbine Control and Modeling [D]. Ottawa; Carleton University,2005.
    [85]郭会霞.燃气轮机启动控制策略研究与仿真[D].保定;华北电力大学(河北),2009.
    [86]曲娜.参数自整定模糊PID微型燃机转速控制系统的设训[C]; proceedings of the 2006北京地区高校研究生学术交流会,2006.
    [87]屠秋野,唐狄毅.涡扇发动机起动模型及起动控制规律的研究[J].推进技术,1999,20(2):21-24.
    [88]王占学,乔渭阳,李文兰.基于部件匹配技术的涡扇发动机起动过程数值模拟[J].航空动力学报,2004,19(4):444-448.
    [89]韩同来.涡扇发动机起动性能模拟[D].西安;西北工业大学,2005.
    [90]王占学,乔渭阳,李文兰.涡扇发动机起动过程气动稳定性的数值计算[J].推进技术,2006,27(3):221-224.
    [91]王永杰.航空燃气涡轮发动机起动过程数值模拟研究[D].西安;西北工业大学,2006.
    [92]冯维林.涡扇发动机起动过程的数值模拟[D].西安;西北工业大学,2006.
    [93]唐宏刚,蔡元虎.某型涡扇发动机起动和加速过程数值模拟[J].推进技术,2007,28(3):264-268.
    [94]吴虎,冯维林.某型涡扇发动机起动过程数值模拟[J].航空动力学报,2007,22(12):2068-2072.
    [95]郑绪生.某型涡轴发动机起动建模技术研究[D].南京;南京航空航天大学,2005.
    [96]周文祥.航空发动机及控制系统建模与面向对象的仿真研究[D].南京;南京航空航天大学,2006.
    [97]周文祥,黄金泉,窦建平.涡扇发动机部件级起动模型[J].航空动力学报,2006,21(2):248-253.
    [98]张天宏,黄向华,曹谦.微型涡轮发动机控制系统仿真及台架试验[J].推进技术,2006,27(5):445-449.
    [99]刘磊.涡扇发动机部件级起动建模技术研究[D].南京;南京航空航天大学,2009.
    [100]刘建勋,阎景波,魏东,等.基于流动相似理论的涡扇发动机起动过程分析[J].燃气涡轮试验与研究,2009,22(2):1-4.
    [101]朴英.航空燃气涡轮发动机起动性能分析[J].航空动力学报,2003,18(6):777-782.
    [102]时瑞军,周剑波,张秋贵,等.单轴涡喷发动机起动过程数学建模研究[J].燃气涡轮试验与研究,2010,23(3):1-4.
    [103]吴虎,贾海军,冯维林.供油规律对某型加力涡扇发动机起动过程影响[J].西北工业大学学报,2010,28(1):113-117.
    [104]石恒,龚建政,余又红.某型燃气轮机起动过程仿真[J].燃气轮机技术,2010,23(2):57-60.
    [105]龚建政,缪四春,石恒.船用燃气轮机启动过程仿真[J].舰船科学技术,2010,32(5):116-118,142.
    [106]KIM J H, SONG T W, KIM T S, et al. Dynamic Simulation of Full Startup Procedure of Heavy-Duty Gas Turbines [J]. Journal of Engineering for Gas Turbines and Power,2002,124(3): 510-516.
    [107]KOLKA Z, KALOUS J, BIOLKOVA V, et al. Simulation Model of Microturbine Unit [C]; proceedings of the 2011 15th IEEE International Conference on Intelligent Engineering Systems (INES),23-25 June,2011.431-434.
    [108]KIM J H, SONG T W, KIM T S, et al. Model Development and Simulation of Transient Behavior of Heavy Duty Gas Turbines [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME,2001,123(3):589-594.
    [109]余义红,孙丰瑞,等.基于Matlab的面向对象的燃气轮机动态仿真研究[J].燃气轮机技术,2003,16(1):53-56.
    [110]贾省伟.舰船双轴燃气轮机性能仿真[D].武汉;华中科技大学,2006.
    [111]黄荣华,贾省伟,梁前超,等.双轴燃气轮机动态仿真模型研究[J].华中科技大学学报(自然科学版),2007,35(4):92-95.
    [112]冉军辉.船用三轴燃气轮机过渡过程研究[D].哈尔滨;哈尔滨工程大学,2009.
    [113]P REZ A A G. Modelling of a Gas Turbine with Modelica [D]. Lund; Lund Institute of Technology, 2001.
    [114]高建强,裴闪,吴迎光.单轴燃气轮机模块化仿真模型及其运行特性研究[J].华北电力大学学报,2006,33(5):52-55.
    [115]魏静,吕剑虹,向文国,等.发电用单轴燃气轮机动态模型研究[J].能源研究与利用,2007,(5):20-23.
    [116]CAMPOREALE S M, FORTUNATO B, MASTROVITO M. A High-Fidelity Real-Time Simulation Code of Gas Turbine Dynamics for Control Applications [C]; proceedings of the ASME TURBO EXPO 2002, Amsterdam, The Netherlands,3-5 June,2002. ASME Paper NO. GT-2002-30039.
    [117]GAONKAR D N, PATEL R N. Modeling and Simulation of Microturbine Based Distributed Generation System [C]; proceedings of the 2006 IEEE Power India Conference,2006.
    [118]余涛,童家鹏.微型燃气轮机发电系统的建模与仿真[J].电力系统保护与控制,2009,37(3):27-31,45.
    [119]GRILLO S, MASSUCCO S, MORINI A, et al. Microturbine Control Modeling to Investigate the Effects of Distributed Generation in Electric Energy Networks [C]; proceedings of the Systems Journal, IEEE,2010.
    [120]JUN L J. Modeling and Simulation of Micro Gas turbine Generation System for Grid Connected Operation [C]; proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC),28-31 March,2010.1-4.
    [121]LI G, LI G, YUE W, et al. Modeling and Simulation of a Microturbine Generation System Based on PSCAD/EMTDC [C]; proceedings of the 2010 5th International Conference on Critical Infrastructure (CRIS),20-22 Sept,2010.
    [122]SAHA A K, CHO WDHURY S, CHO WDHURY S P. Modeling and Simulation of Microturbine [C]; proceedings of the International Conference on Power System Technology (POWERCON),24-28 Oct,2010.
    [123]KISH G J, LEHN P W. A Micro-Turbine Model for System Studies Incorporating Validated Thermodynamic Data [C]; proceedings of the 2011 IEEE Power and Energy Society General Meeting, San Diego, CA,24-29 July,2011.
    [124]清华大学热能工程系动力机械与工程研究所,深圳南山热电股份有限公司.燃气轮机与燃气-蒸汽联合循环装置[M].北京:中国电力出版社,2007.
    [125]SEKHON R, BASSILY H, WAGNER J, et al. Stationary Gas Turbines-A Real Time Dynamic Model with Experimental Validation [C]; proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA,14-16 June,2006. Paper NO. WeC13.1.
    [126]ROBERTS R A, BROUWER J. Dynamic Simulation of a Pressurized 220 kW Solid Oxide Fuel-Cell-Gas-Turbine Hybrid System:Modeled Performance Compared to Measured Results [J]. Journal of Fuel Cell Science and Technology,2006,3(1):18-25.
    [127]张方伟.中冷回热燃气轮机动态仿真研究[D].上海;上海交通大学,2004.
    [128]金晓航.间冷回热燃气轮机的系统仿真研究[D].上海;上海交通大学,2006.
    [129]黄育先.中冷回热燃气轮机仿真及控制策略初步探讨[D].上海;上海交通大学,2007.
    [130]TRAVERSO A, CALZOLARI F, MASSARDO A. Transient Analysis and Control System for Advanced Cycles Based on Micro Gas Turbine Technology [C]; proceedings of the ASME TURBO EXPO 2003, Atlanta, Georgia, USA, June 16-19,2003. ASME Paper NO. GT2003-38269.
    [131]AL-HINAI A, FELIACHI A. Dynamic Model of a Microturbine Used as a Distributed Generator [C]; proceedings of the Thirty-Fourth Southeastern Symposium on System Theory,2002.209-213.
    [132]GUDA S R, WANG C, NEHRIR M H. A Simulink-based Microturbine Model for Distributed Generation Studies [C]; proceedings of the Proceedings of the 37th Annual North American Power Symposium,23-25 Oct,2005.269-274.
    [133]SAHA A K, CHOWDHURY S, CHOWDHURY S P, et al. Modeling and Performance Analysis of a Microturbine as a Distributed Energy Resource [C]; proceedings of the IEEE Transactions on Energy Conversion, June,2009.529-538.
    [134]李政,王德慧,薛亚丽,等.微型燃气轮机的建模研究(上)——动态特性分析[J].动力工程,2005,25(1):13-17.
    [135]ZHANG J, SHEN J, GE B, et al. Modeling and Dynamic Analysis of Adjustable Regenerative Microturbine [C]; proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC),28-31 March,2010.
    [136]HAUGWITZ S. Modelling of Microturbine Systems [D]. Lund; Lund Institute of Technology,2002.
    [137]HAUGWITZ S. Modelling of Microturbine Systems [C]; proceedings of the 2003 European Control Conference (ECC'03) Cambridge, UK,2003. Paper NO.209.
    [138]ROBERTS R A, BROUWER J, LIESE E, et al. Dynamic Simulation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems [J]. Journal of Engineering for Gas Turbines and Power,2006,128(2): 294-301.
    [139]ROBERTS R A, BROUWER J, SAMUELSEN G S. Fuel Cell/Gas Turbine Hybrid System Control for Daily Load Profile and Ambient Condition Variation [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme,2010,132(1):012302.
    [140]FERRARI M L, PASCENTI M, BERTONE R, et al. Hybrid Simulation Facility Based on Commercial 100 kWe Micro Gas Turbine [J]. Journal of Fuel Cell Science and Technology,2009, 6(3):031008.
    [141]FERRARI M L, PASCENTI M, MAGISTRI L, et al. Emulation of Hybrid System Start-Up and Shutdown Phases With a Micro Gas Turbine Based Test Rig [C]; proceedings of the ASME Turbo Expo 2008, Berlin, Germany, June 9-13,2008. ASME Paper NO. GT2008-50617.
    [142]FERRARI M L, PASCENTI M, MAGISTRI L, et al. Hybrid System Test Rig:Start-up and Shutdown Physical Emulation [J]. Journal of Fuel Cell Science and Technology,2010,7(2): 021005-021007.
    [143]TRAVERSO A, CALZOLARI F, MASSARDO A. Transient Analysis of and Control System for Advanced Cycles Based on Micro Gas Turbine Technology [J]. Journal of Engineering for Gas Turbines and Power,2005,127(2):340-347.
    [144]TRAVERSO A, MASSARDO A F, SCARPELLINI R. Externally Fired Micro-Gas Turbine: Modelling and Experimental Performance [J]. Applied Thermal Engineering,2006,26(16): 1935-1941.
    [145]MATHIEU P J, GREDAY Y F. Transient Behaviour of a Humid Air Turbine [C]; proceedings of the TAIES'97, Beijing,1997.
    [146]GUSTAFSSON J-O, HEIROTH P V, LINDQUIST T. Transient Analysis of a Small Gas Turbine to Be Used in an Evaporative Cycle [C]; proceedings of the ASME, Stockholm Sweden,1998. ASME Paper NO.98-GT-353.
    [147]杨文滨,苏明.HAT循环系统动态仿真的研究[J].系统仿真学报,2005,17(9):2269-2279.
    [148]杨文滨.复合工质新型动力系统——湿空气透平循环动态仿真的研究[D].上海;上海交通大学,2005.
    [149]Process Systems Enterprise Limited. gPROMS(?) ModelBuilder 3.4.0, Copyright(?) 1997-2011 [CP/CD]. London,2011.
    [150]COHEN H, ROGERS G, SARAVANAMUTTOO H. Gas Turbine Theory [M].4th ed. London: Addison Wesley Longman,1996.
    [151]ORBAY R C, GENRUP M, ERIKSSON P, et al. Off-design Performance of a Low Calorific Value Gas Fired Generic Type Single-shaft Gas Turbine [C]; proceedings of the ASME Turbo Expo 2007, Montreal, Canada, May 14-17,2007. ASME Papers NO. GT2007-27936,
    [152]CENNERILLI S, SCIUBBA E. Application of the CAMEL process simulator to the dynamic simulation of gas turbines [J]. Energy Conversion and Management,2007,48(11):2792-2801.
    [153]HENRIKSSON M, BORGUET S, LEONARD O, et al. On inverse problems in turbine engine parameter estimation [C]; proceedings of the ASME, Montreal, CANADA, May 14-17,2007. Amer Soc Mechanical Engineers.
    [154]AGARWAL H, KALE A, AKKARAM S, et al. Inverse modeling techniques for application to engine transient performance data matching [C]; proceedings of the ASME, Berlin, GERMANY, Jun 09-13,2008.
    [155]CHEN W L, YANG Y C, LEE H L. Inverse problem in determining convection heat transfer coefficient of an annular fin [J]. Energy Conversion and Management,2007,48(4):1081-1088.
    [156]ZUECO J, ALHAMA F, FERNANDEZ C F G. Numerical nonlinear inverse problem of determining wall heat flux [J]. Heat and Mass Transfer,2005,41(5):411-418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700