用户名: 密码: 验证码:
热时效对RPV模拟钢的微结构与冲击性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核电具有低污染、效益高的特点,在缓解能源危机的同时可以降低碳的排放,是当今世界上大规模可持续供应的主要能源之一。核反应堆压力容器(RPV)是压水堆核电站中不可更换的大型关键部件,由Mn-Ni-Mo低合金铁素体钢(A508--III钢)制成,在服役工况下,经过长期中子辐照后会引起韧脆转变温度升高,这是影响RPV安全运行的关键因素,也是核电站寿命的决定性因素。RPV钢的辐照脆化效应主要是由于中子辐照损伤产生晶体缺陷,并诱发高数量密度纳米富Cu相的析出所造成的。
     如果用中子辐照试验来研究RPV钢中纳米富Cu相的析出费用太高,实验操作也很不方便,而采用低温热时效的办法也可以使过饱和固溶的Cu以纳米富Cu相形式析出,但是时效时间过长。为了加速纳米富Cu相的析出,本工作以提高了Cu含量的RPV模拟钢为研究对象,模拟钢经过880℃水淬和660℃调质处理后,在370℃长期时效不同时间,然后采用透射电镜(TEM),高分辨透射电镜(HRTEM)、能谱(EDS),原子探针层析技术(APT)和冲击试验等方法研究了时效后RPV模拟钢的显微组织,纳米富Cu相的析出过程以及晶体结构演化特点,界面上合金元素及杂质元素的偏聚特征以及纳米富Cu相的析出对韧脆转变温度的影响等,得出了以下主要结论:
     (1)首次观察到纳米富Cu相在析出成核过程中Cu原子沿着α-Fe基体的{110}晶面以2层或3层为周期发生偏聚,并导致晶格畸变的各向异性,而后,富Cu区会在bcc结构的{110}晶面上发生切变形成了ABC/BCA/CAB/ABC排列的多孪晶9R结构。首次观察到同一个富Cu相中bcc,正交9R和单斜9R结构并存的现象,说明了这种结构演化过程的复杂性。最后富Cu相由9R结构转变为fcc或者fct结构。
     (2)研究了RPV模拟钢中不同的溶质或杂质原子在晶界处的偏聚特征。确定了它们偏聚倾向由强到弱依次为C>P>Mo>Si>Mn>Ni,Cu在晶界处会出现贫化现象,C在晶界上偏聚的宽度最宽。证实了C和P在晶界偏聚存在竞争现象,观察到Si的偏聚与晶界的特性有关。
     (3)观察到溶质或杂质原子在相界面处的偏聚特性与在晶界处的不同,Ni,Si和P元素会偏聚在α-Fe和渗碳体的相界面上, Mn,Mo和S原子会富集在渗碳体中,Cu被排除在渗碳体之外,且不会在相界面上偏聚。而在富Cu相与α-Fe的相界面处,Ni和Mn有明显的偏聚,C,P,Mo,Si倾向偏聚在相界面的α-Fe一侧,且偏聚的程度比晶界处的低。
     (4)通过热时效模拟的办法证实了纳米富Cu相的析出确实会导致材料的韧脆转变温度(DBTT)升高,样品在370℃经过13200h时效后,析出纳米富Cu相的数量密度达到7.1×10~(22)m~(-3),这时DBTT从-100℃上升到-45℃,提高了55℃,但热时效得到的纳米富Cu相的数量密度比中子辐照引起的低,并且材料的基体也没有受到中子辐照损伤,因而DBTT上升的幅度并不像中子辐照引起的那样高。
     (5)用4%-硝酸酒精溶液作腐蚀液可以将小至3nm的富Cu相从α-Fe中萃取出来。在不同时效时间的样品中,观察到了不同尺寸、Cu含量有一定差别的bcc,9R或fcc结构的纳米富Cu相,它们在长大过程中的晶体结构转变与尺寸大小以及Cu含量之间没有严格的依赖关系。纳米富Cu相中都不同程度的含有Fe,Ni和Mn,但是这些纳米富Cu相仍为单相固溶体,而不像块体合金中那样是多相组织。
Nuclear power has the features of low pollution and high efficiency. It eases theenergy crisis, and reduces the carbon emissions at the same time. Reactor pressurevessel (RPV) is nonreplaceable major component of the pressurized water reactor(PWR) in power plants. RPVs are usually made of low alloy ferritic steels and A508class3(A508-Ⅲ) steel is one type of these materials. After long-term service underthe neutron irradiation, the RPV steel becomes embrittled and the shift in theductile-to-brittle transition temperature (DBTT) which is the main parameter used tomeasure the embrittlement degree of RPV increases. The irradiation-inducedembrittlement of RPV steel is presently the main impact factor of ensuring theoperation safety and assessing operation lifetime of nuclear power plants. Theembrittlement effect of RPV steel is mainly correlated with the formation of highnumber density Cu-rich nanophases induced by the crystal defects in theneutron-irradiated steel.
     If the experiments were carried out in the way of neutron irradiation to investigatethe precipitation of Cu-rich nanophases in RPV steel, besides the high costs, it wouldbe very inconvenient to operate the experiments since the irradiated specimens havestrong radioactivity. The Cu-rich nanophases can also precipitate in RPV steelthermally aged at290℃if the content of residual Cu element is less than0.08wt.%,but it will take too much time more than20years. In order to reduce theexperimental period and simultaneously accelerate the precipitation of Cu-richnanophases, experiment was performed by using RPV model steel containing higherCu content than commercially available A508-Ⅲ steel. The specimens of RPVmodel steel were tempered at660℃for10h followed air cooling after heattreatment at880℃for30min and water quenching, then they were isothermallyaged at370℃for different time. Several techniques (such as conventional transmission electron microscopy, high resolution transmission electron microscopy,energy spectrum, atom probe tomography and so on) were used to investigate themicrostructure, the precipitation process and structural evolution of the Cu-richnanophases, the interfaces segregation of solute or impurity atoms as well as theeffect of the precipitation of Cu-rich nanophases on the DBTT in PRV model steelduring thermal aging at370℃temperature. The following conclusions can bedrawn:
     (1) It is the first time to observe that the Cu atoms can segregate on the {110}planes of the α-Fe matrix in a period of two or three layers during the nucleationprocess of Cu-rich nanophase. The periodical segregation also causes the internalstress and the lattice distortion to be anisotropic. It is also observed that the Cu-richregions undergo a transformation from bcc structure to multi-twined9R structure bymeans of a shear along the {110} plane of bcc structure, while the interface betweenthe Cu-rich nanophase and the α-Fe matrix is coherent. It is firstly observed that thesame Cu-rich nanophase consists of bcc,9R orthorhombic structure and9Rmonoclinic structure segments. The coexistence of multi-structure within the sameCu-rich nanophase suggests that the structural evolution of Cu-rich nanophase is verycomplicated. Finally, the Cu-rich nanophases transformed to fcc or fct single structurefrom9R structure.
     (2) The segregation of solute or impurity atoms at the grain boundaries wascharacterized. The sequence of segregation tendency for different atoms from strongto weak is C> P> Si> Mn> Mo> Ni, whilst Cu atoms were clearly depleted at thegrain boundaries. There is a competitive interaction between C and P atoms that thesegregation amount of P and C atoms is inversely correlated with each other. Si atomsalso segregate to the grain boundaries, but it depends on the characteristic of the grainboundaries. The segregation of Si atoms to some grain boundary is obvious, but itdoes not to others. The C segregation range at grain boundaries is the widest.According to the width of the composition profiles at the half intensity for different atoms at the grain boundaries, the segregation range of C atoms is1.5times widerthan that of Mn. Ni and Mo atoms.
     (3) It is observed that the segregation characteristics of the solute or impurity atomsat the phase interfaces are different from that at the grain boundaries. Ni, Si, P atomssegregate on the interfaces between cementites and the α-Fe matrix, and Mn, Mo, Satoms enrich in the cementites. Cu atoms are ejected from the cementites, but the Cusegregation on the interface is not detected. Ni and Mn atoms evidently segregate tothe interfaces between the Cu-rich phase and the α-Fe matrix, while C, P, Mo, Siatoms prefer to segregate towards the α-Fe matrix near the interfaces, but theirsegregation amount at the interfaces of Cu-rich phase and the α-Fe matrix is less thanthat at the grain boundaries.
     (4) The precipitation of the Cu-rich nanophases indeed can lead to the shift ofDBTT towards higher temperature for the RPV model steel by thermal aging. TheCu-rich nanophases precipitate on dislocations in the specimen aged at370℃for3000h, and the clusters become a little coarsened when the aging time is extended to13200h. For the specimens aged for1150h, Cu-rich nanophases were on thenucleation stage assessed by TEM as well as APT analysis, and they did not have aneffect on the DBTT of the RPV model steel. For the specimens aged for3000h,Cu-rich nanophases precipitated with an average equivalent diameter of1.5nm and anumber density of4.2×10~(22)m~(-3). and it results in the increase of the DBTT from-100℃to-60℃. For the specimens aged for13200h, Cu-rich nanophasesslightly coarsened to2.4nm of the average equivalent diameter, while the numberdensity is similar to that of the specimens aged for3000h. In this case the DBTTrose to-45℃. The Cu concentration in the α-Fe matrix for the specimen aged for13200h is still more than the limitation of Cu solubility in the α-Fe matrix at370℃.It means that the precipitation of Cu-rich nanophases does not reach the equilibriumstate. The precipitation of Cu-rich nanophases induced by thermal aging reveals asmaller impact on the DBTT than that by neutron irradiation. From the thermal aging aspect, the much lower number density of Cu-rich clusters and the absence of thedefects induced by neutron irradiation in the matrix could account for thisphenomenon.
     (5) The Cu-rich precipitations with the diameter larger than3nm could beextracted from the α-Fe matrix by carbon replica using the etchant of4%nitric acidalcohol solution. As to the specimens aged for different time, a different crystalstructure of bcc,9R and fcc can be observed for Cu-rich nanophases with differentsize and different Cu contents, but the crystal structure of the Cu-rich nanophasesdoes not directly depend on the size and Cu content of them. The Cu-richnanophases contain Fe, Mn and Ni with varying degree while the Cu-richnanophases are all homogeneously solid solution determined by high resolutionlattice image, which is not like the multi-phases in the bulk materials ofCu-Fe-Mn-Ni alloys.
引文
[1]邹树梁,刘兵,陈甲华,刘文君.中国核电发展的现状与展望[J].南华大学学报,2004:5(4):36-40.
    [2]核电在世界上的应用和我国核电现状.广西电力建设科技信息,2007;1:9-10.
    [3]赵仁恺.我国核电发展现状与展望[J].中国电力,1999;12:20-25.
    [4]能源发展战略及“十一五”的重点咨询报告.中国工程院能源与矿业工程学部,2004:12.
    [5]2010-2015年中国核电产业投资分析及前景预测发展报告.中投信德产业研究中心,2010:11
    [6]杨文斗主编.反应堆材料学[M].北京:原子能出版社,2006.
    [7] R.W.卡恩等主编.材料科学与技术丛书:第10B卷(核材料).周邦新等译.北京:科学出版社,1999.
    [8] Claiborne N C. Caculating gamma heating in reactor structure [J]. Nucleonics,1957;15:10.
    [9] Athinson J R. Design of irradiation experiment [J]. Journal of the British Nuclear EnergySociety,1962;1:1-9.
    [10] Little E A. Proc Conf Dimensional Stability and Mechanical Behavior of Irradiated Metalsand Alloys, London: BNES,1984:141.
    [11] Guionnet C, Robin Y, Flavier C, Lefort A, Gros D, Perdreau R. In: Kramer D, Brager H R,Perrin J S, eds., Effects of Radiation on Materials: Proceedings of the Tenth InternationalSymposium, ASTM STP725, Philadelphia, PA: American Society for Testing and Materials,1981:20-27
    [12] Monzen R, Iguchi M, Jenkins M L. Strutural changs of9R copper precipitates in an agedFe-Cu alloy [J]. Philosophical Magazine Letters,2000;80:137-148.
    [13] Phythian W J, English C A. Microstructural evolution in reactor pressure vessel steels [J]Journal of Nuclear Materials,1993;205:162-177.
    [14] Miller M K, Russell K E, Sokolov M A, Nanstad R K. Atom probe tomographycharacteriza-tion of radiation-sensitive KS-01weld [J]. Journal of Nuclear Materials,2003;320(3):177-183.
    [15] Faulkner R G, Lu Z, Ellis D, Williams T J. Effects of Neutron Irradiation on Precipitation inReactor Pressure Vessel Steels [J]. Journal of ASTM International,2005;2:285-294.
    [16] Little E A. Proc EUROMAT96, Conference of Materials and Nuclear Power, London:Institute of Materials,1996:29-35
    [17] Schilling W, Ullxnaier H. In: Cahn R W, eds., Materials Science and Technology: NuclearMaterials, V0l.10B, Germany: Wiley-VCH,1994:179
    [18] Domain C, Becquart C S, Malerba L. Simulation of radiation damage in Fe alloys: an objectkinetic Monte Carlo approach[J]. Journal of Nuclear Materials,2004;335:121-145
    [19] Jenkins M L, Kirk M A. Characterisation of Radiation Damage by Transmission ElectronMicroscopy [M]. Bristol and Philadelphia: IOP Publishing,2001:126
    [20] Little E A, Harries D R. Radiation-Hardening and Recovery in Mild Steels and the Effectsof Interstitial Nitrogen[J]. Metal Science,1970;4(1):188-195.
    [21] English C A, Ortner S R, Gage G, Server W L, Rosinski S T. In: Rosinski S T, Grossbeck ML, Allen T R, Kuxnar A S, eds., Effects of Radiation on Materials:20th InternationalSymposium, ASTM STP1405, West Conshohocken, PA: American Society for Testing andMaterials,2001:151-157
    [22] Bischler P J E, Wild R K. In: Genes D S, Nanstad R K, Kuxnar A S, Little E A, eds., Effectsof Radiation on Materials:17th International Symposium, ASTM STP1270, West Conshoh-ocken, PA: American Society for Testing and Materials,1996:260-269.
    [23] Faulkner R G, Jones R B, Lu Z, Flewitt P E J. Grain boundary impurity segregation andneutron irradiation effects in ferritic alloys[J]. Philosophical Magazine,2005;85:2065-2099
    [24] Pechenkin V A, Konobeev Y V, Stepanov I A, Nikolaev Y A. In: Grossbeck M L, Allen T R,Lott R G, Kumar A S, eds., Effects of Radiation on Materials:2lst International Symposium,ASTM STP1270, West Conshohocken, PA: American Society for Testing and Materials,2004:138.
    [25] Lu Z, Faulkner R O, Flewitt P E J. The role of irradiation-induced phosphorus segregationin the ductile-to-brittle transition temperature in ferritic steels[J]. Materials Science andEngineering,2006;437A:306-312
    [26] Lu Z, Faulkner R O, Sakaguchi N, Kinoshita H, Takahashi H J, Flewitt P E. Effect ofhafnium on radiation-induced inter-granular segregation in ferritic steel[J]. Journal ofNuclear Materials,2006;351:155
    [27]唐纳德·奥兰德著.核反应堆燃料元件基本问题[M].李恒德,马春来译.北京:原子能出版社,1984.
    [28]万发荣著.辐照效应[M].北京:科学出版社,1993
    [29] Little E A. Proc EUROMAT96, Conference of Materials and Nuclear Power, London:Institute of Materials,1996:29
    [30] Odette O R, Lucas O E. Embrittlement of Nuclear Reactor Pressure Vessels[J]. Journal ofthe Minerals Metals and. Materials Society,2001;53:18-22.
    [31] Nanstad R K, Sokolov M A, McCabe D E. Applicability of the Fracture Toughness MasterCurve to Irradiated Highly Embrittled Steel and Intergranular Fracture[J]. Journal of ASTMInternational,2008;5: JAI101346(14pp.)
    [32] Steele L E. In: Steele L E, ed., Status of USA Nuclear Reactor Pressure Vessel Surveillancefor Radiation Effects, ASTM STP784, Philadelphia, PA: American Society for Testing andMaterials,1983:277
    [33] Wallin K. Master curve analysis of the “Euro” fracture toughness dataset[M], EngineeringFracture Mechanics,2002,69:451-481.
    [34] Petrequin P. A Review of Formulas for Predicting Irradiation Embrittlement of ReactorsVessel Materials, AMES Report No.6,1996:13
    [35] Odette O R, Mader E V, Lucas O E, Phythian W J, English C A. In: Kumar A S, Gelles D S,Nanstad R K, Little E A, eds., Effects of Radiation on Materials:16th InternationalSymposium, ASTM STP1175, Philadelphia, PA: American Society for Testing andMaterials,1993:373
    [36] Odette O R, Yamamoto R T, Klingensmith R D. On the effect of dose rate on irradiationhardening of RPV steels[J]. Philosophical Magazine,2005;85:779-797
    [37] Miller M K, Russell K F. Embrittlement of RPV steels: An atom probe tomographyperspective[J]. Journal of Nuclear Materials,2007;371:145-160
    [38] Odette O R, Wirth B D. A computational microscopy study of nanostructural evolution inirradiated pressure vessel steels[J]. Journal of Nuclear Materials,1998;251:157-171
    [39] Odette G R, et al. On the Dominant Mechanism of Irradiation Embrittlement of ReactorPressure Vessel Steels[J]. Scripta Metallurgica,1983;17:1183-1188.
    [40] Kuleshova E A, Gurovich B A, Shtrombakh Ya I, Nikolaev Yu A, Dechenkin V A.Microstructural behavior of VVER-440Reactor Pressure Vessel Steels under irradiation toneutron fluences beyond the design operation period[J]. Journal of Nuclear Materials,2005;342:77-89.
    [41] Akamatsu M, Van Duysen J C, Pareige P, Auger P. Experimrntal Evidence of SeveralContributions to the Radiation Damage in Ferritic Alloys[J]. Journal of Nuclear Materials,1995;225:192-195.
    [42] Miller M K, Hoelzer, Ebrahimi F. Microstructural Characterization of Irradiated Fe-Cu-Ni-PModel steels. Proc.3rd Int. Symp. On Enviromental Degradation of Materials in NuclearPower Systems—Water Reactors, Theus G J, Weeks J R, eds., The Metallurgical Society,Pittsburgh, PA,1988:133-139.
    [43] Carter R G, Soneda N, Dohi K, Hyde J M, English C A, Server W L. Microstructuralcharacterization of irradiation-induced Cu-enriched clusters in reactor pressure vesselsteels[J]. Journal of Nuclear Materials,2001;298:211-224.
    [44] Auger P, Pareige P, Akamatsu M, Blarette D. APFIM investigation of clustering inneutron-irradiated Fe-Cu alloys and pressure vessel steels[J]. Journal of Nuclear Materials,1995;225:225-230.
    [45] Coppola R, Fiori F, Little E A, Magnani M. A Microstructural comparison of twonuclear-grade martensitic steels using small-angle neutron scatting[J]. Journal of NuclearMaterials,1997,245:131-137.
    [46]朱娟娟,王伟,林民东,刘文庆,王均安,周邦新.用三维原子探针研究压力容器模拟钢中富铜原子团簇的析出[J].上海大学学报(自然科学版),2008,14:525-530.
    [47] Buswell J T, Phythian W J, McElroy R J, Dumbill S, Ray P H N, Mace J, Sinclair R N.Irradiation Induced Microstructural Changes and Hardening Mechanism in Model PWRPressure Vessel Steels[J]. Journal of Nuclear Materials,1995,225:196-214.
    [48] Miller M K, Russell K F. APFIM characterization of a high phosphorus Russian RPVweld[J]. Applied Surface Science.1996,94/95:378-383.
    [49] Miller M K, Wirth B D and Odette G R. Precipitation in neutron-irradiated Fe-Cu andFe-Cu-Mn model alloys: a comparison of APT and SANS data[J]. Materials Science andEngineering,2003; A353:133-139.
    [50] Brenner S S, Wagner R, Spitznagel J A. Field–ion microscope detection of ultra-fine defectsin neutron-irradiated Fe-0.34Pct Cu alloy [J]. Metallurgical ransactions.2000;280:331-339.
    [51] Zhu C, Xiong X Y, Cerezoa A, Hardwicke R, Krauss G W, Smitha G D. Three-dimensionalatom probe characterization of alloy element partitioning in cementite during temperingof alloy steel [J]. Ultramicroscopy,2007;107:808-812.
    [52] Nogiwa K, Nita N, Matsui H. Quantitative analysis of the dependence of hardeningingcopper precipitate diameter and density in Fe–Cu alloys [J]. Journal of Nuclear Material,2007;370:392-398.
    [53] Barashev A V, Golubov S I, Bacon D J, Flewitt P E J, Lewis T A. Copper precipitation inFe-Cu alloys under electron and neutron irradiation [J]. Acta Materialia,2004;52:877-886.
    [54] Nicol A C, Jenkins M L, Kirk M A. High-resolution electron microscopy studies of theprecipitation of copper under neutron irradiation in an Fe–1.3wt%Cu alloy. In: Zinkle S J,Lucas G E, Ewing R C, Williams J S, editors. Microstructural processes in irradiatedmaterials: Mat Res Soc Symp Proc, vol.540. Pennsylvania: Warrendale;1999:409.
    [55] Hornbogen E, Glenn R C. A metallographic study of precipitation of copper from alphairon[J].Transactions of the Metallurgical Society of AIME [J].1960,218:1064-1070.
    [56] Goodman S R, Brenner S S, Low Jr J R. An FIM-Atom probe study of the precipitation ofcopper from iron-1.4at. pct Copper. PartⅠ:Field-Ion Microscopy [J]. MetallurgicalTransactions.1973;4:2363-2369.
    [57] Goodman S R, Brenner S S, Low J R. An FIM-atom probe study of the precipitation ofcopper from Iron-1.4at. pct Copper. PartⅡ:Atom Probe Analyses [J]. MetallurgicalTransactions.1973;4:2371-2378.
    [58] Pareige P, Russell K F, Stoller R E, Miller M K. Influence of long-term thermal aging on themicrostructural evolution of nuclear reactor pressure vessel materials: an atom probe study[J]. Journal of Nuclear Materials,1997,250:176-183.
    [59] Miller M K, Russell K F, Pareige P, Starink M J, Thomson R C. Low temperature coppersolubilities in Fe-Cu-Ni [J]. Materials Science and Engineering,1998, A250:49-54.
    [60] Pareige P, Auger P, Miloudu S, Van Duysen J C, Akamatsu M. Microstructural evolution ofthe CHOOZ A PWR surveillance program material: Small angle nutron scattering andtomogrphic atom probe studies [J]. Ann. Phys.,1997, C222:117-124.
    [61] Starink M J, Zahra A M, Kinetics of isothermal and non-isothermal precipitation in anAl-6at%Si alloy[J]. Philosophical Magazine,1998;77:187-199
    [62] Starink M J, Zahra A M, Determination of the transformation exponent s from experimentsat constant heating rate[J]. Thermochimica Acta,1997;292:179-189[63] Buswell J T,English C A, Herherington M G, Phythian W J, Smith G D W and Worral G M.1990,Proceeding of the14thinternational Symposium on the effects of radiation on materials.Vol.2, Andover, Massachusseetts,1990(ASTMSTP):127-153.
    [64] Phythian W J, Foreman A J E, English C A, Buswell J T, Hetherington M, Roberts K andPizzini,S.1990, Proceedings of the15thinternational Symposium on the effects ofradiation on materials, Nashvile, Tennessee,1990(ASTMSTP),131-150.
    [65] Pizzini S, Roberts K J, Phythian W J, English C A, and Greaves G N. A fluorescenceEXAFS study of copper-rich precipitates in Fe-Cu and Fe-Cu-Ni alloys[J]. PhilosophicalMagazine Letters,1990;61(4):223-229.
    [66] Othen P J, Jenkins M L, Smith G D W, and Phythian W J. Transmission electron microscopeinvestigations of the structure of copper precipitates in thermally-aged Fe-Cu andFe-Cu-Ni[J]. Philosophical Magazine Letters,1991;64(6):383-391.
    [67] Othen P J, Jenkins M L and Smith G D W. High-resolution electron microcopy studies of thestructure of Cu precipitates in α-Fe[J]. Philosophical Magazine,1994; A70(1):1-24.
    [68] Lee T H, Kim Y O, Kim S J. Crystallographic model for bcc-to-9R martensitictransformation of Cu precipitates in ferritic steel [J]. Philosophical Magazine,2007;87(2):209-224.
    [69] Monzen R, Jenkins M L and Sutton A P. The bcc-to-9R martensitic transformation of Cuprecipitates and the relaxation process of elastic strains in an Fe-Cu alloy[J]. PhilosophicalMagazine A,2000;80(3):711-723.
    [70]楚大锋,徐刚,王伟,彭剑超,王均安,周邦新. APT和萃取复型研究压力容器模拟钢中富Cu原子团簇的析出[J].金属学报,2011;47(3):269-274.
    [1] Miller M K, Russell K F. Embrittlement of RPV steels: An atom probe tomography perspe-ctive [J]. Journal of Nuclear Materials,2007;371:145-160.
    [2]周邦新,刘文庆.三维原子探针及其材料科学研究中的应用[J].材料科学与工艺,2007;15(3):405-411.
    [3] Miller M K, Pareige P, Burke M G. Understanding pressure vessel steels: an atom probeperspective [J]. Materials Characterization,2000;44:235-254.
    [4] Miller M K, Cerezo A, Hetherington M G, et al. Atom probe field ion microscopy. Oxford:Oxford Science Publications, Clarendon Press,1996.
    [5] Mueller E W, Tsong T T. Field ion microscopy-principles and applications [M]. AmericanElsevier, NewYork,1969.
    [6] Miller M K. The development of atom probe field-Ion microscopy[M]. Materials Characteri-zation,2000;44:11-27.
    [7] Athinson J R. Design of irradiation experiment [J]. Journal of the British Nuclear EnergySociety,1962;1:1-9.
    [8] Miller M K, Chernobaeva A A, Shtrombakh Y I, Russell K F, Nanrtad R K. Evolution of thenanstructure of VVER-1000RPV materials under netron irradiation and post irriadiatonannealing [J]. Journal of Nuclear Materials,2009;385:615-622.
    [9] Nishikawa O, Kimoto M.Toward a scanning atom probe-computer simulation of electric field[J]. Applied Surface Sciences.1994;76/77:424-430.
    [10] Nishikawa O, Ohtani Y, Maeda K, Masafumi M, Tanaka K. Development of the scanningatom probe [J].MaterialsCharacterization.2000;44:29-57.
    [11] Kelly T F, Camus P P, Larson D J, Holzman L M, Bajikar S S. On the many advantages ofelectrode atom probes[J]. Ultramicroscopy.1996;62:29-42.
    [12] Kelly T F, Larson D J. Local electrode atom probes[J]. Materials Characterization2000;44:59-85.
    [13] Barashev A V, Golubov S I, Bacon D J, Flewitt P E J, Lewis T A. Copper precipitation inFe-Cu alloys under electron and neutron irradiation [J]. Acta Materialia,2004;52:877-886.
    [1] Toyama T, Nagai Y, Tang Z, Hasegawa M, Almazouzi A, Walle E van, Gerard R. Nanostructu-ral evolution in surveillance test specimens of a commercial nuclear reactor pressure vesselstudied by three-dimensional atom probe and positron annihilation[J]. Acta Materialia,2007,55:6852-6860
    [2] Miller M K, Russell K F, Sokolov M A, Nanstad R K. APT characterization of irradiated highnickel RPV steels[J]. Journal of Nuclear materials,2007,361:248-261
    [3] Fujii K, Fukuya K, Nakata N, Hono K, Nagai Y, Hasegawa M. Hardening and microstructuralevolution in A533B steels under high-dose electron irradiation. Journal of Nuclear materials,2005,340:247-258.
    [4] Miller M K, Russell K F. Embrittlement of RPV steels: An atom probe tomography perspecti-ve[J]. Journal of Nuclear materials,2007,371:145-160.
    [5] Miller M K, Nanstad P K, Sokolov M A, Russell K F. The effects of irradiation, annealing andreirradiation on RPV steels[J]. Journal of Nuclear materials,2006,351:216-222.
    [6] Hornbogen E, Glenn, R C. A metallographic study of precipitation of copper from alphairon[J].Transactions of the Metallurgical Society of AIME,1960,218:1064-1070.
    [7] Speich G R, Oriani R A. The rate of coarsening of copper precipitate in an alpha-ironmatrix[J]. Transactions of the Metallurgical Society of AIME,1965,233:623-631
    [8] Goodman S R, Brenners S S, Low J R. An FIM-atom probe study of the precipitate of copperfrom iron-1.4at.pct copper. Metallurgical Transactions,1973,4:2363-2369.
    [9] Buswell J T, English C A, Herherington M G, Phythian W J, Smith G D W and Worral G M.1990, Proceeding of the14th international Symposium on the effects of radiation onmaterials. Vol.2, Andover, Massachusseetts,1990(ASTMSTP):127-153.
    [10] Phythian W J, Foreman A J E, English C A, Buswell J T, Hetherington M, Roberts K andPizzini,S.1990, Proceedings of the15th international Symposium on the effects of radiationon materials, Nashvile, Tennessee,1990(ASTMSTP),131-150.
    [11] Pizzini S, Roberts K J, Phythian W J, English C A, Greaves G N. A fluorescence EXAFSstudy of copper-rich precipitates in Fe-Cu and Fe-Cu-Ni alloys[J]. Philosophical MagazineLetters,1990,61(4):223-229.
    [12] Othen P J, Jenkins M L, Smith G D W, Phythian W J. Transmission electron microscopeinvestigations of the structure of copper precipitates in thermally-aged Fe-Cu andFe-Cu-Ni[J]. Philosophical Magazine Letters,1991,64(6):383-391.
    [13] Othen P J, Jenkins M L, Smith G D W. High-resolution electron microcopy studies of thestructure of Cu precipitates in α-Fe[J]. Philosophical Magazine A,1994,70(1):1-24.
    [14]雍岐龙著.钢铁材料中的第二相[M].北京:冶金工业出版社,2006.
    [15] Pavlina E J, Speer J G, Van Tyne C J. Equilibrium solubility products of molybdenumcarbide and tungsten carbide in iron[J]. Scripta Materialia,2012,66(5):243-246
    [16]盛钟琦,肖红,彭峰. A508-3钢热处理后的显微组织[J].核动力工程,1988,9(1):49-53.
    [17] Osetsky Yu N, Serra A. Study of copper precipitates in α-iron by computer simulation Ⅱ.Interatomic potential for Fe-Cu interactions and proterties of coherent precipitates[J].Philosophical Magazine A,1996,73(1):249-263.
    [18] LE BOUAR Y. Atomitic study of the coherency loss during the bcc-9R transformation ofsmall copper precipitates in ferritic steels[J]. Acta Materialia,2001,49:2661-2669.
    [19] Konno T J, Hiraga K, Kawasaki M. Guinier-preston (GP) zone revisited: atomic levelobservation by HAADF-TEM technique[J]. Scripta Materialia,2001,44:2303-2307.
    [20] Berg L K, Gj nnes J, Hansen V, Li X Z, Knutson-Wedel M, Waterloo G, Schryvers D,Wallenberg L R. GP-zones in Al–Zn–Mg alloys and their role in artificial aging[J]. ActaMaterialia,2001,49:3443-3451.
    [21] Ping D H, Hono K, Nie J F. Atom probe characterization of plate-like precipitates in aMg–RE–Zn–Zr casting alloy[J]. Scripta Materialia,2003,48:1017-1022.
    [22]徐刚,楚大锋,蔡琳玲,周邦新,王伟,彭剑超. RPV模拟钢中纳米富Cu相的析出与结构演化研究[J].金属学报,2011,7:906-911
    [23] Ahlers M. The martensitic transformation: A model [J]. Z. Metallkde.,1974,65:636-642.
    [24] Monzen R, Iguchi M, Jenkins M L. Strutural changs of9R copper precipitates in an agedFe-Cu alloy [J]. Philosophical Magazine Letters,2000,80:137-148.
    [25] Habibi H R. Atomic structure of the Cu pricipitates in two stages hardening in maragingsteel[J]. Materials Letters,2005,59:1824-1827.
    [26]楚大锋,徐刚,王伟,彭剑超,王均安,周邦新. APT和萃取复型研究压力容器模拟钢中富Cu团簇的析出[J].金属学报,2011;47:269-274
    [27] Monzen R, Jenkins M L, Sutton A P. The bcc-to-9R martensitic transformation of Cuprecipita-tes and the relaxation process of elastic strains in an Fe-Cu alloy[J]. PhilosophicalMagazine A,2000,80(3):711-723.
    [28] Lozano-Perez S, Sha G, Titchmarsh J M, Jenkins M L, Hirosawa S, Cerezo A and Smith G DW. Comparison of the number densities of nanosized Cu-rich precipitates in ferritic alloysmeasured using EELS and EDX mapping, HRTEM and3DAP[J]. Journal of materialsScience,2006,41:2559-2565.
    [1] Toyama T, Nagai Y, Tang Z, Hasegawa M, Almazouzi A, Walle E van, Gerard R. Nanostructu-ral evolution in surveillance test specimens of a commercial nuclear reactor pressure vesselstudied by three-dimensional atom probe and positron annihilation[J]. Acta Materialia,2007;55:6852-6860.
    [2] Auger P, Pareige P, Welzel S, Van Duysen J C. Synthesis of atom probe experiments onirradiation-induced solute segregation in French ferritic pressure vessel steels[J]. Journal ofNuclear materials,2000;280:331-344.
    [3] Miller M K, Russell K F, Sokolov M A, Nanstad R K. APT characterization of irradiated highnickel RPV steels[J]. Journal of Nuclear materials,2007;361:248-261
    [4] Miller M K, Russell K F, Sokolov M A, Nanstad R K. Atom probe tomography of radiation-sensitive characterization KS-01weld[J]. Journal of Nuclear materials,2003;320:177-183.
    [5] Miller M K, Nanstad P K, Sokolov M A, Russell K F. The effects of irradiation, annealing andreirradiation on RPV steels[J]. Journal of Nuclear materials,2006;351:216-222.
    [6] Miller M K, Russell K F. Embrittlement of RPV steels: An atom probe tomographyperspective [J]. Journal of Nuclear materials,2007;371:145-160.
    [7] Hornbogen E, Glenn, R C. A metallographic study of precipitation of copper from alphairon[J].Transactions of the Metallurgical Society of AIME,1960;218:1064-1070.
    [8] Speich G R, Oriani R A. The rate of coarsening of copper precipitate in an alpha-ironmatrix[J]. Transactions of the Metallurgical Society of AIME,1965;233:623-631.
    [9] Goodman S R, Brenners S S, Low J R. An FIM-atom probe study of the precipitate of copperfrom iron-1.4at.pct copper[J]. Metallurgical Transactions,1973;4:2363-2369.
    [10] Pizzini S, Roberts K J, Phythian W J, English C A, Greaves G N. A fluorescence EXAFSstudy of copper-rich precipitates in Fe-Cu and Fe-Cu-Ni alloys[J]. Philosophical MagazineLetters,1990;61(4):223-229.
    [11] Othen P J, Jenkins M L, Smith G D W, Phythian W J. Transmission electron microscopeinvestigations of the structure of copper precipitates in thermally-aged Fe-Cu andFe-Cu-Ni[J]. Philosophical Magazine Letters,1991;64(6):383-391.
    [12] Miller M K. Atom Probe Tomography: Analysis at the Atomic Level[M]. New York: KliwerAcademic/Plenum Publishers2000:25
    [13] Starink M J, Zahra A M. Kinetics of isothermal and non-isothermal precipitation in an Al-6at%Si alloy [J]. Philosophical Magazine A,1998;77:187-199.
    [14] Starink M J, Zahra A M, An analysis method for nucleation and growth controlled reactionsat constant heating rate[J]. Thermochimica Acta,1997;292:159-168.
    [15] Miller M K, Russell K F, Pareige P, Starink M J, Thomson R C. Low temperature coppersolubilities an Fe-Cu-Ni [J]. Materials Science and Engineering,1998; A250:49-54.
    [16]朱娟娟,王伟,林民东,刘文庆,王均安,周邦新.用三维原子探针研究压力容器模拟钢中富铜原子团簇的析出[J].上海大学学报(自然科学版),2008;14:525-530.
    [17] Buswell J T, English C A, Herherington M G, Phythian W J, Smith G D W, Worral G M. In:Steele L E ed., Proc14th Int Symp Effects of Radiation on Materials, Vol.2, Andover,Massachusseetts: The American Society for Testing and Materials,1990:127-135
    [18] Brown L M, Ham R K. Dislocation-Particle interactions[M]. In: Kelly A, Nicholson R B, ed.Strengthening methods in crystals. London: Applied Science Publishers;1965:9
    [19] Friedel J. Disloctions[M]. London: Pergamon Press,1964:1
    [20] Russell K C, Brown L M. dispersed strengthening model based on a differing elastic moduliapplied to the iron-copper system[J]. Acta Metallurgical,1972;20:969-974.
    [21] Harry T, Bacon D J. Computer simulation of the core structure of the <111> screwdislocation in alpha-iron containing copper precipitates: I. structure in the matrix and aprecipitate[J]. Acta Materialia,2002;50:195-208.
    [22] Harry T, Bacon D J. Computer simulation of the core structure of the <111> screwdislocation in alpha-iron containing copper precipitates: II. dislocation-precipitateinteraction and the strengthening effect[J]. Acta Materialia,2002;50:209-222.
    [23] Fine M E, Vaynman S, Isheim D, Chung Y-W, Bhat S P, Hahin C H. A New Paradigm forDesigning High-Fracture-Energy Steels[J]. Metallurgical and Materials Transactions,2010;A41:3318-3325.
    [1] Takaki S, Fujioka M, Aihara S, Nagataki Y, Yamashita T, Sano N, Adachi Y, Nomura M,Yaguchi H. Effect of copper on tensile properties and grain-refinement of steel and its relationto precipitation behavior[J]. Materials Transactions,2004;45(7):2239-2244.
    [2] Garc ía-Mazarío M, Lancha A M, Hernández-Mayoral M. Embrittlement susceptibilityinduced by impurities segregation to grain boundaries in martensitic steels candidates to beused in ADS [J]. Journal of Nuclear Materials,2007;360:293–303.
    [3] Laha K, Kyono J, Kishimoto S, Shinya N. Beneficial e ect of B segregation on creepcavitation in a type347austenitic stainless steel[J]. Scripta Materialia,2005;52:675–678.
    [4] Bowen P, Hippsley C A, Knott J F. Effects of segregation on brittle fracture and fatigue crackgrowth in coarse-grained martensitic A533B pressure vessel steel[J]. Acta Metallurgica,1984;32(5):637-647.
    [5] Bulloch J H. The effect of material segregation on the near threshold fatigue crack propagationcharacteristics of a low alloy pressure vessel in various environments[J]. International Journalof Pressure Vessels and Piping,1988;33(3):197-218.
    [6] Wang K, Xu T D, Shao C, Yang C. Nonequilibrium Grain Boundary Segregation of Sulfur andIts Effect on Intergranular Corrosion for304Stainless Steel[J]. Journal of Iron and SteelResearch, International,2011;18(6):61-66.
    [7] Wei W, Grabke H J. The effect of alloying elements on the grain boundary segregation ofphosphorus in iron and the intergranular corrosion of the Fe-P system[J]. Corrosion Science,1986;26(3):223-236.
    [8] Atrens A, Wang J Q, Stiller K, Andren H O. Atom probe field ion microscope measurementsof carbon segregation at an α:α grain boundary and service failures by intergranular stresscorrosion cracking [J]. Corrosion Science,2006;48:79–92.
    [9] Heo N H, Jung Y C, Lee J K, Kim K T. Decarburization, grain boundary segregation of P andprimary water stress corrosion cracking in a low-alloy steel[J]. Scripta Materialia,2008;59(11):1200-1203.
    [10] Lemarchand D, Cadel E, Chambreland S and Blavette D. Investigation of grain boundarystructure-segregation relationship in an N18nickel-based superalloy [J]. PhilosophicalMagazine A,2002;82(9):1651-1669.
    [11] Kolli R P, Seidman D N. The temporal evolution of the decomposition of a concentratedmulticomponent Fe–Cu-based steel[J]. Acta Materialia,2008;56(9):2073-2088.
    [12] Wu J, Song S H, Weng L Q, Xi T H, Yuan Z X. An Auger electron spectroscopy study ofphosphorus and molybdenum grain boundary segregation in a2.25Cr1Mo steel [J]. MaterialsCharacterization,2008;59:261-265.
    [13] Khalid F A Copper precipitation in M23C6grain boundary carbides in alloy steel[J]. ScriptaMaterialia,2001;44:797-801.
    [14] Hudson D, Smith G D W. Initial observation of grain boundary solute segregation in azirconium alloy (ZIRLO) by three-dimensional atom probe [J]. Scripta Materialia,2009;61(4):411-414.
    [15] Sha G, Yao L, Liao X Z, Ringer S P, Duan Z C, Langdon T G. Segregation of solute elementsat grain boundaries in an ultrafine grained Al–Zn–Mg–Cu alloy[J]. Ultramicroscopy,2011;111(6):500-505.
    [16] Isheim D, Kolli R P, Fine M E, Seidman D N. An atom-probe tomographic study of thetemporal evolution of the nanostructure of Fe–Cu based high-strength low-carbonsteels[J]. Scripta Materialia,2006;55(1):35-40.
    [17]李慧. Ni-Cr-Fe合金中晶界偏聚与晶界析出的研究.上海大学博士论文.2011:43-54.
    [18] Toyama T, Nagai Y, Tang Z, Hasegawa M, Almazouzi A, Walle E van, Gerard R. ActaMater,2007;55:6852
    [19] Nagai Y. Grain boundary segregation in commercial nuclear reactor pressure vessel steels[J].IMR KINKEN Research Highlights(Advanced Nuclear Energy Materials),2008;38-38.
    [20] Bischler P J E, Wild R K. In: Gelles D S, Nanstad R K,Kumar A S, Little E A, eds., Effectsof Radiation on Materials:17th International Symposium, ASTM STP1270, WestConshohocken, PA: American Society for Testing and Materials,1996:260
    [21] Miller M K. Atom Probe Tomography: Analysis at the Atomic Level. New York: KliwerAcademic/Plenum Publishers2000:25
    [22] Yong Q L. Secondary Phase in Steel. Beijing: Metallurgical Industry Press,2006:127(雍其龙.钢铁材料中的第二相.北京:冶金工业出版社,2006:127)
    [23] Hornbogen E, Glenn, R C. A metallographic study of precipitation of copper from alphairon[J].Transactions of the Metallurgical Society of AIME,1960;218:1064-1070.
    [24] Xu G, Chu D F, Cai L L Zhou B X, Wang W, Peng J C. Investigation on the precipitation andstructural evolution of Cu-rich nanophase in rpv model steel [J]. Acta Metallurgica Sinica,2011;7:905-911.
    [25] Vurpillot F, Cerezo A, Blavette D, Larson D J. Modeling image distortions in3DAP[J].Microscopy and Microanalysis,2004;10:384-390.
    [26] Blavette D, Duval P, Letellier L, Guttmann M. Atomic-scale APFIM and TEM investigationof grain boundary microchemstry in Astroloy nickel-based super alloys[J]. Acta Materialia,1996;44:4995-5005.
    [27] Faulkner R G, Jones R B, Zheng L, Flewett P E J. Grain boundary impurity segregation andneutron irradiation effects in ferritic alloys[J]. Philosophical Magazine,2005;85(29):2065
    [28] Suzuki S, Obata M, Abiko K, Kimura H. Effect of carbon on the grain boundary segregationof phosphorus in alpha-iron[J] Scripta Metall,1983;17:1325-1328.
    [29] Cerezo A, Clifton P H, Lozano-Perez S, Panayi P, Sha G, Smith G D W. Overview: RecentProgress in Three-Dimensional Atom Probe Instruments and Applications[J]. Microscopyand Microanalysis,2007;13:408-417.
    [30] Jiao Z, Was G S. Segregation behavior in proton-and heavy-ion-irradiatedferritic–martensitic alloys [J]. Acta Materialia,2011;59(11):4467-4481.
    [31]楚大锋,徐刚,王伟,彭剑超,王均安,周邦新. APT和萃取复型研究压力容器模拟钢中富Cu团簇的析出[J].金属学报,2011;47:269-274.
    [1] Kocik J, Keilova E, Cizek J, Prochazka I. TEM and PAS study of neutron irradiatedVVER-type RPV steels [J]. Journal of Nuclear Materials,2002;303:52-64.
    [2] LEE T H, KIM Y O, KIM S J. Crystallographic model for bcc-to-9R martensitictransformation of Cu precipitates in ferritic steel [J]. Philosophical Magazine,2007;87(2):209-224.
    [3] Akamatsu M, Van Duysen J C, Pareige P, Auger P. Experimrntal evidence of severalcontributions to the radiation damage in ferritic alloys [J]. Journal of Nuclear Materials,1995;225:192-195.
    [4]王伟,朱娟娟,林民东,周邦新,刘文庆.核反应堆压力容器模拟钢中富Cu纳米团簇析出早期阶段的研究[J].北京科技大学学报,2010;32(1):39-43.
    [5] Othen P J, Jenkins M L, Smith G D W, Phythian W J. Transmission electron microscopeinvestigations of the structure of copper precipitates in thermally-aged Fe-Cu and Fe-Cu-Ni[J].Philosophical Magazine Letters,1991;64(6):383-391.
    [6] Hornbogen E, Glenn, R C. A metallographic study of precipitation of copper from alphairon[J]. Transactions of the Metallurgical Society of AIME,1960;218:1064-1070.
    [7] Fine M E, Liu J Z, Asta M D. An unsolved mystery: The composition of bcc Cu alloyprecipitates in bcc Fe and steels [J].Materials Science and Engineering: A,2007;463:271-274.
    [8] Hornbogen E. The role of strain energy during precipitation of copper and gold from alphairon[J]. Acta Metallurgical,1962;10(5):525-547.
    [9] Goodman S R, Brenner S S, Low J R. An FIM-atom probe study of the precipitation ofcopper from Iron-1.4At.Pct Copper.Part Ⅱ:Atom Probe Analyses [J]. MetallurgicalTransactions.1973;4:2371-2378.
    [10]Pareige P J, Russell K F, Miller M K. APFIM studies of the phase transformations inthermally aged ferritic FeCuNi alloys: Comparison with aging under neutron irradiation[J].Applly Surface Science1996;94–95:362–369.
    [11] Pareige,P.&Miller,M.K..Characterization of neutron-induced copper-enriched clusters inpressure vessel steel weld:An APFIM study[J]. Applly Surface Science,1996;94–95:370–377.
    [12]Miller M K, Pareige P, Burke M G. Understanding pressure vessel steels: An atom probeperspective[J]. Materials Characterization,2000;44(1–2):235–254.
    [13]Isheim D, Seidman D N..Nanoscale studies of segregation at coherent heterophase interfacesin alpha-Fe based systems[J]. Surface and Interface Analysis,2004;36(5–6):569–574.
    [14]Isheim D, Gagliano M S, Fine M E, Seidman D N. Interfacial segregation at Cu-richprecipitates in a high-strength low-carbon steel studied on a sub-nanometer scale[J]. ActaMaterialia,2006;54(3):841–849.
    [15]Prakash Kolli R, Seidman D N. The temporale volution of the decomposition of a concentra-ted multicomponent Fe-Cu-based steel[J]. Acta Materialia,2008;56(9):2073–2088
    [16] Worrall G M, Buswell J T, English C A, Hetherington M G, Smith G D W..A study of theprecipitation of copper particles in a ferrite matrix[J]. Journal of Nuclear Materials,1987;148(1):107–114.
    [17] Osamura K, Okuda H, Takashima M, Asano K, Furusaka M. Small-angle neutron scatteringstudy of phase decomposition in Fe-Cu binary alloy[J]. Materials Transactions of the JapanInstitute of Metals,1993;34(4):305–311.
    [18] Schober M, Eidenberger E, Leitner H, Staron P, Reith D, Podloucky R. A critical considera-tion of magnetism and composition of (bcc) Cu precipitates in (bcc) Fe. Apply Physics A,2010,99:697–704.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700