氮化碳的合成、表征和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1989年,美国科学家Liu和Cohen从β-Si_3N_4的结构出发,利用固体体弹模量的经验计算公式,从理论上预言β-C_3N_4的硬度可以和金刚石相媲美,同时指出该材料还具有一系列独特的力学、光学和摩擦性能。这一预言引起了物理学家、化学家和材料学家的兴趣和广泛关注。此后,许多实验和理论工作相继展开,对这种材料及其同系物进行了系统的探索研究。
     本文首先综述了氮化碳的晶体结构、研究历史和现状。在已有工作的基础之上,我们提出了一种新的合成氮化碳和进行性质研究的思路,并进行了比较系统的工作:
     我们首次提出了一种新的恒压溶剂热合成方法,并将其应用于可控制备氮化碳材料的探索研究中,初步探讨了其中的温度和压力反应参数。在该体系中,我们以三氯代嗪(C_3Cl_3N_3)作为碳、氮源,以盐酸肼(N_2H_4·2HCl)作为氮化剂,制备了石墨型氮化碳纳米晶,实验条件分别为40 MPa,220、250、280℃和280℃,50、80、120 MPa。结果表明,反应温度和反应体系的压力对产物的结晶质量和形貌具有重要影响。
     探索了模板方法在氮化碳纳米晶和纳米管合成中的应用。用介孔分子筛(SBA-15)表面为模板,以三氯代嗪(C_3Cl_3N_3)作碳、氮源,NaN_3作氮源,N,N-二甲基甲酰胺作溶剂;恒压溶剂热法(300℃)制备了C_3N_4纳米晶。分子筛的引入提高了产物的产率、结晶度,展现了分子筛表面羟基的配位-催化作用和表面吸附作用。此外,以多孔氧化铝(AAO)作模板,结合溶胶-凝胶高温聚合(600℃)制备了石墨型氮化碳纳米管。用常规的三电极体系在0.5 mol·dm~(-3) H_2SO_4和0.5mol·dm~(-3) H_2SO_4+1 mol·dm~(-3) CH_3OH中对氮化碳纳米管的稳定性和电化学性质进行了研究。实验结果显示,该物质对甲醇氧化表现出一定的催化活性和良好的稳定性。
     以三氯代嗪(C_3Cl_3N_3)和三聚氰胺(C_3N_6H_6)作原料,通过氮气气氛下的固相反应(300℃)制备了石墨型氮化碳,并对其结构和组成进行了表征。同时,利用循环伏安法和充放电曲线对该物质的电化学性能进行了研究;结果表明,该材料具有一定的嵌锂能力,但比容量低、循环寿命短。本文通过在饱和的硝酸锂、硫酸镁、硫酸铝以及硝酸钾、硫酸钾溶液中电解实现阴、阳离子的可控嵌入;并通过控制电解时间来实现对石墨相氮化碳片层电子云密度的控制,从而制备片层中具有不同电子云密度的石墨型氮化碳插层化合物。采用XRD、FTIR、XPS、TEM和TG对产物的结构、组成、形貌和热稳定性进行了表征;我们提出了石墨型氮化碳插层化合物的结构模型,并尝试用离子-π作用解释了插层前后物质的结构变化。
     最后,我们以钛酸四丁酯和g-C_3N_4的前驱物(溶胶-凝胶)的混合物为前驱物,采用水解法和高温煅烧制备了N掺杂TiO_2的g-C_3N_4/TiO_2复合物纳米微粒,利用X射线衍射(XRD)和X射线光电子能谱(XPS)等技术对所得产物进行了表征,并考察了g-C_3N_4/TiO_2催化剂在紫外光和可见光下光催化降解罗丹明的性能。
     总之,本论文的工作为氮化碳的合成、性质研究和应用提供了重要的理论意义和应用价值。
In 1989, Liu and Cohen proposed a hypothetic covalent carbon-nitrogen compoundβ-C_3N_4, on the basis ofβ-Si_3N_4 structure. According to this formula and on the basis of theβ-Si_3N_4 structure, the authors have claimed that it might have bulk modulus and hardness comparable to that of diamond. Then C_3N_4 has attracted considerable interest and attention from physicists, chemists and materials scientists, due to its unique mechanical, optical and tribological properties. Intensive experimental and theoretical investigations of C_3N_4 and other derived polymorphs have been performed.
     In this thesis, the literature related to research history, crystal structure and research state of carbon nitride are reviewed. Based on the reported work, a novel way to research on carbon nitride is proposed and systematic investigations have been carried out The major results are as follows:
     We firstly develop a new route called constant-pressure solvothermal synthesis, which is used in the synthesis of carbon nitride. In this reaction system, the reaction parameters, i.e., reaction temperature and pressure factors have been primarily discussed. Herein, graphite-like C_3N_4 (g-C_3N_4) nanocrystals have been synthesized by the reaction between C_3N_3Cl_3 and N_2H_4·2HCl. The process was carried out at 40 MPa (220,250,280℃) and 80℃(50,80,120 MPa), respectively. The results indicate that the temperature and the pressure play an important role in affecting the crystalline perfection and morphology of C_3N_4 products.
     The application of template-assisted method in the synthesis of carbon nitride nanocrystals and nanotubes has been explored. Herein, mesoporous molecular sieves (SBA-15) are used as the template. Nanocrystals of C_3N_4 have been prepared via the reaction of C_3N_3Cl_3 with NaN_3 at 300℃in DMF solution through constant-pressure solvothermal method. The introduction of SBA-15 improved yield and crystallinity of the desired products, indicating the functions of surface adsorption and coordination-catalysis of hydroxyls. In addition, carbon nitride nanotubes (CNNTs) have been synthesized with porous anodic aluminum oxide (AAO) membrane as template by the thermal polymerization of sol-gel precursors (600℃). Measurement on stability and electrochemical performance of carbon nitride nanotubes are carried out in 0.5 mol·dm~(-3) H_2SO_4 and 0.5 mol·dm~(-3) H_2SO_4 + 1 mol·dm~(-3) CH_3OH in the conventional three electrodes system. The experimental results show that the nanotubes are stable and electrocatalytic for methanol oxidation to an extent.
     Graphite-like carbon nitride (g-C_3N_4) was prepared in large quantities at 300℃under nitrogen via the reaction of C_3N_3Cl_3 with NaN_3 by a solid-state reaction route, of which the structure and the composition were characterized. The electrochemical properties of g-C_3N_4 were studied using both cyclic voltammetry and charge-discharge recycling. It was found that the g-C_3N_4 sample showed certain reversible intercalation capacity of Li~+, but the capacity was small and the recycling time was short. Furthermore, the intercalated carbon nitrides with Li~+, Mg~(2+), Al~(3+), SO_4~(2-) and NO_3~(2-) as guest ions were prepared by electrolysis of carbon nitride powder in the saturated solution of lithium nitrate, magnesium sulfate, aluminum sulfate, potassium nitrate and potassium sulfate. In the experiments, the electron density within the layers was adjusted by changing the intercalation time, and the corresponding intercalation compounds were obtained. The structure, composition, morphology and thermal stability of intercalation compounds were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetry (TG). The possible structure model of intercalation compounds is proposed. The cation-πinteractions and electrostatic interactions are used to explain the changes of microstructure and chemical bonds before and after intercalation.
     At last, g-C_3N_4/TiO_2 composite was prepared by hydrolysis of tetrabutyl titanase and the precursors of g-C_3N_4 at room temperature and annealing in nitrogen atmosphere. The structure and the composition of g-C_3N_4/TiO_2 were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and so on. The photocatalytic activity of g-C_3N_4/TiO_2 composite for the UV and visible-light degradation of Rhodamine B was studied.
     In summary, the experiment results presented here provide useful information on the synthesis, property, and application of carbon nitride.
引文
[1] E. Kroke, M. Schwarz, Novel group 14 nitrides [J], Coord. Chem. Rev. 2004,248,493-532.
    [2] E. C. Franklin, The ammono carbonic acids [J], J. Am. Chem. Soc. 1922, 44,486-509.
    [3] C. E. Redemann, H. J. Lucas, Some derivatives of cyameluric acid and probable structures of melam, melem and melon [J], J. Am. Chem. Soc. 1940,62,842-846.
    [4] H. May, Pyrolysis of melamine [J], J. Appl. Chem. 1959,9,340-344.
    [5] A. I. Finkel'shtein, N. V. Spiridonova, Chemical Properties and molecular structure of derivatives of sym-heptazne [1, 3, 4, 6, 7, 9, 9b-heptaazaphenalene,tri-1,3, 5-triazine] [J], Russ. Chem. Rev. 1964,33(7), 400-405.
    [6] D. R. Miller, J. R. Hoist, E. G. Gillan, Nitrogen-rich carbon nitride network materials via the thermal decomposition of 2, 5, 8-triazido-s-heptazine [J], Inorg. Chem. 2007,46,2161-211A.
    [7] R. S. Hosmane, M. A. Rossman, N. J. Leonard, Synthesis and structure of tri-s-triazine [J],J. Am. Chem. Soc. 1982,104,5497-5499.
    [8] M. Shahbaz, S. Urano, P. R. LeBreton et al., Tri-s-triazine: synthesis, chemical behavior, and spectroscopic and theoretical probes of valence orbital structure [J],J. Am. Chem. Soc. 1984,106,2805-2811.
    [9] A. M. Halpern, M. A. Rossman, R. S. Hosmane et al., Photophysics of the S1 .tautm. SO transition in tri-s-triazine [J], J. Phys. Chem. 1984,88,4324-4326.
    [10] M. L. Cohen, Calculation of bulk moduli of diamond and zinc-blende solids [J],Phys. Rev. B1985,32(12), 7988-7991.
    [11] A. Y. Liu, M. L. Cohen, Prediction of new low compressibility solids [J], Science 1989,245, 841-842.
    [12] H. Yao, W. Y. Ching, Optical properties of β-C_3N_4 and its pressure dependence[J], Phys. Rev. B1994,50,11231-11234.
    [13] F. Z. Cui, D. J. Li, A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films [J], Surf. Coat. Technol. 2000,131,481-487.
    [14] D. M. Teter, R. J. Hemley, Low-compressibility carbon nitrides [J], Science 1996,271,53-55.
    [15] A. Reyes-Serrato, D. H. Galvan, I. L. Garzon, ab initio Hartree-Fock study of structural and electronic properties of β-Si_3N_4 and β-C_3N_4 compounds [J], Phys.Rev. B1995,52,6293-6300.
    [16] S. D. Mo, L. Ouyang, W. Y. Ching et al., Interesting physical properties of the new spinel phase of Si_3N_4 and C3N4 [J], Phys. Rev. Lett. 1999,83, 5046-5049.
    [17] C. M. Sung, M. Sung, Carbon nitride and other speculative superhard materials[J], Mater. Chem. Phys. 1996,43,1-18.
    [18] J. L. Corkill, M. L. Cohen, Calculated quasiparticle band gap of β-C_3N_4 [J], Phys.Rev. B1993,48,17622-17624.
    [19] H. Yoa, W. Y. Ching, Optical properties of P-C3N4 and its pressure dependence[J], Phys. Rev. B1994,50,11231-11234.
    [20] J. V. Badding, D. C. Nesting, Thermodynamic analysis of the formation of carbon nitrides under pressure [J], Chem. Mater. 1996,8,535-540.
    [21] W. Y. Ching, S. D. Mo, I. Tanaka et al., Prediction of spinel structure and properties of single and double nitrides [J], Phys. Rev. B 2001,63,64102-64106.
    [22] D. Li, Y. W. Chung, M. S. Wong, W. D. Sprul, Nano-indentation studies of ultrahigh strength carbon nitride thin films [J], J. Appl. Phys. 1993, 74,219-223.
    [23] E. G. Wang, Carbon nitride-related nanomaterials from chemical vapor deposition: structure and properties [J], J. Am. Ceram. Soc. 2002,85,105-108.
    [24] M. Y. Chen, X. Lin, V. P. Dravid, Y. W. Chung, M. S. Wong, W. D. Sproul,Synthesis and tribological properties of carbon nitride as a novel superhard coating and solid lubricant [J], Tribol. Trans. 1993,36,491-495.
    [25] C. Du, X. W. Su, F. Z. Cui, X. D. Zhu, Morphological behaviour of osteoblastsa on diamond-like carbon coating and amorphous C-N film in organ culture [J],Biomaterials 1998,19,651-658.
    [26] M. Zhang, Y. Nakayama, Effect of ultraviolet light irradiation of amorphous carbon nitride films [J], J. Appl. Phys. 1997,82,4912-4915.
    [27] Z. M. Ren, Y. C. Du, Z. F. Ying, Y. X. Qui, X. X. Xiong, J. D. Wu, F. M. Li,Electronic and mechanical properties of carbon nitride films prepared by laser ablation graphite under nitrogen ion beam bombardment [J], Appl. Phys. Lett.1994,65,1361-1363.
    [28] F. Fendrych, L. Jastrabik, L. Pajasova, D. Chvostova, L. Soukup, K. Rusnak, The mechanical, triboiogical and optical properties of CN_x coatings prepared by sputtering methods [J], Diamond Relat. Mater. 1998, 7,417-421.
    [29] X. Wang, P. J. Martin, T. J. Kinder, Optical and mechanical properties of carbon nitride films prepared by ion-assisted arc deposition and magnetron sputtering [J],Thin Solid Films 1995,256,148-154.
    [30] J. E. Lowther, Defective and amorphous structure of carbon nitride [J], Phys. Rev.B1998,57,5724-5727.
    [31] J. E. Lowther, Relative stability of some possible phases of graphitic carbon nitride [J], Phys. Rev. B1999,59,11683-10686.
    [32] F. Weich, J. Widany, T. Fraunheim, Paracyanogen-like structures in high-density amorphous carbon nitride [J], Carbon 1999,37,545-548.
    [33] B. Molina, L. E. Sansores, Electronic structure of six phases of C3N4: a theoretical approach [J], Mod Phys. Lett. B1999,13,193-201.
    [34] A. Snis, S. F. Matar, Electronic density of states, 1s core-level shifts, and core ionization energies of graphite, diamond, C_3N_4 phases and graphitic C_(11)N_4 [J],Phys. Rev. B1999,60,10855-10863.
    [35] J. J. Wang, D. R. Miller, E. G Gillan, Photoluminescent carbon nitride films grown by vapor transport of carbon nitride powders, Chem. Commun 2002,19,2258-2259.
    [36] M. Mattesini, S. F. Matar, J. Etoumeau, Stability and electronic property investigations of the graphitic C_3N_4 system showing an orthorhombic unit cell [J],J. Mater. Chem. 2000,10,709-713.
    [37] Y. Guo, W. A. Goddard Ⅲ, Is carbon nitride harder than diamond? No, but its girth increases when stretched (negative Poisson ratio) [J], Chem. Phys. Lett.1995,257,72-76
    [38] A. Y. Liu, R. M. Wentzcovich, Stability of carbon nitride solids [J], Phys. Rev. B 1994,50,10362-10365.
    [39] P. Kroll, Pathways to metastable nitride structures [J], J. Solid State Chem. 2003,176,530-537.
    [40] B. Jurgens, E. Irran, J. Senker et al., Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractom-etry, solid-state NMR and theoretical studies [J], J. Am. Chem. Soc. 2003, 125,10288-10300.
    [41] I. Alves, G. Demazeau, B. Tanguy et al., On a new model of the graphitic form of C_3N_4 [J], Solid State Commun. 1999,109,697-701.
    [42] M. Mattesini, S. F. Matar, A. Snis et al., Relative stabilities, bulk moduli and electronic structure properties of different ultra-hard materials investigated within the local spin density functional approximation [J], J. Mater. Chem. 1999, 9,3151-3158.
    [43] E. Kroke, M. Schwarz, P. Kroll et al., Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures [J], New J. Chem. 2002, 26,508-512.
    [44] J. J. Cuomo, P. A. Leary, D. Yu, W. Reuter, M. Frisch, Reactive sputtering of carbon and carbide targets in nitrogen [J], J. Vac. Sci. Technol., 1979, 16(2),299-302.
    [45] H. X. Han, B. J. Feldman, Structural and optical properties of amorphous carbon nitride [J], Solid State Commun 1988,65,921-923.
    [46] T. Tomikawa, N. Fujita [P], Jpn. Patent, 1991, JP03240959 A2 (Chem. Abstr.775,163119).
    [47] J. Viehland, S. Lin, B. J. Feldman et al., Search for the nitrogen dangling bond in amorphous hydrogenated carbon nitride [J], Solid State Commun. 1991, 80(8),597-599
    [48] H. W. Song, F. Z. Cui, X. M. He et al., Carbon nitride films synthesized by NH_3-ion-beam-assisted deposition [J], J. Phys.: Condens. Matter 1994, 6(31),6125-6129.
    [49] J. J. Cuomo, P. A. Leary, W. Reuter et al., Reactive sputtering of carbon and carbide targets in nitrogen [J], J. Vac. Sci. Technol., 1979,16,299-302.
    [50] K. H. Chen, J. J. Wu, C. Y. Wen, Wide band gap silicon carbon nitride films deposited by electron cyclotron resonance plasma chemical vapor deposition [J],Thin Solid Films 1999,355-356,205-209.
    [51] C. Popov, M. F. Plass, R. Kassing et al., Plasma chemical vapor deposition of thin carbon nitride films utilizing transport reactions [J], Thin Solid Films 1999,355-555,406-411.
    [52] 张永平,顾有松,高鸿钧等,微波等离子体化学气相沉积法制备C_3N_4薄膜的结构研究[J],物理学报,2001,50,1396-1399.
    [53] 顾有松,张永平,常香荣等,理论预言的氮化碳超硬膜研究新进展[J],物理学报1999,8,479-484.
    [54] Y. Kusano, C. Christou, Z. H. Barber et al., Deposition of carbon nitride films by ionised magnetron sputtering [J], Thin Solid Films 1999,355-356,117-121.
    [55] R. Kaltofen, T. Sebald, G. Weise, Plasma diagnostic studies to the carbon nitride film deposition by reactive r.f. magnetron sputtering [J], Thin Solid Films 1996,290-291,112-119.
    [56] R. Kaltofen, T. Sebald, G. Weise, Low-energy ion bombardment effects in reactive rf magnetron sputtering of carbon nitride films [J], Thin Solid Films 1997,308-309,118-125.
    [57] S. Kobayashi, S. Nozaki, H. Morisaki et al., Carbon nitride thin films deposited by the reactive ion beam sputtering technique [J], Thin Solid Films 1996,281-282,289-293.
    [58] S. A. Korenev, Deposition of carbon nitride films by vacuum ion diode with explosive emission [J], Thin Solid Films 1997,308-309,233-238.
    [59] M. R. Wixom, Chemical preparation and shock wave compression of carbon nitride precursors [J], J. Am. Ceram. Soc. 1990, 73,1973-1978.
    [60] D. C. Nesting, J. V. Badding, High-Pressure synthesis of sp~2-bonded carbon nitrides [J], Chan. Mater. 1996,8,1535-1539.
    [61] H. A. Ma, X. P. Jia, L. X. Chen et al., High-pressure pyrolysis study of C_3N_6H_6: a route to preparing bulk C3N4 [J], J. Phys.: Condens. Matter 2002, 14,11269-11273.
    [62] Q. Fu, J. T. Jiu, H. Wang et al., Simultaneous formation of diamond-like carbon and carbon nitride films in the electrodeposition of an organic liquid [J], Chem.Phys. Lett. 1999,301,87-90.
    [63] Q. Lu, C. B. Cao, C. Li et al., Formation of crystalline carbon nitride powder by a mild solvothennal method [J], J. Mater. Chem. 2003,13,1241-1243.
    [64] Q. Lu, C. B. Cao, H. S. Zhu et al., Solvothennal synthesis of crystalline carbon nitrides [J], Chin. Sci. Bull. 2003, 6,519-522.
    [65] Q. Lu, C. Cao, J. Zhang et al., The composition and structures of covalent carbon nitride solids synthesized by solvothennal method [J], Chem. Phys. Lett. 2003,372,469-475.
    [66] Y. J. Bai, B. Lu, Z. G. Liu et al., Solvothennal preparation of graphite-like C_3N_4 nanocrystals [J], J. Cryst. Growth 2003,247,505-508.
    [67] Z. Zhang, K. Leinenweber, M. Bauer et al., High-pressure bulk synthesis of crystalline C_6N_9·HCl: a novel C_3N_4 graphitic derivative [J], J. Am. Chem. Soc.2001,123,7788-7796.
    [68] E. G. Gillan, Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor [J], Chem. Mater. 2000,12,3906-3912.
    [69] T. Komatsu, T. Nakamura, Polycondensation/pyrolysis of tris-s-triazine derivatives leading to graphite-like carbon nitrides [J], J. Mater. Chem. 2001,11, 474-478.
    [70] T. Komatsu, Attempted chemical synthesis of graphite-like carbon nitride [J], J.Mater. Chem. 2001,11,799-801.
    [71] T. Komatsu, Prototype carbon nitrides similar to the symmetric triangular form of melon [J],J. Mater. Chem. 2001,11,802-803.
    [72] B. V. Lotsch, M. Doblinger, J. Sehnert et al., Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer [J], Chem. Eur. J. 2007,13,4969-4980.
    [73] A. Jentys, N. H. Pham, H. Vinek, Nature of hydroxy groups in MCM-41 [J], J.Chem. Soc. Faraday Trans. 1996,92,3287-3291.
    [74] B. Chakraborty, B. Viswanathan, Surface acidity of MCM-41 by in situ IR studies of pyridine adsorption [J], Catalysis Today 1999,49,253-260.
    [1] S. Schlecht, L. Kienle, Mild solvothermal synthesis and TEM investigation of unprotected nanoparticles of tin sulfide [J], Inorg. Chem. 2001, 40(22),5719-5271.
    [2] L. Grocholl, J. Wang, E. G. Gillan, Solvothermal azide decomposition route to GaN nanoparticles, nanorods, and faceted crystallites [J], Chem. Mater. 2001,13(11) 4290-4296.
    [3] G. Wei, C. -W. Nan, Y. Deng, et al., Self-organized synthesis of silver chainlike and dendritic nanostructures via a solvothermal method [J], Chem. Mater. 2003,15(23), 4436-4441.
    [4] J. Lu, P. Qi, Y. Peng, et al., Metastable MnS crystallites through solvothermal synthesis [J], Chem. Mater. 2001,13(6), 2169-2172.
    [5] M. Schaefer, C. Nather, N. Lehnert, W. Bensch, Solvothermal syntheses, crystal structures, and thermal properties of new manganese thioantimonates(Ⅲ): The first example of the thermal transformation of an amine-rich thioantimonate into an amine-poorer thioantimonate [J], Inorg. Chem. 2004,43(9), 2914-2921.
    [6] (a) G. Goglio, D. Foy, G. Demazeau, State of art and recent trends in bulk carbon nitrides synthesis [J], Mater. Sci. and Eng, B 2008,58,195-227.(b) J. B. Goodenough, J. A. Kafalas, J. M. Longo, High Pressure Synthesis in Chap. I. Preparative Methods in Solid State Chemistry [M], Academic Press, New York, 1972.
    [7] 徐如人,庞文琴,无机化学与制备化学[M],高等教育出版社,2001.
    [8] (a) J. J. Capponi, J. Chenavas, J. C. Joubert [J], Bull. Soc. Miner. Cristallogr. 1972,95,412.(b) W. L. Roth, R. C. De Vries, Crystal and magnetic structure of PbCrO_3 [J], J.Appl. Phys. 1967,38,951-952.(c) K. Landskron, W. Schnick, Rb_3P_6N_(11) and Cs_3P_6N_(11)-new highly condensed nitridophosphates by high-pressure high-temperature synthesis [J], J. Solid StateChem. 2001,156,390-393.
    [9] J. V. Badding, D. C. Nesting, Thermodynamic analysis of the formation of carbon nitrides under pressure [J], Chem. Mater. 1996,8,535-540.
    [10] D. C. Nesting, J. V. Badding, High-pressure synthesis of sp~2-bonded carbon nitrides [J], Chem. Mater. 1996,8,1535-1539.
    [11] J. V. Badding, High-pressure synthesis characterization, and tuning of solid state materials [J], Amu. Rev. Mater. Sci. 1998,28,631 -658.
    [12] G. Demazeau [J], High Pressure Res. 2007,27,1739.
    [13] C. B. Cao, Q. Lv, H. S. Zhu, Carbon nitride prepared by solvothermal method [J],Diamond Relat. Mater. 2003,12,1070-1074.
    [14] Y. J. Bai, B. Lu, Z. G. Liu, L. Li, D. L. Cui, X. G. Xu, Q. L. Wang, Solvothermal preparation of graphite-like C_3N_4 nanocrystals [J], J. Cryst. Growth 2003, 247,505-508.
    [15] Q. Fu, C. B. Cao, H. S. Zhu, A solvothermal synthetic route to prepare polycrystalline carbon nitride [J], Chem. Phys. Lett. 1999,314,223-226.
    [16] Q. Guo, Y. Xie, X. Wang, S. Zhang, T. Hou, S. Lv, Synthesis of carbon nitride nanotubes with C_3N_4 stoichiometry via a benzene-thermal process at low temperatures [J], Chem. Commun. 2004,1,26-27.
    [17] Q. Guo, Q. Yang, L. Zhu, C. Yi, S. Zhang, Y. Xie, A facile one-pot solvothermal route to tubular forms of luminescent polymeric networks [(C_3N_3)_2(NH)_3]_n [J], Solid State Commun. 2004,132,369-374.
    [18] A. Y. Liu, R. M. Wenzxovitch, Stability of carbon nitride solid [J], Phys. Rev. B 1994,50,10362-10365.
    [19] J. B. Wang, J. L. Lei, R. H. Wang, Diffraction pattern calculation and phase identification of hypothetical crystallization C_3N_4 [J], Phys. Rev. B 1998, 5,11890-11895.
    [20] S. Matsumoto, E. Q. Xie, F. Izumi, On the validity of the formation of crystalline carbon nitrides, C_3N_4 [J], Diamond Relat. Mater. 1999,8,1175-1182.
    [21] Q. X. Guo, Y. Xie, X. J. Wang, S. C. Lv, T. Hou, X. M. Liu, Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures [J], Chem. Phys. Lett. 2003,380,84-87.
    [22] T. Komatsu, Attempted chemical synthesis of graphite-like carbon nitride [J], J.Mater. Chem. 2001,11(3), 799-801.
    [23] D. R. Miller, J. J. Wang, E. G Gillan, Rapid facile synthesis of nitrogen-rich carbon nitride powders [J], J. Mater. Chem. 2002,12,2463-2469.
    [24] S. E. Rodil, S. Muhl, Bonding in amorphous carbon nitride [J], Diamond Relat Mater. 2004,13,1521-1531. [25] R. Soto, P. Gonzalez, F. Lusquinos, J. Pou, B. Leon, M. Perez-Amor, Carbon nitride films prepared by guanazole laser ablation in ammonia atmosphere [J],Carbon 1998,36, 781-784.
    [26] Y. G. Li, A. T. S. Wee, C. H. A. Huan, W. S. Li, J. S. Pan, Reactive atom synthesis and characterization of C3N4 crystalline films [J], Surf. Interface Anal.1999,28,221-225.
    [27] T. R. Lu, L. C. Chen, K. H. Chen, D. M. Bhusari, T. M. Chen, C. T. Kuo,Sputtering process of carbon nitride films by using a novel bio-molecular C-N containing target [J], Thin Solid Films 1998,332,74-79.
    [28] Y. Kusano, J. E. Evetts, R. E. Somekh, I. M. Hutchings, Properties of carbon nitride films deposited by magnetron sputtering [J], Thin Solid Films 1998, 332,56-61.
    [29] V. N. Khabashesku, J. L. Zimmerman, J. L. Margrave, Powder synthesis and characterization of amorphous carbon nitride [J], Chem. Mater. 2000, 12,3264-3270.
    [30] J. L. Zimmerman, R. Williams, V. N. Khabashesku, J. L. Margrave, Synthesis of spherical carbon nitride nanostructures [J], Nano. Lett. 2001,1,731-734.
    [31] M. Kawaguchi, Synthesis, structure, and characteristics of the new host material [(C_3N_3)_2(NH)_3]_n[J], Chem. Mater. 1995, 7(2), 257-264.
    [32] D. Marton, K. J. Boyd, A. H. Al-Bayati, S. S. Todorov, J. W. Rabalais, Carbon nitride deposited using energetic species: A two-phase system [J], Phy. Rev. Lett. 1994, 73(1), 118-121.
    [33] K. J. Boyd, D. Marton, S. S. Todorov, A. H. Al-Bayati, J. Kulik, R. A. Zuhr, J. W. Rabalais, Formation of C-N thin films by ion beam deposition [J], J. Vac. Sci.Technol A 1995,13(4), 2110-2122.
    [34] Deuk Yeon Lee, Yong Hwan Kim, In kyo kim, Hong koo Baik, The effects of substrates on carbon nitride thin films prepared by direct dual ion beam deposition [J], Thin solid films 1999,355-356,239-245.
    [35] S. Tragla, K. Gibsona, J. Glasera, V. Duppelb, A. Simonb, H. -J. Meyera,Template assisted formation of micro- and nanotubular carbon nitride materials[J], Solid State Commun. 2007,141,529-534.
    [1] 叶向阳,郭奇珍,模板合成新进展[J],化学通报,1996,2,1-6.
    [2] M. L. Cohen, Calculation of bulk moduli of diamond and zinc-blende solids [J],Phys. Rev. B 1985,32(12), 7988-7991.
    [3] A. Y. Liu, M. L. Cohen, Prediction of new low compressibility solids [J], Science 1989,245,841-842.
    [4] A. Y. Liu, M. L. Cohen, Structural properties and electronic structure of low-compressibility materials: β-Si_3N_4 and hypothetical β-C_3N_4 [J], Phys. Rev. B 1990,41,10727-10734.
    [5] S. Matsumoto, E. Q. Xie, F. Izumi, On the validity of the formation of crystalline carbon nitrides, C_3N_4 [J], Diamond Relat. Mater. 1999,8,1175-1182.
    [6] L. G Gai, Z. Chen, H. H. Jiang, Y. Tian, Q. L. Wang, D. L. Cui,Hydroxyl-promoted synthesis of GaN nanorods on SBA-15 surface [J], J. Crystal Growth 2006,291,527-532.
    [7] 盖利刚,介孔分子筛制备、表征及应用[J],山东大学博士学位论文,2006.
    [8] E. C. Walter, B. J. Murray, F. Favier, G Kaltenpoth, M. Gmnze, R. M. Penner,Noble and coinage metal nanowires by electrochemical step edge decoration [J],J. Phys. Chem. 52002,106,11407-11411.
    [9] N. Hellgren, M. P. Johansson, E. Broitman, L. Hultman, J. E. Sundgren, Role of nitrogen in the formation of hard and elastic CN_x thin films by reactive magnetron sputtering [J], Phys. Rev. B1999,59,5162-5169.
    [10] A. K. M. S. Chowdhury, D. C. Cameron, M. S. J. Hashmi, Vibrational properties of carbon nitride films by Raman spectroscopy [J], Thin Solid Films 1998, 332,62-68.
    [11] R. O. Dillon, J. A. Woollam, V. Kathanant, Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films [J], Phys. Rev. B1984,29,3482-3489.
    [12] C. B. Cao, F. L. Huang, C. T. Cao, J. Li, H. S. Zhu, Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route [J], Chem. Mater. 2004,16,5213-5215.
    [13] R. Nemanich, J. T. Glass, G Lucovsky, R. E. Shoroder, Raman scattering characterization of carbon bonding in diamond and diamondlike thin films [J], J.Vac. Sci. Technol. A 1988,6,1783-1787.
    [14] R. E. Shroder, R. Nemanich, J. T. Glass, Analysis of the composite structures in diamond thin films by Raman spectroscopy [J], Phys. Rev. B 1990, 41,3738-3745.
    [15] Y. A. Li, S. Xu, H. S. Li, W. Y. Luo, Polycrystalline carbon nitride β-C_3N_4 films synthesized by radio frequency magnetron sputtering [J], J. Mater. Sci. Lett 1998,77,31-35.
    [16] Z. J. Zhang, S. S. Fan, C. M. Lieber, Growth and composition of covalent carbon nitride solids [J],Appl. Phys. Lett. 1995,66,3582-3584.
    [17] X. A. Zhao, C. W. Ong, Y. C. Tsang, Y. W. Wong, P. W. Chan, C. L. Choy,Reactive pulsed laser deposition of CN_x films [J], Appl. Phys. Lett. 1995, 66, 2652-2654.
    [18] D. W. Wu, D. J. Fu, H. X. Guo, Z. H. Zhang, X. Q. Meng, X. J. Fan, Structure and characteristics of C3N4 thin films prepared by rf plasma-enhanced chemical vapor deposition [J], Phys. Rev. B 1997,56,4949-4954.
    [19] M. R. Wixom, Chemical preparation and shock wave compression of carbon nitride precursors [J], J. Am. Ceram. Soc 1990, 73,1973-1978.
    [20] D. Marton, K. J. Boyd, A. H. Al-Bayati, S. S. Todorov, J. W. Rabalais, Carbon nitride deposited using energetic species: a two-phase system [J], Phy. Rev. Lett.1994, 73(1), 118-121.
    [21] K. J. Boyd, D. Marton, S. S. Todorov, A. H. Al-Bayati, J. Kulik, R. A. Zuhr, et al.,Formation of C-N thin films by ion beam deposition [J], J. Vac. Sci. Technol. A 1995,13(4), 2110-2122.
    [22] D. Y. Lee, Y. H. Inkyokim, H. K. Baik, The effects of substrates on carbon nitride thin films prepared by direct dual ion beam deposition [J], Thin solid films 1999,355-356,239-245.
    [23] A. Jentys, N. H. Pham, H. Vinek, Nature of hydroxy groups in MCM-41 [J], J. Chem. Soc. Faraday Trans. 1996,92,3287-3291.
    [24] B. Chakraborty, B. Viswanathan, Surface acidity of MCM-41 by in situ IR studies of pyridine adsorption [J], Catalysis Today 1999,49,253-260.
    [25] M. P. Zach, K. H. Ng, R. M. Penner, Molybdenum nanowires by electrodeposition [J], Science 2000,290,2120-2123.
    [26] R. M. Penner, Mesoscopic metal particles and wires by electrodeposition [J], J.Phys. Chem. B 2002,106,3339-3353.
    [27] M. P. Zach, K. Inazu, J. C. Hemminger, R. M. Penner, Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration [J], Chem. Mater. 2002,14,3206-3216.
    [28] E. G Gillan, Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor [J], Chem. Mater. 2000; 12,3906-3912.
    [29] L. D. Zhang, J. M. Mou, Nanomaterials and Nanostructures [M], Science Publishing Company,2002.(张立德,牟季美,纳米材料和纳米结构,科学出版社,2002)
    [30] V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A.Leatherdale, H. J. Eisler, M. G Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots [J], Science 2000,290,314-317.
    [31] D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, P. L. McEuen, A single-electron transistor made from a cadmium selenide nanocrystal [J], Nature 1997,359,699-701.
    [32] H. Pettersson, L. Baath, N. Carlssoon, W. Seifert, L. Samuelson, Case study of an InAs quantum dot memory: optical storing and deletion of charge [J], Appl. Phys.Lett. 2001, 79,78-80.
    [33] J. Phillips, Evaluation of the fundamental properties of quantum dot infrared detectors [J],J. Appl. Phys. 2002,91,4590-4592.
    [34] S. Coe, W. K. Woo, M. Bawendi, V. Bulovic, Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J], Nature 2002, 420,800-803.
    [35] C. Gramling, How fast does your dinosaur grow [J], Science 2005, 310,1751-1751.
    [36] O. Pomillos, Y. J. Chen, A. P. Chen, G Chang, X-ray structure of the EmrE multidrug transporter in complex with a substrate [J], Science 2005, 310,1950-1953.
    [37] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan,One-dimensional nanostructures: synthesis, characterization, and applications [J],Adv. Mater. 2003,15,353-389.
    [38] D. Kuang, A. Xu, Y. Fang, H. Liu, C. Frommen, D. Fenske, Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process [J],Adv. Mater. 2003,75,1747-1750.
    [39] D. H. Cobden, Molecular electronics nanowires begin to shine [J], Nature 2001,409,32-33.
    [40] Z. L. Wang, Characterizing the structure and properties of individual wire-like nanoentities [J],Adv. Mater. 2000,12,1295-1298.
    [41] F. A. Ponce, D. P. Bour, Nitride-based semiconductors for blue and green light-emitting devices [J], Nature 1997,386,351-359.
    [42] S. Nakamura, Making nonmagnetic semiconductors ferromagnetic [J], Science 1998,281,956-961.
    [43] X. Duan, C. M. Lieber, Laser-assisted catalytic growth of single crystal GaN nanowires [J], J. Am. Chem. Soc. 2000,122,188-189.
    [44] S. Iijima, Helical microtubules of graphitic carbon [J], Nature 1991,354,56-58.
    [45] N. G Chopra, R. J. Luyken, K. Cherrey, et al., Boron nitride nanotubes [J],Science 1995,269,966-967.
    [46] H. J. Dai, E. W. Wong, Y. Z. Lu, et al., Synthesis and characterization of carbide nanorods [J], Nature 1995,375,769-772.
    [47] T. M. Whitney, P. C. Searson, J. S. Jiang, et al., Fabrication and magnetic properties of arrays of metallic nanowires [J], Science 1993,261,1316-1319.
    [48] Y. Zhang, K. Suenaga, C. Colliex, et al., Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon [J], Science 1998, 281,973-975.
    [49] Z. P. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting Oxides [J],Science 2001,291,1947-1979.
    [50] C. R. Martin, Nanomaterials: a membrane-based synthetic approach [J], Science 1994,266,1961-1966.
    [51] J. Hu, T. W. Odom, C. M. Lieber, Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes [J], Acc. Chem. Res. 1999,32,435-445.
    [52] T. J. Trentler, K. M. Hickman, S. C. Goel, et al., Solution-liquid-solid growth of crystalline Ⅲ-Ⅴ semiconductors: an analogy to vapor-liquid-solid growth [J],Science 1995,270,1791-1794.
    [53] L. -W. Yin, Y. Bando, M. -S. Li, Y. -X. Liu, Y. -X. Qi, Unique single-crystalline Beta carbon nitride nanorods [J], Adv. Mater. 2003,75,1840-1844.
    [54] Q. Guo, Y. Xie, X. Wang, S. Zhang, T. Hou, S. Lv, Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures [J], Chem. Commun 2004,1,26-27.
    [55] M. Terrones, P. Redlich, N. Grobert, S. Trasobares, et al., Carbon nitride nanocomposites: formation of aligned C_xN_y nanofibers [J], Adv. Mater. 1999,11(8), 655-658.
    [56] Y. Qiu, L. Gao, Chemical synthesis of turbostratic carbon nitride, containing C-N crystallites, at atmospheric pressure [J], Chem. Commun 2003,2378-2379.
    [57] M. Kim, S. Hwang, J. S. Yu, Novel ordered nanoporous graphitic C_3N_4 as a support for Pt-Ru anode catalyst in direct methanol fuel cell [J], J. Mater. Chem.2007,77,1656-1659.
    [58] (a) R. Soto, P. Gonzalez, F. Lusquinos, J. Pou, B. Leon, M. Perez-Amor, Carbon nitride films prepared by guanazole laser ablation in ammonia atmosphere [J] ,Carbon 1998,36,781-784.(b) Y. G Li, A. T. Wee, C. H. A. Huan, W. S. Li, J. S. Pan, Reactive atom synthesis and characterization of C_3N_4 crystalline films [J], Surf. Interface Anal.1999,28,221-225.
    [59] P. Sheng, N. Wang, J. Y. Miao, Z. Y. Yang, S. H. Yang, X. Y. Zhang,Fabrication of membrane nanopumps based on porous alumina thin films; U.S.Patent [P], Appl. No. 11/144,100; filing date: 06/03/2005.
    [1] A. Y. Liu, M. L. Cohen, Prediction of new low compressibility solids [J], Science 1989, 245, 841-842.
    [2] M. L. Cohen, Calculation of bulk moduli of diamond and zinc-blende solids [J],Phys. Rev. B 1985,32(12), 7988-7991.
    [3] D. M. Teter, R. J. Hemley, Low-compressibility carbon nitrides [J], Science 1996,271,53-55.
    [4] A. Y. Liu, R. M. Wentzcovitch, Stability of carbon nitride solid [J], Phys. Rev. B 1994,50,10362-10365.
    [5] J. Ortega, O. F. Sankey, Relative stability of hexagonal and planar structures of hypothetical C_3N_4 solids [J], Phys. Rev. B1995,57,2624-2627.
    [6] J. E. Lowther, Relative stability of some possible phases of graphitic carbon nitride [J], Phys. Rev. B1999,59(18), 11683-11686.
    [7] M. Mattesini, S. F. Matar, A. Snis, J. Etourneau, A. Mavromaras, Relative stabilities, bulk moduli and electronic structure properties of different ultra-hard materials investigated within the local spin density functional approximation [J], J.Mater. Chem 1999,9,3151-3158.
    [8] I. Alves, G Demazeau, B. Tanguy, F. Weill, On a new model of the graphitic form of C_3N_4 [J], Solid State Commun. 1999,109,697-701.
    [9] E. G Gillan, Powder synthesis and characterization of amorphous carbon nitride[J], Chem. Mater. 2000,12(11), 3264-3270.
    [10] F. Ugozzoli, C. Massera, Intermolecular interactions between benzene and 1, 3,5-triazine: a new tool for crystal engineering and molecular recognition [J],Cryst. Eng. Commun. 2005, 7,121-128.
    [11] T. J. Mooibroek, P. Gamez, The s-triazine ring, a remarkable unit to generate supramolecular interactions [J], Inorg. Chim. Acta 2007,360,381-404.
    [12] J. C. Ma, D. A. Dougherty, The cation-71 Interaction [J], Chem. Rev. 1997, 97,1303-1324.
    [13] K. Muller-Dethlefs, P. Hobza, Noncovalent interactions: A challenge for experiment and theory [J], Chem. Rev. 2000,100(1), 143-168.
    [14] C. T. Seto, G. M. Whitesides, Molecular self-assembly through hydrogen bonding: supramolecular aggregates based on the cyanuric acid-melamine lattice[J], J. Am. Chem. Soc. 1993,115(3), 905-916.
    [15] J. Kouvetakis, A. Bandari, M. Todd, B. Wilkens, Novel synthetic routes to carbon-nitrogen thin films [J], Chem. Mater. 1994, 6,811-814.
    [16] M. Kawaguchi, Synthesis, structure, and characteristics of the new host material[(C_3N_3)_2(NH)_3]_n [J], Chem. Mater. 1996, 7,257-264.
    [17] 尹鸽平,王庆,程新群,史鹏飞,锂离子电池新型负极材料的研究进展[J],电池,1999,29,270-274.
    [18] Q. X. Guo, Y. Xie, X. J. Wang, S. C. Lv, T. Hou, X. M. Liu, Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures [J], Chem. Phys. Lett. 2003,380,84-87.
    [19] T. Komatsu, Attempted chemical synthesis of graphite-like carbon nitride [J], J.Mater. Chem. 2001,11(3), 799-801.
    [20] D. R. Miller, J. J. Wang, E. G Gillan, Rapid facile synthesis of nitrogen-rich carbon nitride powders [J], J. Mater. Chem. 2002,12,2463-2469.
    [21] R. Soto, P. Gonzalez, F. Lusquinos, J. Pou, B. Leon, M. Perez-Amor, Carbon nitride films prepared by guanazole laser ablation in ammonia atmosphere [J],Carbon 1998,36(5-6), 781.
    [22] C. W. Ong, X. -A. Zhao, Y. C. Tsang, C. L. Choy, P. W. Chan, Effects of substrate temperature on the structure and properties of reactive pulsed laser deposited CN_x films [J], Thin Solid Films 1996,280,1-4.
    [23] J. L. Zimmerman, R. Williams, V. N. Khabashesku, J. L. Margrave, Synthesis of spherical carbon nitride nanostructures [J], Nano. Lett. 2001,1, 731-734.
    [24] D. T. Vodak, K. Kim, L. Iordanidis, P. G. Rasmussen, A. J. Matzger, O. M.Yaghi, Computation of aromatic C_3N_4 networks and synthesis of the molecular precursor N(C_3N_3)_3Cl_6 [J], Chem. Eur. J. 2003, P, 4197-4201.
    [1] A. L. Iinsebigler, G. Q. Lu, J. T. Yates, Photocatalysis on TiO_2 surfaces:principles, mechanisms, and selected results [J], Chem. Rev. 1995,95,735-758.
    [2] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis [J], J.Photochem. Photobiol. C2000, 1, 1-21.
    [3] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis [J], Chem. Rev. 1995,95,69-96.
    [4] B. Ohtani, Y. Ogawa, S. Nishimoto, Photocatalytic activity of amorphous-anatase mixture of titanium (TV) oxide particles suspended in aqueous solutions [J], J.Phys. Chem. B1997,101,3746-3752.
    [5] H. Yamashita, Y. Ichihashi, M. Harada, et al., Photocatalytic degradation of 1-Octanol on anchored titanium oxide and on TiO_2 powder catalysts [J], J. Catal.1996,158,91-101.
    [6] W. Choi, A. Termin, M. R. Hoffinann, The role of metal ion dopants in quantum-sized TiO_2: Correlation between photoreactivity and charge carried recombination dynamics [J], J. Phys. Chem. 1994,98(5), 13669-13679.
    [7] S. Nevim, H. Arzu, K. Gulin, Pholocatalytic degradation of 4-nitrophenol in aqueous TiO_2 suspensions: Theoretical prediction of the intermediates [J], J.Photochem. Photobiol. A: Chem 2002,146,189-197.
    [8] 余锡宾,王桂华,罗衍庆等,TiO_2微粒的掺杂改性与催化活性[J],上海师范大学学报(自然科学版),2000,29(1),75-82.
    [9] 刘畅,暴宁钟,杨祝红等,过渡金属离子掺杂改性TiO_2的光催化性能研究进展[J],催化学报2001,22(2),215-218.
    [10] R. Asahi, T. Ohwaki, K. Aoki, et al., Visible-light photocatalysis in nitrogen-doped titanium oxide [J], Science 2001,293,269-271.
    [11] A. Kasahara, K. Nukumizu, G. Hitoki, et al., Photoreactions on LaTiO_2N under visible light irradiation [J], J. Phys. Chem. A 2002,106,6750-6753.
    [12] A. Kasahara, K. Nukumizu, T. Takata, et al., LaTiO_2N as a visible-light (≤ 600 nm)-drivenphotocatalyst [J], J. Phys. Chem. 52003,107(3), 791-797.
    [13] T. Ohno, T. Mitsui, M. Matsumura, Photocatalytic activity of S-doped TiO_2 photocatalyst visible light [J], Chem. Lett. 2003,32,364-365.
    [14] T. Umebayashi, T. Yamaki, H. Itoh, Band gap narrowing of titanium dioxide by sulfur doping [J], Appl. Phys. Lett. 2002,81,454-456.
    [15] H. Luo, T. Takata, Y. Lee, et al., Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine [J], Chem. Mater. 2004,16(5), 846-849.
    [16] J. S. Wang, S. Yin, Q. W. Zhang, et al., Mechanochemical synthesis of SrTiO_(3-x)F_x with high visible light photocatalytic activities for nitrogen monoxide destruction [J], J. Mater. Chem. 2003,13(9), 2348-2352.
    [17] S. U. M. Khan, M. Al-shahry, et al., Efficient photochemical water splitting by a chemically modified-TiO_2 [J], Science 2002,297,2243-2245.
    [18] N. Serpone, I. Texier, A. V. Emeline, et al., Postirradiation effect and reductive dechlorination of chlorophenols at oxygen-free TiO_2/water interfaces in the presence of prominent hole scavengers [J], J. Photochem. Photobiol. A: Chem 2000,136(3), 145-152.
    [19] M. G. Kang, H. E. Han, K. J. Kim, Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO_2 [J], J.Photochem. Photobiol A: Chem 1999,125(1-3), 119-125.
    [20] X. Z. Li, F. B. Li, C. L. Yang, et al., Photocatalytic activity of WO_x-TiO_2 under visible light irradiation [J], J. Photochem. Photobiol. A: Chem 2001, 141,209-217.
    [21] D. Chatterjee, A. Mahata, Photoassisted detoxification of organic pollutants on the surface modified TiO_2 semiconductor particulate system [J], Catal. Commun 2001,2ft), 1-3.
    [22] J. C. Yu, J. Yu, J. Zhao, Enhanced photocatalytic activity of mesoporous and ordinary TiO_2 thin films by sulfuric acid treatment [J], Appl. Catal, B: Environ 2002,36(1), 31-43.
    [23] D. S. Muggli, L. Ding, Phototocatalytic performance of sulfated TiO_2 and degussa P-25 TiO_2 during oxidation of organic [J], Appl. Catal, B: Environ 2001,32(3), 181-194.
    [24] 付贤智,丁正新,苏文悦等,二氧化钛基固体超强酸的结构及其光催化氧化性能[J],催化学报,1999,20(3),321-324.
    [25] G. Martra, Lewis acid and base sites at the surface of microcrystalline antase: Relationships between surface morphology and chemical behavior [J],Appl Catal, A 2000,200(2), 275-283.
    [26] 尚静,徐自力,杜尧国等,TiO_2纳米粒子的结构、表面特性及其光催化活性研究[J],无机材料学报,2001,16(2),1211-1216.
    [27] S. M. Sze, Physics of semiconductor devices [M]. New York: Wiley-Interscience,1981.
    [28] T. Sainsbury, D. Fitzmaurice, Templated assembly of semiconductor and insulator nanoparticles at the surface of covalently modified multiwalled carbon nanotubes [J], Chem. Mater. 2004,16,3780-3790.
    [29] A. Gomathi, S. R. C. Vivekchand, A. Govindaraj, Chemically bonded ceramic oxide coatings on carbon nanotubes and inorganic nanowires [J], C. N. R. Rao,Adv. Mater. 2005,17,2757-2761.
    [30] E. Dominik, H. W. Alan, Carbon-inorganic hybrid materials: The carbon-nanotube/TiO_2 interface [J],Adv. Mater. 2008,9999,1-7.
    [31] A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Geguin, S. Bonnamy,Synthesis and characterization of carbon nanotubes-TiO_2 nanocomposites [J],Carton 2004,42,1147-1151.
    [32] P. Vincent, A. Brioude, C. Journet, S. Rabaste, S. T. Purcell, J. L. Brusq, J. C.Plenet, Inclusion of carbon nanotubes in a TiO_2 sol-gel matrix [J], J. Non-Cryst.Solids 2002,377,130-137.
    [33] X. -B. Yan, B. K. Tay, Y. Yang, Dispersing and functionalizing multiwalled carbon nanotubes in TiO_2 sol [J], J. Phys. Ckem. B 2006,110,25844-25849.
    [34] Y. Tao, C. Y. Wu, D. W. Mazyck, Microwave-assisted preparation of TiO_2/activated carbon composite photocatalyst for removal of methanol in humid air streams [J], Ind Eng. Chem. Res. 2006,45,5110-5116.
    [35] H. Wang, X. Quan, H. T. Yu, S. Chen, Fabrication of a TiCVcarbon nanowall heterojunction and its photocatalytic ability [J], Carbon 2008,46,1126-1132.
    [36] A. Kongkanand, R. M. Dominguez, P. V. Kamat, Single wall carbon nanotube scaffolds for photoelectrochemical solar cells, capture and transport of photogenerated electrons [S],Nano Lett. 2007, 7(3), 676-680.
    [37] M. Ivandaa, S. Music, M. Gotic, A. Turkovic, A. M. Tonejc, O. Gamulin, The effects of crystal size on the Raman spectra of nanophase TiO_2 [J], J. Mol Struct.1999,480,641-644.
    [38] H. Berger, H. Tang, F. Levy, Growth and Raman spectroscopic characterization of TiO_2 anatase single crystals [J], J. Cryst. Growth 1993,130,108-112.
    [39] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, F. Levy, Electrical and optical properties of TiO_2 anatase thin films [J], J. Appl Phys. 1994, 75,2042-2047.
    [40] T. D. Robert, L. D. Laude, V. M. Geskin, R. Lazzaroni, R. Gouttebaron,Micro-Raman spectroscopy study of surface transformations induced by excimer laser irradiation of TiO_2 [J], Thin Solid Films 2003,440,268-277.
    [41] D. Bersani, G. Antonioli, P. P. Lottici, T. Lopez, Raman study of nanosized titania prepared by sol-gel route [J], J. Non-Cryst. Solids 1998, 232-234,175-181.
    [42] M. Sathish, B. Viswanathan, R. P. Viswanath, S. G. Chinnakonda, Synthesis,characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO_2 nanocatalyst [J], Chem. Mater. 2005,17,6349-6353.
    [43] N. C. Saha, H. G. Tompkins, Titanium nitride oxidation chemistry: An X-ray photoelectron spectroscopy study [J], J. Appl. Phys. 1992, 72 (7), 3072-3079.
    [44] J. Guillot, A. Jouaiti, L. Imhoff, B. Domenichini, O. Heintz, S. Zerkout, A.Mosser, S. Bourgeois, Nitrogen plasma pressure influence on the composition of TiN_xO_y sputtered films [J], Surf. Interface Anal. 2002,33,577-582.
    [45] J. W. Wang, W. Zhu, Y. Q. Zhang, S. X. Liu, An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing: Visible-light-induced photodecomposition of methylene blue [J], J. Phys. Chem. C 2007, 111,1010-1014.
    [46] G. Liu, Y. N. Zhao, C. H. Sun, F. Li, et al., Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO_2 [J], Angew. Chem.Int. Ed 2008,47,4516-4520.
    [47] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, G. A. Rizzi,PECVD of amorphous TiO_2 thin films: effect of growth temperature and plasma gas composition [J], Thin Solid Films 2000,371,126-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700