基于白光相移干涉法的表面三维微观轮廓测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生产加工过程中,随着光学元件、微机械以及其它各种零件精加工表面的不断出现,对零件表面的性能要求越来越高。相应地,对零件表面微观结构和状态的测量及评定也提出了更高的要求。传统的二维测量和评定虽然测量手段和评定方法比较完善,但二维测量和评定不能全面真实地反映出表面的微观状态,也不能和表面功能建立起很好的联系。而表面三维微观轮廓和三维粗糙度参数由于能更全面、更真实地反映零件表面的特征及衡量表面的质量而越来越受到重视,因此表面三维微观轮廓的测量及三维粗糙度的评定的研究显得非常重要。
     在分析和总结国内外非接触表面三维微观轮廓测量技术研究的基础上,论述了表面三维微观轮廓测量技术主要采用光学测量法,其显著特点是将传统光学计量技术与信息光学和信息处理技术相结合,来实现表面三维微观轮廓的测量。目前,已经研究出多种光学测量方法,而白光相移干涉法以其测量范围大、调制方便、实时快速、高精度及全场自动测量等优点,被广泛的应用到表面三维微观轮廓测量中。然而该技术仍然存在着白光相移干涉中零级条纹相位偏移、相移误差引起轮廓解调误差等问题。
     本文围绕三维表面微观轮廓测量及评定这一主题,针对白光相移干涉三维微观表面检测系统中存在的不足,以白光相移干涉测量技术为基础,采用白光为干涉光源,以迈克尔逊干涉仪为主体,由相移微位移驱动系统、CCD摄像头、图像采集卡、计算机等构成测量系统,对表面三维微观轮廓测量技术展开了较为全面的理论与实验研究,主要创新性工作和研究内容包括:
     1.通过对目前三维微观轮廓解调算法的研究与分析,提出了数字滤波和二次曲线拟合的算法,解决了在白光相移干涉中零级条纹相位偏移的问题。与其它解调算法比较,该算法可以有效地提高白光干涉图像中零级条纹位置的识别精度;
     2.提出了对相移微位移驱动器采用PID闭环控制与蠕变补偿控制相结合的复合控制方法,解决了由于相移误差带来的轮廓解调误差。该方法利用光学杠杆和PSD构成微位移检测回路,将相移微位移动器的微位移量反馈至控制系统,建立PID闭环控制。根据压电陶瓷蠕变特性对测量过程的影响,建立了“电压蠕变”补偿模型,实现了基于PID闭环控制与蠕变补偿控制相结合的复合控制方法,使相移得到精确控制,提高了表面三维微观轮廓的测量精度。
     3.根据所提出的表面粗糙度测量中高斯滤波器的B样条函数实现方法,通过对变分原则引入约束条件,并结合小尺度高斯滤波器级联的特性,得出了一维高斯滤波的逼近滤波器。将一维高斯滤波器推广到二维情形,建立了表面粗糙度测量的高斯滤波基准面。通过仿真实验验证了该滤波器能够满足对滤波器高精度、高效率的要求。
     4.开发了表面三维微观轮廓测量软件系统。对表面三维微观轮廓测量系统进行了标定,给出了测量系统的测量精度,通过对粗糙度标准样块测量得到了测量结果。实验结果表明表面三维微观轮廓测量系统的测量误差为0.003μm,重复性测量误差为0.002μm。
With the rapid development of optical elements, such as MEMS, and othersurface finishing techniques, demand for surface performance of parts becomesincreasingly high. As a result, greater requirements have been put on themeasurement and evaluation of microstructure and characterization. Althrough thetraditional2D suface measurement and evaluation methods have been mature, it cannot effectively reflect the microstate of part surface and can not establish goodconnection with surface function. As the3D microscopic profile and its roughnessparameters can represent characteristics and qualities of part surface effectively, it isvery important to carry out relative research on them.
     After analyzing and summarizing the measurement technology of non-contactsurface3D microscopic profile, state-of-the-art technologies of3D microscopicprofile measurement were introduced in this paper. The advantages are to combinetraditional optical measurement methodologies with information optics and signalprocessing technology to measure3D microscopic profile. Until now, white-lightphase-shifting interferometer outperforms other proposed methods with the merits oflarge measuring range, modulation convenience, fastness and real time, highaccuracy and whole field automatic measurement. It has been widely applied tomeasure surface3D microscopic profile. But this technology still exists someproblems, including zero-order fringe phase deviation, profile demodulation errorcaused by phase shift.
     Aiming at the subject of surface3D microscopic profile measurement, thisthesis focused on the shortcomings of3D microscopic surface detection system withthe help of white-light phase-shifting interferometer technology to solve relatedproblems. According to the principle of white-light phase-shifting interferometer,white light was chosen as interference source and Michelson interferometer was usedin experiments. The measurement system consists of phase shift micro-displacement driving device, CCD camera, image acquisition card, computer and so on.Comprehensive theoretical and experimental research was conducted and the maininnovative contributions and research contents are as follows:
     1. By analyzing the phase demodulation algorithm, a combination algorithm ofthe digital filter and quadratic curve fitting was proposed in this paper, which cansolve the problem of zero-order fringe phase deviation during white-light phase-shifting interferometer. Compared with other demodulation methods, the proposedmethod can improve the recognizing precision of zero-order fringe position in whitelight interferometer images.
     2. To reduce the profile demodulation error caused by the phase shift, thecompensation control method was proposed by combining PID close-loop controland creep compensation control. The micro displacement detection circuit includesthe optical leverage and PSD, by which the micro displacement in phase shift wassent back to the control system to achieve closed-loop control. After considering theinfluence of creep properties of piezoelectric ceramics to the measurement process,voltage creep compensation model was established. This model can realizecompensation control using PID close-loop control and creep compensation control,which can control phase shift accurately and improve the measurement precision of3D surface microscopic profile.
     3. Based on the B spline function of Gaussian filter in the process of surfaceroughness measurement,1D Gaussian approximation filter was designed byintroducing the constraint conditions of variation principles and combining with thecascade characteristics of small scale Gaussian filters. After that, the1D Gaussianfilter was extended to two dimension so that the Gaussian filter base surface wasestatlished to measure roughness. Simulation experiments showed that this filter canachieve high precision and efficiency.
     4. The application software of surface3D microscopic profile measurement wasdeveloped. After calibrating the surface3D profile measuring system, measurementaccuracy was obtained by measuring the roughness of standard blocks. Experimentsshowed that the measurement error of surface3D profile measuring system is0.003μm and the repeatability of measurement error is0.002μm.
引文
[1]张也晗,崔彤,张扬等.表面粗糙度三维测量和评定的研究[J].计量与测试技术,2012,(39):31-34.
    [2]郭便.加工表面显微视觉图像三维重建与粗糙度检测[J].机械电子工程,2010(3):3-10.
    [3]常素萍.基于白光干涉轮廓尺寸与形貌非接触测量方法和系统[J].测试计量技术及仪器,2009,(13):1-14.
    [4]冯辉英,康董燕.表面粗糙度新旧标准差异及其贯彻使用的探讨[J].矿山机械,2010,16(38):16-19.
    [5]黄美发,程雄,刘惠芬,陈磊磊.表面形貌评定方法对比分析[J].机械设计,2012,29(5):6-9.
    [6] NEW.V. Improving the linearity of piezoelectric ceramic actuators, ElectronicsLetters[J]. Appl.Opt,1982,18(11):234-242.
    [7] BHA B, K C.Wyant.Measurement topography of magnetic tapes by Mirauintereferometry[J]. Appl.Opt,1985,24(5):489-497.
    [8] C H. Precision deformation measurement by Digital Phase shift holographicintereferometry[J].Appl.Opt,1985,24(22):3780-3791.
    [9] GROSS R, ETTL P, LABOUREUX. White-Light Iinterferometry in HighPrecision Industrial Applications[J].Measure and Quality Control in Production,2004,10(1860):123-130.
    [10]方吉光.三维微表面相移干涉术研究[J].光学工程,2009(6):11-14.
    [11]冯斌,王建华.表面形貌光学法测量技术[J].计量与测试技术,2005,32(6):4-6.
    [12]周肇飞,王世华,周卫东等.同轴式高分辨率激光轮廓仪[J].仪器仪表学报,1994,15(3):250-254.
    [13]迟桂纯,周肇飞,周卫东.激光干涉轮廓测量技术的发展[J].现代科学仪器,1996,(4):33-35.
    [14] PETER DE. Measurement of Transparent Plates with Wavelengt Phase-Shifting Interferometry[J]. Applied Optics,2000,39(16):2658-2663.
    [15] LEHIOKA Y and M. Inuiya Direct Phase Detecting System[J]. Appl. Opt,2004,11(7):1507-1514.
    [16] J B, D H, J G.Rosenefld.Digital waverfont measuring intereferometry forfesting optical surfaces and lenses [J]. Appl.Opt.1994,13:2693-2703.
    [17] HANADA H, SAITO T, HASEGAWA M. Sophisticated Filtration Techniquefor3D Surface Topography Data of Rectangular Area[J]. Wear,2008,5:422-427.
    [18] KIM BC, KIM SW. Absolute Interferometer for Three-Dimensional ProfileMeasurement of Rough Surfaces[J].Optics Communications,2003,28:528-530.
    [19] Jordan H.J,Wegner M,Tiziani H J.Highly accurate non-contact characterizationofengineering surfaces using confocal microscopy[J].Meas Sci Technol,1998,9:1142-1151.
    [20]邵宏伟,徐毅,高思田等.激光干涉共焦显微镜[J].计量学报,2004,25(2):104-106
    [21] DEBNATH S, KOTHIYAL M. Experimental Study of the Phase-ShiftMiscalibration Error in Phase-Shifting Interferometry Use of a SpectrallyResolved White-Light Interferometer[J].Applied Optics,2007,46(22):5103-5109.
    [22] MEHTA DS, SAITO S. Spectral Interference Mirau Microscope with anAcousto-Optic Tunable Filter for Three-Dimensional Surface Profilometry[J].Applied Optics,2003,22(1):1296-1305.
    [23] J.C.Wyant, C.L.Koliopoulos and D.Bhushan.Development of a Three-dimensional Noncontact Digital Optical Profiler[J].Journal ofTribology,Transactionof the ASME,1986,108(1):20-27
    [24] ZHAO X, LI C, RUAN H. Improved Confocal Readout System for Three-Dimensional Super-Resolution in Optical Data Storage[J]. Optical InformationProcessing,2006,60(2)274-274.
    [25] BUTLER.D, BLUNT.L, SEE. B. The Characterisation of Grinding WheelsUsing3D Surface Measurement Techniques[J]. Journal of Materials ProcessingTechnology,2002,127(2):234-237.
    [26] Gordon S.Kino,Stanley S.Chin.Mirau correlation microscope[J].Appl.Opt,1990,29(26):3775-3783.
    [27] Paul J.Caber.Interferometric profiler for rough surfaces[J].Appl.Opt,1993,32(9):3438-3441.
    [28] GROSS R, ETTL P, LABOUREUX. White-Light Iinterferometry in HighPrecision Industrial Applications[J]. Measure and Quality Control inProduction,2004,10(12):123-130.
    [29] LIN K, HUB Y. White Light Interferometric Techniques in Micro-StructureMeasurement[J]. Symposium on Precision Mechanical Measurements,2006,8:2-6.
    [30] HERING M, HERRMANN S, BANYAY M. One-Shot Line-Profiling WhiteLight Interferometer with Spatial Phase Shift for Measuring RoughSurfaces[C]. Optical Micro and Nanometrology in Microsystems Technology,2006,4:212-213.
    [31] PECHEVA E, MONTGOMERY P, MONTANER D. Optimized3D SurfaceMeasurement of Hydroxyapatite Layers Using Adapted White Light ScanningInterferometry[J].Speckles: From Grains to Flowers,2006,11:13-15.
    [32] THIAN SCH, FENG W, WONG YS. Dimensional Measurement of3DMicrostructure Based on White Light Interferometer[C].Proceedings of the13th International Symposium on Instrumentation Science and Technology,2006,8:11-12.
    [33]马龙,郭彤,赵健等.基于白光相移干涉术的微结构几何尺寸表征[J].纳米技术与精密工程,2011,9(1):39-43.
    [34]赵志亮,夏伯才,陈立华等.相移干涉测量中相移误差的自修正[J].光学精密工程,2013,21(5):1116-1120
    [35]傅贵武,申路,王宇华.基于白光干涉原理的微齿轮几何特征检测[J].佛山科学技术学院学报(自然科学版),2013,31(2):58-61.
    [36] Kino GS,Chim SC.The Mirau correlation microscope[J].Appl.Opt,1990,29(26):3775-3783.
    [37] Chim SC,Kino GS.Three-dimensional image realization in interferencemicro-scope[J].Appl.Opt,1992,31(14):2975-2979.
    [38] Larkin KG..Efficient nonlinear algorithm for envelope detection in white lightinterferometry[J].J.Opt.Soc.Am.A,1996,13(4):832-843.
    [39] Harasaki A,Wyant JG..Fringe modulation skewing effect in white-light verticalscanning interferomtry[J].Appl.Opt,2000,30(13):2101-2106.
    [40] Groot L,Lega XC,Kramer J,et al.Determination of fringe oder in white-lightinterference microscopy[J].Appl.Opt,2002,41(22):4571-4578
    [41]常素萍.基于白光干涉轮廓尺寸与形貌非接触测量方法和系统[D].武汉:华中科技大学,2007,7:11-13.
    [42]郧建平.基于白光干涉的表面形貌接触和非接触两用测量系统的研究[D].武汉:华中科技大学,2008,5:102-103.
    [43]金鹭.基于GPU的表面形貌测量系统的研究[D].杭州,浙江大学,2011,1:55-57.
    [44]孙杰,刘铁根.白光干涉零光程差位置的五步测量法[J].光电子激光,2003,14(12):1320-1323.
    [45]张红霞,张以谟,井文才.偏振耦合测试仪中白光干涉包络的提取[J].光电子激光,2007,18(04):2-3.
    [46]孙艳,杨玉孝.白光干涉法测量薄膜表面微观不平度的研究[J].光电工程2013,2(33):50-53.
    [47]刘晨,陈磊,王军等.利用白光扫描干涉测量表面微观形貌[J].华中科技大学学报,2011,38(1):71-75.
    [48]谢元安,韩志刚.基于白光干涉的空间频域算法研究[J].光电工程,2011,38(7):81-85.
    [49]王生怀,陈育荣,谢铁邦.一种新型垂直扫描白光显微干涉测量仪[J].工具技术,2010,44(1):81-83.
    [50] C D, S G and DEVASIA.Creep hysteresis and vibration compesation forPiezoactuator[J].AtomieForce lieroseopy Applieation,Proeeedings of theAmeican Control Conference, Chieago, Illinois, June2000.
    [51] C G., K H, and C H.A study on position control of Piezoelectric actuators[J],proeeedings of the IEEE. International Symposium on Industrial Electronies,Guimaraes, Portugal,1997,3(7):7-11.
    [52]张海波,伍小平,李江伟.空气相移器及其应用[J].应用激光,1992,12(6):255-259.
    [53]于复生,司书春.一种D/A板输出控制的相移器设计[J].计量技术,2001,3:29-31.
    [54]荣伟彬,邹翾,徐敏等.基于电流控制的压电陶瓷驱动器[J].纳米技术与精密工程,2007,5(1):38-43.
    [55] S Li.J Modeling of piezo actuators nonlinear and frequency dependentdynamics[J].Mechatronics,1999,32(9):393-410.
    [56] H R. Characterization of nonlinearities in a piezoelectric positioning device[C].Proceedings of the1997IEEE International Conference on Control Applieat-ions,1997,11:717-720.
    [57] C D, S G and DEVASIA.Creep hysteresis and vibration compesation forPiezoactuator[C].AtomieForce lieroseopy Applieation,Proeeedings of theAmeican Control Conference, Chieago, Illinois,2000,4:320-327.
    [58] C G., K H, and C H.A study on position control of Piezoelectric actuators[J],proeeedings of the IEEE. International Symposium on Industrial Electronies,Guimaraes, Portugal,1997,3:211-220.
    [59] NEW, V and F.1,1982. Improving the linearity of piezoelectric ceramicactuators[J]. Electronics Letters,1982,18(11):320-327.
    [60] Ge P and J M, Tracking control of a piezoceramic actuator[J]. IEEETransaction on Control System Teehnology,1996,4(3):310-332.
    [61] Ge P and J M, Tracking control of a piezoceramic actuator[J]. IEEETransaction on Control System Teehnology,1996, l4(3):320-329.
    [62] PECHEVA E, MONTGOMERY P, MONTANER D. Optimized3D SurfaceMeasurement of Hydroxyapatite Layers Using Adapted White Light ScanningInterferometry[J].Speckles: From Grains to Flowers,2006,11:13-15.
    [63] Mayergoyz ID. Mathematical model of hysteresis [M]. New York: Springer,1991,52-54.
    [64] GE P, JOUANEH M. Generalized preisach model for hysteresis nonlinearity ofpiezoceramic actuators [J]. Precision Engineering.1997,20(2):99-111.
    [65]贾宏光.基于变比模型的压电驱动微位移工作台控制方法研究[D].长春:中国科学院长春光学精密机械与物理研究所,2000:35-50.
    [66] GOLDFARB M, CELANOVIC N. Modeling piezoelec-tric stack actuators forcontrol of micromanipulation [J]. IEEE,1997,17(3):69-79.
    [67] BANNING R, KONIN G W L, ADRIAENS H J, et al. State space analysis andidentification for a class of hysteretic systems [J]. Automatica,2001,37(12):1883-1892.
    [68]宾洋,杨东超,陈娜娜,等.新型压电驱动机电耦合动力学系统分析与建模[J].电机与控制学报.2008,12(2):179-185.
    [69]朱猛,黄战华,王小军等.显微动态散斑法测量压电陶瓷位移特征曲线[J].光学精密工程.2011,19(4):844-849.
    [70]刘泊,孙永全,郭建英.压电陶瓷驱动器建模与控制[J].光学精密工程,2013,21(6):1503-1509.
    [71] KOOPS R, SAWATZKY G A. New scanning device for scanning tunnelingmicroscope applications [J]. Review of Scientific Instruments,1992,63(8):4008-4009.
    [72] NEWCOMB CV, FLINN I. Improving the linearity of piezoelectric ceramicactuators [J]. Electronics Letters,1982,18(11):442-444.
    [73] RIFAIO ME, AUMOND BD, TOMI K Y. Imaging at the nano-scale[C].Proceedings2003IEEE/A SME International Conference, Monterey,California, United States,2003:715-722.
    [74]王社良,刘敏,樊禹江.新型压电陶瓷驱动器的特性分析[J].材料导报,2012,11(26):153-156.
    [75]肖祥丽,张承进.一种原子力显微镜中蠕变迟滞非线性特性补偿方案[J].福州大学学报(自然科学版).2008,36(9):4-8.
    [76] D. Croft, G. Shed and S. Devasia. Creep, Hysteresis, and VibrationCompensation for Piezoactuators: Atomic Force Microscopy Application [J].Journal of Dynamic Systems, Measurement, and Control,2001,12(3),35-43.
    [77]李朋志,闫丰,葛川等.压电驱动器的开闭环迭代学习控制[J].光学精密工程,2012,20(5):34-42.
    [78] THIAN SCH, FENG W, WONG YS. Dimensional Measurement of3DMicrostructure Based on White Light Interferometer[J].Proceedings of the13th International Symposium on Instrumentation Science and Technology,2006,8:11-12.
    [79]杨培中,蒋寿伟.表面粗糙度三维评定的研究[J].机械设计与研究,2002,18(2):10-11.
    [80] DEBNATH S, KOTHIYAL M. Experimental Study of the Phase-ShiftMiscalibration Error in Phase-Shifting Interferometry Use of a SpectrallyResolved White-Light Interferometer[J]. Applied Optics,2007,46(22):5103-5109.
    [81]孙学斌.表面粗糙度参数的计算机评定[J].机械工程与自动化,2010,4:164-165.
    [82] HERING M, HERRMANN S, BANYAY M. One-Shot Line-Profiling WhiteLight Interferometer with Spatial Phase Shift for Measuring RoughSurfaces[J].Optical Micro and Nanometrology in Microsystems Technology,2006,4:212-213.
    [83]许景波.高斯滤波器逼近理论与应用研究[D].哈尔滨:哈尔滨工业大学,2010:25-35.
    [84] KAWASAKI T, TAYA M, TAKAI Y. Practical Method to Determine Used inthe Three-Dimensional the Filter Shape Function Fourier FilteringMethod[J].Journal of Electron Microscopy,2003,53(3):271-275.
    [85] PAVLICEK P. White-Light Interferometry on Rough Surfaces-MeasurementUncertainty Caused by Surface Roughness[J]. Applied Optics,2008,47(16):2941-2949.
    [86]张耕培,崔长彩.高斯滤波在三维表面评定中的应用[J].装备制造技术,2008,11:4-6.
    [87]李惠芬,蒋向前,李柱.基于高斯滤波的稳健工程表面评定方法[J].华中科技大学学报,2010,30(8):43-45.
    [88]许景波,袁怡宝,刘泊. B样条滤波器建立表面轮廓中线的方法[J].光学精密工程,2008,16(8):1411-1415.
    [89]许景波,袁怡宝,刘泊等.表面测量中高斯滤波器的B样条函数实现方法[J].机械工程学报,2009,45(8):238-242.
    [90]余景波,刘国林,王建波等.用小波变换和中值滤波研究差分干涉图的去噪[J].全球定位系统,2011,4:29-35.
    [91]李玉玺.三维表面粗糙度参数表征及其软件系统的实现[D].郑州:河南科技大学,2011:6-7.
    [92] Wenlong Liu, Bin Lin, Lipeng Sun. Measurement and Evaluation of FerriteMaterials Surface Quality[C]. RAMMT2013,2013,3:130-134.
    [93]赵永彪,苗雅丽.表面粗糙度的测量分析[J].制造业自动化,2012,33(3):6-8.
    [94]朱建军.表面三维微观形貌测量及其参数评定的研究[D].哈尔滨:哈尔滨理工大学,2008:57-59.
    [95]陈小岗,刘远伟,孙全平.三维表面微观形貌的等高图绘制及粗糙度3-D评定参数计算方法研究[J].中国科技信息,2006,20:11-12.
    [96] EGAN P, LAKESTANI F, WHELAN MP. Novel Techniques for RandomDepth Access3D White-Light Optical Metrology[J]. Interferometry XIII:Techniques and Analysis,2006,8:212-213.
    [97] PAVLICEK P. Height Profile Measurement by Means of White LightInterferometry[C].13th Polish-Slovak-Conference on Wave and QuantumAspects of Contemporary Optics,2002,11:09-13.
    [98]戴蓉.基于垂直扫描工作台的白光干涉表面形貌测量系统研究[D].武汉:华中科技大学,2007,7:28-30.
    [99]李成贵,熊昌友.微纳米级表面微观几何形貌和粗糙度特性测量方法[J].上海计量测试,2011,224:1-7.
    [100]吴一辉,杨宜民,王立鼎.压电定位元件的非线性及其线性化控制原理[J].功能材料与器件学报,2009,2(3):167.
    [101]杜正春.精密工程中压电作动器两种高压驱动电源的研制[J].压电与声光,2001,12(3):102-106.
    [102]赵小兴,姜伟,李巍.压电陶瓷作动器非对称迟滞的建模与补偿控制[J].机电工程,2013,2(30):138-142.
    [103] Hewon Jung, Jong Youp Shim, Dae-Gab Gweon. New open-loop actuatingmethod of piezoelectric actuators for removing hysteresis and creep [J].REVIEW OF SCIENTIFIC INSTRUMENTS,2000,71(9):3436-3451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700