基于负电容压电分流阻尼电路的主—被动混合振动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负电容控制器是用一个负的容抗来抵消压电片容抗,因此控制效果与频率无关,不易受外界环境干扰,只用一个压电片就能控制多阶模态,这给实际工程应用带来了极大的方便。主-被动混合控制综合利用被动控制和主动控制的一种新型控制策略,真正实现了主、被动振动控制一体化的思想,它是利用被动控制技术与主动控制技术相结合,将主动控制子系统和被动阻尼子系统集成在同一系统中,从而可以使主动和被动控制的效应相互补充。
     本文对负电容压电分流阻尼系统中负电容电路参数对系统的稳定性和振动幅值的影响进行研究,对其存在的问题提出二种主-被动混合控制方法,弥补当前负电容压电阻尼方法在振动控制应用中的不足。并从实际应用的角度出发,对提出的主-被动混合控制方法进行了深入研究,提出了基于负电容压电分流阻尼电路和小波变换自适应算法的主-被动混合控制方法,提高了系统的自适应能力。为了能使负电容电路更好的应用,对提出的主-被动混合控制方法进行了更进一步深入研究,从电荷等效的角度,重新设计了负电容等效电路,提出了基于压控电荷源和小波变换自适应算法的主-被动混合控制方法。论文的主要工作和创新性成果如下:
     (1)从压电材料的特性角度,建立了压电分流阻尼模型,描述了基于负电容压电分流阻尼被动振动控制原理,并分析了负电容分流电路参数的变化对系统阻尼的影响。
     (2)在负电容压电分流阻尼被动振动控制系统中,负电容的作用是用来抵消压电片的容抗,理论上负电容绝对值的大小越接近于压电片的容抗时,控制效果越好,但在实验中发现,当负电容绝对值大于且接近于或小于压电片的容抗时,系统将不稳定。针对这个问题,本文利用反馈控制原理分析了基于负电容压电分流阻尼控制系统的稳定性,并和基于电感压电分流阻尼振动控制系统进行了比较。为了提高基于负电容压电分流阻尼被动振动控制系统的稳定性,提出了一种主-被动混合控制方法,并对其进行了理论证明和实验验证。
     (3)推导了基于负电容压电分流阻尼振动控制系统的振动幅值和负电容电路参数的关系,为了更好地优化负电容电路参数,提出了一种主-被动混合控制方法,该方法将负电容电路参数调节问题转化到主动控制算法中,在本文中,阐述了主-被动控制方法的控制原理,并对其进行了理论证明和实验验证。
     (4)针对LMS算法在基于压电元件的主动振动控制中,存在收敛速度慢,甚至出现发散的问题。本文把小波分析理论和LMS算法结合起来,采用了小波变换域LMS算法对薄板进行自适应主动振动控制,并采用了MALLAT快速算法,提高了小波变换域LMS算法的实时性。最后对该方法进行了理论仿真和实验验证。
     (5)从实际应用角度出发,对基于负电容压电分流阻尼电路的主-被动混合振动控制进行了深入研究。结合小波变换域LMS主动控制算法,提出了一种基于负电容压电分流阻尼电路和小波变换自适应算法的主-被动混合控制新方法,这种方法能很好解决前面所提的主-被动混合控制方法中存在的主动控制器的参数需要手动调节问题。在本文中,根据哈密顿原理推导了这种主-被动混合控制的数学模型,并分析了被动控制效果和主动控制电压与负电容参数之间的关系,最后通过仿真和实验验证了所提出的主-被动混合控制方法的有效性。
     (6)对基于负电容压电分流阻尼电路的主-被动混合振动控制进行了更进一步深入研究。从电荷等效的角度,重新设计了负电容等效电路,该负电容等效电路是一个压控电荷源电路,其输出是电荷,用于抵消压电片上的电荷,输入是控制电压,为了能使该负电容等效电路更好的应用,结合小波变换域LMS主动控制算法,提出一种基于压控电荷源电路和小波变换自适应算法的主-被动混合控制新方法。本文首先根据压电元件等效电路、负电容电路的特点,设计了等效负电容的压控电荷源的电路,接着介绍了主-被动混合控制原理,最后基于dSPACE实时仿真系统,对四面固支的压电铝镁合金薄板结构进行了正弦信号激励下的单/多模态和白噪声信号激励下的振动控制实验研究,实验结果证明了提出的方法的可行性和优越性。
The negative capacitance controller uses a negative capacitance to counteract the capacitance ofthe piezoelectric patch. So the control effect is not associated with frequency, and less vulnerable toexternal interference. The multiple modal can be controled using a piezoelectric patch. It brings greatconvenience for the engineering application. Active-passive hybrid control is a novel control strategywhich is the comprehensive utilization of passive control and active control. In the active-passivehybrid control, the active control system and passive damping system are integrated with the samesystem, which can make the active control and passive control complement each other.
     In the paper, the relation of the circuit parameters of the piezoelectric vibration damping systemwith a negative capacitance circuit with the stability and vibration amplitude of system is studied. Inorder to solve their problems, the two active-passive hybrid control method are proposed, which canmake up the shortage of the negative capacitance piezoelectric damping method in vibration control.Considering the practical application, the active-passive hybrid control methods are deeply studied.The active-passive hybrid control method based on the negative capacitance piezoelectric shuntdamping circuit and the wavelet transform adaptive algorithm is proposed, which can improve theadaptive ability of the system. In order to make the negative capacitance circuit be better applied, theactive-passive hybrid control method is further studied. The equivalent circuit of the negativecapacitance is redesigned based on the charge equivalent. The active-passive hybrid control methodbased on the voltage controlled charge source and the wavelet transform adaptive algorithm isproposed.
     The main works and novel researched performed in this dissertation include:
     (1) The piezoelectric shunt damping model is establised based on the piezoelectric materialcharacteristics. The control principle of the piezoelectric shunt damping passive vibration controlsystem using a negative capacitance circuit is described, and the parameters of the negativecapacitance shunt circuit on the system damping effect is analyzed.
     (2) In the piezoelectric vibration damping system with a negative capacitance circuit, the negativecapacitance is used to counteract the capacitance of the piezoelectric patch. In theory, the controleffect is better when the negative capacitance is closer to the capacitance of the piezoelectricpatch. But experiments show that the piezoelectric vibration damping system with a negativecapacitance circuit will become unstable when the negative capacitance is smaller or slightly larger than the capacitance of the piezoelectric patch. Aiming at this problem, the stability of thepiezoelectric shunt damping vibration system with a negative capacitance or an inductancecircuit is analyzed and compared on the basis of the feedback control theory in the paper. Inorder to improve the stability of piezoelectric shunt damping vibration system with a negativecapacitance circuit, an active-passive hybrid control method is proposed. And the validity of thismethod is verified by the theory and experimental results.
     (5) The relation between the vibration amplitude of the negative capacitance shunt damping ofpiezoelectric vibration control system and the circuit parameters of the negative capacitancecontroller is derived. To optimize circuit parameters of the controller, an active-passive hybridcontrol method is proposed, which can transform the adjustive problem of the negativecapacitance circuit parameters to the active control algorithm. The paper gives the controlprinciple of the active-passive control method. And the theoretical simulation and experimentalresults prove the validity of this method.
     (4) In the active piezoelectric vibration control fields, LMS algorithm does exist slow convergencespeed and appear even to diffuse condition. Combining the Wavelets and LMS algorithm, thepaper does adaptive vibration control to sheet metal using decomposition LMS algorithm. Inorder to realize the real-time of Wavelets adaptive algorithm, the fast MALLAT algorithm is usedin the paper. Finally, the theoretical simulation and experimental results prove the validity of thismethod.
     (5) Considering the practical application, the active-passive hybrid control methods based on thenegative capacitance piezoelectric shunt damping circuit is deeply studied. Combining the activevibration control based on the LMS algorithm in the wavelet transform domain, the new methodwhich is the active-passive hybrid control method based on the negative capacitancepiezoelectric shunt damping circuit and the wavelet transform adaptive algorithm is proposed.The method can well solve the problem of the active controller parameters need to be adjustedmanually in the aforementioned active-passive hybrid control method. In this paper, according tothe Hamilton principle, the mathematical model of the active-passive hybrid control is deduced.And the relation of the negative capacitance with the passive control effect and the active controlvoltage is analysed. Finally, the theoretical simulation and experimental results prove the validityof this method.
     (6) The active-passive hybrid control method based on the negative capacitance piezoelectric shuntdamping circuit is further studied. According to the equivalent circuit of piezoelectric film, the equivalent circuit of the negative capacitance is redesigned.The circuit is a voltage controlledcharge source. Its output is charge which is used to offset the charge of the piezoelectric patch.Its input is the control voltage.In order to make the negative capacitance circuit be better applied,The new active-passive hybrid control method based on the voltage controlled charge source andthe wavelet transform adaptive algorithm is proposed. Firstly, the voltage controlled chargesource is designed according to the equivalent circuit of piezoelectric film, and the principle ofthe active-passive control method is described detailedly. Finally, in order to verify the proposedactive-passive method, the experimental platform which is an alloy rectangular thin plateclamped with stiff base is set-up using the dSPACE real-time simulation system and the elementsof analog circuit and piezoelectric. The active-passive method experiment is carried in sinusoidaland white noise excitation. The experimental results show the proposed control method not onlycan suppress effectively the single mode and multimode vibration produced by sinusoidal signal,and also can suppress effectively the vibration produced by white noise signal. The experimentalresults prove that the proposed method is feasible and superior.
引文
[1]李黎,叶志雄,江宜城等.阻尼线的耗能计算及其在输电线防振中的应用.振动与冲击,2009,28(8):16~20.
    [2] Crawley E.F. Intelligent structures for aerospace: a technology overview and assessment. AIAAJournal,1994,32(8):1689~1699.
    [3]姜涛,王晓阳.振动的危害及防治对策.内蒙古环境科学,2009,21(6):48~50.
    [4]黄大宇.结构振动控制的研究进展与展望.中原工学院学报,2009,20(4):43~46.
    [5]黄文虎,王心清,张景绘等.航天柔性结构振动控制的若干新进展.力学季刊,1997,27(1):5~18.
    [6]陶宝祺,梁大开,王征等.智能复合材料结构在未来飞机上的应用.航空学报,1992,13(12):641~650.
    [7]董聪,夏人伟.智能结构设计与控制中的若干核心技术问题.力学进展,1996,26(2):166~178.
    [8]李宝俊,张景绘,任勇生等.振动工程中智能结构的研究进展.力学进展,1999,29(2):165~177.
    [9]陶宝祺.智能材料结构.北京:国防工业出版社,1997.
    [10] Yang Y.W., Miao A.W. Effect of external vibrationon PZT impedance signature. Sensors,2008,8(11):6846~6859.
    [11] Or S. W., Duan Y. F., Ni Y. Q. etc. Development of magnetorheological dampers with embeddedpiezoelectric force sensors for structural vibration control. Journal of Intelligent Material Systemand Structure,2008,19(11):1327~1338.
    [12] Deng Z.C., Zhang D.G., Yao X.L. Experimental research on the vibration reduction and impaceresistance performances of offshore structure based on magnetorheological damper.27thInternational Conference on Offshore Mechanics and Arctic Engineering,2008, Vol.1, pp.121~127.
    [13]董聪,夏人伟.智能结构设计与控制中的若干核心技术问题.力学进展,1996,26(2):166~178.
    [14]李岩,杨大智,陈騑騢等.形状记忆合金智能复合材料系统的发展.功能材料,2000,31(6):561~564.
    [15]王树彬,韩杰才,杜善义.压电陶瓷/聚合物复合材料的制备工艺及其性能研究进展.功能材料,1999,30(2):113~117.
    [16]史永基,曹慧敏,刘刚田等.智能材料和智能结构(3)-智能结构的设计、控制和探测.传感器世界,2010,16(11):6~13.
    [17]陶宝祺,梁大开,王征等.智能复合材料综述.遥测技术,1992,11(4):7~22.
    [18]高培德.智能材料和结构.功能材料与器件学报,2002,8(2):93~98.
    [19] Poulin K.C. and Vaicaitis R. Vibrations of stiffened composite panels with smart materials.Journal of Vibration and Acoustics-transactions of the ASME,2004,126(3):370~379.
    [20] Balamurugan V. and Narayanan S. Finite element modeling of stiffened piezolaminated platesand shells with piezoelectric layers for active vibration control. Smart Materials and Structures,2010,19:1~21.
    [21] Carra S., Amabili M., Ohayon R., et al. Active vibration control of a thin rectangular palat in airor in contact with water in presence of tonal primary disturbance. Aerospace Science andTechnology,2008,12(1):54~61.
    [22]王建军,李其汉.具有分支电路的可控压电阻尼减振技术.力学进展,2003,33(3):389~403.
    [23] Hagood N.W. and von Flotow A. Damping of structural vibrations with piezoelectric materialsand passive electrical networks.Journal of Sound and Vibration,1991,146:243~268.
    [24] Wu S.Y. Piezoelectric shunts with parallel R-L circuit for structural damping and vibrationcontrol, Proceedings of SPIE: Smart Structures and Materials: Passive Damping and Isolation.1996, Vol.2720, pp.259~69.
    [25] Wu S.Y. and Bicos A.S. Structure vibration damping experiments using improved piezoelectricshunts. Proceedings of SPIE: Smart Structures and Materials: Passive Damping and Isolation,1997, Vol.3045, pp.40~50.
    [26] QIU J.H. and MASAKAZU H. Vibration Control of a Plate using a Self-sensing PiezoelectricActuator and an Adaptive Control Approach. Journal of Intelligent Material Systems andStructures,2006,17(8):661~669.
    [27]孙亚飞,陈仁文,徐志伟等.基于压电智能结构飞机座舱振动噪声主动控制研究.宇航学报,2003,24(1):43~48.
    [28]张景绘,李新民.主、被动振动控制一体化理论及技术(I)-导论.强度与环境,2004,31(1):50~62.
    [29]邓年春,邹振祝,黄文虎.约束阻尼板的主被动一体化振动控制.机械工程学报,2004,40(3):129~132.
    [30] Forward R.L. Electronic damping of vibrations in optical structures. Applied Optics,1979,18(5):690~697.
    [31] Hagood N.W. and von Flotow A.Damping of structural vibrations with piezoelectric materialsand passive electrical networks. Journal of Sound and Vibration,1991,146(2):243~268.
    [32] George A.L., Vibration damping and control using shunted piezoelectric materials. The Shockand Vibration Digest,1998,30(3):187~195.
    [33] Browning D.R. and Wynn W.D. Multiple-Mode Piezoelectric Passive Damping Experiments foran Elastic Plate. Proceedings of the11th International Modal Analysis Conference,1993,pp.1520~1526.
    [34] Hollkamp J.J. Multimodal passive vibration suppression with piezoelectric materials andresonant shunts. Journal of Intellgent Material Systems and Structure,1994,5(1):49~57.
    [35] Wu, S.Y. Method for multiple mode shunt damping of structural vibration using a single PZTtransducer. Proceedings of SPIE: Smart Structures and Materials: Smart Structures andIntelligent Systems,1998, Vol.3327, pp.159~167.
    [36] Fleming A.J., Behrens S. and Moheimani S.O.R. Reducing the inductance requirements ofpiezoelectric shunt damping systems. Smart Materials and Structures,2003,12(3):57~64.
    [37] Park C.H. and Baz A. Vibration control of beams with negative capacitive shunting ofinterdigital electrode piezoceramics. Journal of Vibration and Control,2005,11(3):331~346.
    [38] Clark W.W. Vibration Control with State-Switched Piezoelectric Materials, Journal of IntelligentMaterial Systems and Structures,2000,11(4):263~271.
    [39] Corr L.R. and Clark W.W. A novel semi-active multi-modal vibration control law for apiezoceramic actuator. Journal of Vibration and Acoustics,2003,125(2):214~222.
    [40] Lallart M., Harari S., Petit L., etc. Blind switch damping: A self-adaptive semi-active dampingtechnique. Journal of sound and vibration,2009,328(1):29~41.
    [41] Guyomar D., Richard C., Mohammadi S. Damping behavior of semi-active vibration controlusing shunted piezoelectric materials. Journal of Intelligent Material Systems and Structures,2008,19(8):977~985.
    [42] Guyomar D., Richard C., Richard T. Sound wave transmission reduction through a plate usingpiezoelectric synchronized switch damping technique. Journal of Intelligent Material Systemsand Structures,2008,19(7):791~803.
    [43] Lallart M., Magnet C., Richard C. New synchronized switch damping methods using dualtransformations. Sensors and Actuators A-physical,2008,143(2):302~314.
    [44] Onoda J., Makihara K., Minesugi K. Energy-recycling semi-active method for vibrationsuppression with piezoelectric transducers. AIAA JOURNAL,2003,(4):711~719.
    [45]季宏丽.智能结构的自感知主动振动控制以及半主动振动控制的研究,[硕士学位论文].南京:南京航空航天大学,2007.
    [46] Bisegna P. and Caruso G. On the use of negative capacitances for vibration damping ofpiezoactuated structure. Smart Structures and Materials2005Conference,2005, Vol.5760,pp.317~328.
    [47] Fukada E., Date M., Kimura K. Sound isolation by piezoelectric polymer films connected withnegative capacitance circuits.11th International Symposium on Electrets,2002,pp.223~226.
    [48] Takarada J., Imoto K., Yamamoto K., etc. Vibration control of piezoelectric lead zirconatetitanate ceramics using negative capacitance.25th Meeting on Ferroelectric Materials and TheirApplications,2008, Vol.47, pp.7698~7701.
    [49] Forward R.L. Electromechanical transducer-coupled mechanical structure with negativecapacitance compensation circuit. US, Patent4,158,787,1979.
    [50] Pustka M., Erhart J., Mokry P. Vibration control using piezoelectric bimorphs connected tonegative capacitance circuits. Advances in Applied Ceramics,2010,109(3):180-183.
    [51] Marneffe B.D. and Preumont A. Vibration damping with negative capacitance shunts: theory andexperiment. Smart Materials and Structures,2008,17(3):1~9
    [52] Kodama H., Date M., Yamamoto K., etc. A study of sound shielding control of curvedpiezoelectric sheets connected to negative capacitance circuits. Journal of Sound and Vibration,2008,311(4):898~911.
    [53] Kodama H., Yamamoto K., Date M., etc. Vibration control of curved piezoelectric sheets usingnegative capacitance circuits.8th European Conference on Applications of Polar Dielectrics,2006, Vol.351, pp.33~42.
    [54] Cunefare K.A. Negative capacitance shunts for vibration control and suppression of reactiveinput power on rectangular panels. Conference on Active and Passive Smart Structures andIntegrated Systems,2007, Vol.6525, pp.A5252.
    [55] Neubauer M., Oleskiewicz R., Popp K., etc. Optimization of damping and absorbingperformance of shunted piezo elements utilizing negative capacitance. Journal of Sound andVibration,2006,298(1):84~107.
    [56] Cheng J., Qiu J.H., Ji H.L., etc.Application of a negative capacitance circuit in synchronizedswitch damping techniques for vibration suppression. Journal of Vibration and Acoustics,2011,133(4):041015-1~041015-10.
    [57] Cheng J., Qiu J.H., Ji H.L., etc.Semi-active vibration suppression by a novel synchronized switchcircuit with negative capacitance. Internation Journal of Applied Electromagnetics andMechanics,2011,37(4):291~308.
    [58] Tang J. and Wang K.W. Active–passive hybrid piezoelectric networks for vibration control:comparisons and improvement. Smart Materials and Structures,2001,10(4):794~806.
    [59] Date M., Kutani M. and Sakai S. Electrically controlled elasticity utilizing piezoelectric coupling.Journal of Applied Physics,2000,87(2):863~868.
    [60] Fukada E., Date M., Kimura K.,etc. Sound isolation by piezoelectric polymer films connected tonegative capacitance circuits. Transactions on Dielectrics and Electrical,2004,11(2):328~333.
    [61] Behrens S., Fleming A. J. and Moheimani S. O. R. A broadband controller for shunt piezoelectricdamping of structural vibration. Smart Material and Structures.2003,12(3):18~28.
    [62] Chul Hue Park, Hyun Chul Park. Multiple-mode structural vibration control using negativecapacitive shunt damping. KSME International Journal,2003,17(11):1650~1658.
    [63] Fuller C.R. and Jones J.D. Experiments on reduction of propeller induced interior noise by activecontrol of cylinder vibration. Journal of Sound and Vibration,1987,112(2):389~395.
    [64] Fuller C.R. Active control of sound transmission/radiation from elastic plates by vibrationinputs:1. Analysis. Journal of Sound and Vibration,1990,136(1):1~15.
    [65] Fuller C.R., Hansen C.H. and Snyder S. D. Experiments on active control of sound radiationfrom a panel using a piezoceramic actuator. Journal of Sound and Vibration,1991,150(2):179~190.
    [66] Fuller C.R. Active control of broad band structural vibration using the LMS adaptive algorim.Journal of Sound and Vibration,1993,166(2):283~299.
    [67] Scott D.S. Multichannel adaptive control of structural vibration. Journal of Noise ControlEngineering,1991,32(2):7~89.
    [68] Scott D.S. and Nobuo T. Modification to overall system response when using narrow bandadaptive feedforward control system.Journal of Dynamic Systems,Measurement,and Control,1993,115(6):621~625.
    [69] Maillard P., Fuller C.R. Active control of sound radiation From cylinders with piezoelectric.Journal of Sound and Vibration,1999,222(3):363~388.
    [70] Shaw J. Adaptive control for sound and vibration attenuation: a comparative study. Journal ofSound and Vibration,2000.235(4):671~684.
    [71] Petitjean B., Legrain I., Simon F., etc. Active control experiments for acoustic radiation reductionof a sandwich panel: Feedback and Feedforward investigations. Journal of Sound and Vibration,2002.252(1),19~36.
    [72]孙朝晖,王冲,戴扬等.结构振动主动控制理论及试验研究.振动工程学,1994,7(2):154~159.
    [73]马扣根,顾仲权.直升机结构响应自适应控制研究.航空学报,1997,18(3):359~362.
    [74]马扣根等.柔性建筑结构风振自适应控制方法与试验研究.振动工程学报,1998,11(2):131~137.
    [75]马扣根,顾仲权.振动结构的多输入/多输出实时辨识控制与试验研究.航空学报,2000,21(1):60-63.
    [76]朱晓锦,黄全振,高志远等.多通道FULMS自适应前馈振动控制算法分析与验证.振动与冲击,2011,30(4):198~204.
    [77]朱晓锦,高志远,黄全振等.FXLMS算法用于压电柔性结构多通道振动控制.振动.测试与诊断,2011,31(2):150~155.
    [78] Elliott S., Stothers I. and Nelson P. A multiple error LMS algorithm and its application to theactive control of sound and vibration. IEEE Transactions on Acoustics, Speech, and SignalProcessing,1987,35(10):1423~1434.
    [79] Cabell R.H.,Fuller C.R. A principal component algorithm for feedfoward active noise andvibration. Journal of Sound and Vibration,1999.227(1):159~181.
    [80]高鹰.一种基于最小二乘准则的自适应滤波算法.广州大学学报,2001,15(2):32~34.
    [81]孙木楠.一种噪声与振动主动控制的滤波-MLMS算法.振动与冲击,2002,21(2):50~57.
    [82]丁渊明,王宣银.多通道空间自适应滤波技术研究.浙江大学学报(工学版),2008,42(9):1558~1562.
    [83]张景绘,李新民.主、被动振动控制一体化理论及技术II-组合控制.强度与环境,2004,31(2):47~64.
    [84]吕刚.桁架结构组合式一体化振动控制及其在航天结构中的应用,[博士学位论文].西安:西安交通大学,1998.
    [85]吕刚,陆锋,李俊宝等.桁架结构的主、被动振动控制及相互影响分析.振动工程学报,1998,11(1):79~84.
    [86]李俊宝,吕刚.智能桁架结构振动控制中压电作动器的研究:(一)压电主动构件设计.压电与声光,1998,20(2):89~94.
    [87] Liao W.H. and Wang K.W. Characteristics of enhanced active constrained layerd dampingtreatments with edge elements,Part1: Finite element model development and validation. Journalof Vibration and Acoustics,1998,120(4):886~893.
    [88] Liao W.H. and Wang K.W. Characteristics of enhanced active constrained layerd dampingtreatments with edge elements,Part2:System analysis. Journal of Vibration and Acoustics,1998,120(4):894~900.
    [89] Liu Y. and Wang W.H. A non-dimensional parametric study of enhaned active constrained layerdamping treatments,Journal of Sound and Vibration,1999,223(4):611~644.
    [90] Lam M. J.,Inman D. J. and Saunders,W. R. Vibration control through passive constrained layerdamping and active control. Journal of Intelligent Material Systems and Structures,1997,8(8):662~677.
    [91] Lam M. J.,Inman D. J. and Saunder W. R. Variations of hybrid damping. Conference on SmartStructures and Materials1998-Passive Damping and Isolation,1998,Vol.3327:32~43.
    [92] Agnes G. Active-passive piezoelectric vibration suppression. Passive Damping Conference,1994,Vol.2193, pp.24~34.
    [93] Agnes G.S. Development of a modal model for simultaneous active and passive piezoelectricvibration suppression. Journal of Intelligent Material Systems and Structures,1995,6(7):482~487.
    [94] Tsai M.S. and Wang K.W. On the structural damping characteristics of active piezoelectricactuators with passive shunts. Journal of Sound and Vibration,1999,221(1):1~22.
    [95] Tang J., Liu Y. and Wang K.W. Semi-active and active-passive hybrid structural dampingtreatments via piezoelectric materials. Shock and Vibration Digest,2000,32(3):189~200.
    [96] Tsai, M.S. Active-passive hybrid piezoelectric network based smart structures for vibrationcontrols,[Ph.D]. The Pennsylvania State: The Pennsylvania State University,1998.
    [97] Tang J. and Wang K.W. Active-passive hybrid piezoelectric networks for vibration control:comparisons and improvement. Smart Materials and Structures,2001,4(10):794~806.
    [98] Kahn S.P. and Wang K.W. Structural vibration controls via piezoelectric materials withactive-passive hybrid networks. Proceedings of Active Control of Vibration and Noise,1994,Vol.75, pp.187~194.
    [99] Kahn S.P. and Wang K.W. On the simultaneous design of active-passive hybrid control actionsfor structures with piezo-electrical networks. Proceedings of Active Control of Vibration andNoise,1995, Vol.95, pp.1~5.
    [100] Tsai M.S. and Wang K.W. Control of a ring structure with multiple active-passive hybridpiezoelectrical networks. Smart Materials and Structures,1996,5(5):695~703.
    [101] Lin J. An active-passive absorber by using hierarchical fuzzy methodology for vibration control.Journal of sound and vibration,2007,304(3):752~768.
    [102]孙康,张学福.压电学.北京:国防工业出版社,1986.
    [103] Collet M., Ouisse M., Cunefare K. A., etc. Beams and plates vibroacoustic energy diffusionoptimization by mean of distributed shunted shunted piezoelectric patches. In the ThirdInternational Conference on Integrity, Reliability and Failure,2009, Vol.1256, pp.211~216.
    [104]胡寿松.自动控制原理.北京:科学出版社,2007.
    [105]邱关源.电路.北京:高等教育出版社,2006.
    [106]邱关源.现代电路理论.北京:高等教育出版社,2006.
    [107] Morgan R.A. and Wang K.W. An active-passive piezoelectric absorber for structural vibrationcontrol under harmonic excitationswith time-varying frequency. Journal of vibration andacoustics,2002,124(1):77~89.
    [108]庞俊恒.基于压电元件的振动被动控制技术研究,[硕士学位论文].南京:南京理工大学2004.
    [109] Simon Haykin.自适应滤波器原理(郑宝玉等译),北京:电子工业出版社,2010.
    [110] Goupillaud P., Grossmann A. and Morlet J. Cycle-octave and related transforms in seismicsignal analysis,Geoexploration,1984,23(1):85~102.
    [111] Morlet J., Arens G., Fourgeau E., etc. Wave propagation and sampling theory-Part1:Complex signal scattering in multilayered media. Geophysics,1982,47(2):203~221.
    [112] Morlet J., Arens G., Fourgeau E., etc. Wave propagation and sampling theory-Part2:Sampling theory and complex waves. Geophysics,1982,47(2):222~236.
    [113]徐长江,宋文忠.基于小波变换估计传递函数.自动化学报,1997,23(6):835~838.
    [114] Lee J.H. and Yu Z.H. Tuning of model predictive controllers for robust performance. Computersand Chemical Engineering,1994,18(1):15~37.
    [115] Donobo D.L. De-noising by soft thresholding. IEEE Information Theory Society,1995,41(3):613~627
    [116]王群仙,李少远,李俊芳.小波分析及其在控制中的应用.控制与决策,2000,15(4):385~389.
    [117] Mallat G.S. Multifrequency Channel Decompositions of Images and Wavelet Models. IEEEtransactions on acoustics speech and signal processing,1989,37(12):2091~2110.
    [118]刘昌云等.多尺度小波变换在自适应滤波中的应用.空军工程大学学报,2002,3(2):50~52.
    [119] Ingrid Daubechie.小波十讲(李建平,杨万年译),北京:国防工业出版社,2004.
    [120]杨福生.小波变换的工程分析与应用,北京:科学出版社,2006.
    [121]崔锦泰.小波分析导论(程正兴译)西安:西安交通大学出版社,1997.
    [122] Hosur S. and Tewfik A.H. Wavelet transform domain LMS algorithm. IEEE InternationalConference on Acoustics, Speech, and Signal Processing,1993,Vol.3pp.508~510.
    [123] Doroslovacki M. and Fan H. Wavelet-based adaptive filtering. IEEE International Conferenceon Acoustics, Speech, and Signal Processing,1993,Vol.3pp.488~91.
    [124] Gilloire A. and Vetterli M. Adaptive filtering in subbands with critical sampling: Analysisexperiments and application to acoustic echo cancellation, IEEE Transactions on SignalProcessing,1992,40(8):1862~1875.
    [125] Mallat G.S. A theory for multiresolution signal decomposition:The wavelet representation,IEEEtransactions on Pattern Analysis and Machine Intelligence,1989,11(7):674~693.
    [126] Mallat G.S. Multifrequency channel decompositions of images and wavelet models, IEEEtransactions Acoustics, Speech and Signal Processing,1989,37(12):2091~2110.
    [127] Daubechies I. Othonormal bases of compactly supported wavelets. Communications on Pureand Applied Mathematics,1988,41(7):909~996.
    [128] Faiz A., Guyomar D. and Petit L. Wave transmission reduction by a piezoelectric semi-passivetechnique. Sensors and Actuators A-physical,2006,128(2):230~237.
    [129]马勇.基于非线性开关的能量回收系统的研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [130]沈辉.基于压电材料的振动能量回收电路及其应用研究,[博士学位论文].南京:南京航空航天大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700