钙钛矿铁电氧化物纳米结构的生长调控、微结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维钙钛矿铁电氧化物纳米材料因其独特物理化学性质在高密度信息存蓄、高灵敏度传感、催化等领域有着极为广泛的应用前景,并日益成为世界各国纳米材料领域研究的热点。开展低维钙钛矿铁电氧化物纳米材料的可控制备、微结构与性能研究对于探索新现象、拓展新应用具有重要的理论意义和科学价值。
     本文首先简要综述了低维钙钛矿铁电氧化物的结构特点及研究现状,重点总结和评述了低维钙钛矿铁电氧化物纳米材料的制备与性能研究进展及其面临的重要问题。针对零维钙钛矿铁电氧化物纳米材料在大规模制备及其形貌、尺寸调控和阵列等问题,本文利用改性溶胶-凝胶法成功制备并调控了硅基板上的零维PbTiO3(PT)纳米晶阵列,采用水热法合成了BaTiO3(BT)多面体纳米晶;针对单分散的二维单晶钙钛矿铁电纳米片难以合成等难题,本文首次利用水热法成功制备了单分散的二维单晶单畴铁电PT纳米片。利用X射线衍射(XRD)、高分辨透射电镜(HRTEM)、原子力显微镜(AFM)等手段对这些纳米材料的晶体结构与微结构进行了研究,揭示了其生长机制;研究了这些纳米结构的性能,如铁电、压电和催化等。主要研究内容如下:
     (1)采用滴加溶胶、凝胶及冷冻干燥制备的非晶粉末悬浮液并之后煅烧的方法成功制备了[001]方向上的取向生长的零维四方相钙钛矿PT纳米晶阵列。AFM研究不同煅烧时间的样品发现,Si(100)基板上的PT纳米晶通过“团聚-自组装-熟化”的方式生长。溶胶、凝胶及冷冻干燥制备的非晶粉末前驱体在温度、煅烧时间及硅基板的作用下,自组装并结晶成由8个氧化物纳米晶组成的中间体。基于上述机理,在溶胶-凝胶过程中引入不同摩尔分率的乙酰丙酮分子(acac),控制溶胶中的水解-缩聚过程,增加非晶前驱体粉末的分散性,调控了Si(100)基板上的PT纳米晶的取向生长、尺寸和密度。此外,压电力显微镜(PFM)的结果表明硅基板上PT纳米晶具有明显的铁电和压电性能。
     (2)首次采用水热法成功制备了单分散的单晶单畴的铁电PT纳米片。XRD和HRTEM分析结果表明,该纳米片为四方相钙钛矿PT纳米晶,具有规则的矩形形貌,沿四方相钙钛矿的ab面生长,上下表面暴露晶面为{001}晶面,横向尺寸为600-1100nnm,厚度为-150nm,长径比为6:1左右。高角环形暗场扫描透射电子显微镜(HAADF STEM)和动态接触模式下的静电力显微镜(DC-EFM)等研究结果表明,PT纳米片的生长可能是“自模板”机制,即:Pb_3O_4片在碱溶液中马上生成并为PT纳米片的形成提供基本骨架,TiO_2粒子吸附并镶嵌在铅的氧化物骨架中形成薄片,形成的薄片在静电力的作用下沿薄片垂直的方向上叠加,经过表面重构和Ostwald熟化过程,形成PT纳米片。
     (3)系统地研究了矿化剂浓度、反应时间、反应温度及物料浓度等对PT纳米片生长的影响。研究表明,形成PT纳米片的最佳条件为:钛源为P25TiO_2,矿化剂KOH浓度为6M-8M,Pb/Ti比为1.25:1-1.5:1,反应温度应小于220℃。
     (4)DC-EFM测试结果显示与PT纳米片形貌图相比,在振幅图中观察到了清晰的黑色和白色畴,说明PT纳米片为铁电单畴结构,黑色畴为正极化畴,白色畴为负极化畴。通过在DC-EFM针尖上施加直流电压Vdc和控制其持续时间实现了铁电畴的读写。铁电畴的反转电压10V,读写电压为1V,扫描速率为0.5Hz,PT纳米片的读写区域为500nm×500nm。
     (5)以PT纳米片和H2PtCl6.6H2O为原料,以NaBH4为还原剂,浸泡还原法制备了负载Pt颗粒的PT纳米片。并对PT纳米片和附载Pt的Pt/PT纳米片进行了CO催化活性的对比。对于纯PT纳米片,CO转化为CO_2的起始温度为110℃,CO转化率随温度升高也在缓慢升高,250℃时,CO转化率至少达到了80%。而对于Pt/PT纳米片,CO转化为CO_2的起始温度为60℃,并在70℃-100℃时急剧上升,温度升高到100℃时,CO的转化率就达到了100%。
     (6)采用水热法制备了十二面体和十八面体的钛酸钡纳米晶。TEM和HRTEM分析表明十二面体BT纳米晶为立方相,暴露的晶面为{11O}晶面,投影呈现为六边形;十八面体BT纳米晶为四方相,暴露的晶面为{110}和{100)晶面,投影为八边形。通过改变水热反应时间研究发现,BT多面体纳米晶的生长是一个典型的Ostwald熟化过程,产物为立方相和四方相BT纳米晶的混合物,并不能得到100%的四方相BT纳米晶。体系中高浓度的OH~-离子在BT多面体颗粒形成过程中可能起到了矿化剂和表面修饰剂的作用。
     (7)以合成的K2Ti6O13钛酸盐纳米线为模板,采用水热法对钙钛矿PT,BT等的形貌和尺寸进行了调控。随碱浓度、温度及时间的变化,四方相钙钛矿PT颗粒经历了片状聚集体,无规则片,规则四方片到梯形台状颗粒的变化,对应尺寸变化为-200nm,-900nm,-600nm及-600nnm;钙钛矿BT颗粒经历了四方相BT枝权晶,颗粒堆积的立方相BT四方颗粒,颗粒堆积的立方相BT六角结构颗粒到四方相BT十八面体颗粒的变化,对应的尺寸变化为-600nm,-350nm,-350nm及-200nm。同时,以高度无序的氢氧化钛非晶沉淀为前驱体,合成的单斜相的K2Ti6O13钛酸盐纳米线,为溶解/重结晶机制提供了证据。
Low-dimensional perovskite-structure ferroelectric oxides have attracted extensive attention because of their fascinating physical and chemical properties, based on which promising applications in high density information storage, high sensitive sensor and catalysis become availiable. Therefore, studying on controllable growth, microstructure and properties of the low-dimensional perovskite oxides is highly important to explor the new phenomenon and application.
     In this dissertation, crystal structure and the current status of studies on low-dimensional perovskite ferroelectric oxides were reviewed at first. Then the progress and main problems on preparation and properties of low-dimensional perovskite ferroelectric oxides have been summarized in detail. In order to resolve the problems of0D ferroelectric oxides in large-scale preparation and controllable growth,0D PT nanocrystals on Si substrates were synthesized by modified sol-gel method. And0D polyhedral BT nanoparticles were synthesized by hydrothermal process. Compared to0D perovskite ferroelectric oxides, the preparation of2D ferroelectric oxides by wet-chemical method remains a great challenge. The free-standing PT nanoplates have been synthesized for the first time by a facile hydrothermal method. Crystal structure and microstructure of these nanomaterials have been investigated by different approaches, such as X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and atomic force microscope (AFM). And ferroelectricity, piezoelectricity and catalytic properties of these nanostructures were explored.The main contents are described as follows:
     (1) PT nanostructure on Si (100) substrates was synthesized by heat treatment of the amorphous powder precursor ethanol suspension. The precursor was obtained by the sol-gel and the subsequent freeze-drying process. XRD results displayed that the PT nanostructures show an oriented growth of the PT nanocrystals along [001]. AFM results revealed that an "aggregation-self-assembly-coarsen" process could be responsible for the formation of PT nanocrystals. During the crystal growth process, a novel intermediate, which was formed by self-assembly of eight oxide nanocrystals, were observed firstly. On the basis of above formation mechanism, the acac molecules were induced to sol of tetrabutyl titanate to controll the self-organization of the amorphous particles and therefore mediated crystal growth of PT nanocrystals on the substrates. Furthermore, piezoelectric force microscopy (PFM) investigations showed that the PT nanocrystals have obvious ferroelectricity and piezoelectricity.
     (2) Free-standing single-crystal and single domain ferroelectric PT nanoplates can be synthesized by a facile hydrothermal method for the first time. XRD and HRTEM results demonstrate that these PT nanoplates can be indexed to tetragonal-phase perovskite PT. The {001} crystal planes are prevailent in the PT sample. The PT nanoplates have a side length of600~1100nm, a height of~150nm, and an aspect ratio of about6:1. High-angle annular dark-field scanning transmission electron microscopy (HAADF STEM) and DC-EFM results showed that the "self-templated" mechanism was the main mechanism for the formation of PT nanoplates. Lead oxides (Pb3O4) are produced immediately in the alkaline solution and form the backbone of the nanoplate. TiO2particles are then absorbed and embedded within the lead oxide templates, and thin nanoplates are formed. Thin nanoplates then attach and stack along the vertical direction to the thin nanoplate, a process probably induced by electrostatic forces. Finally, perovskite-phase PT nanoplates are formed by the surface reconstruction and Ostwald repening process of thin nanoplates.
     (3) The effect of experimental condition, such as the concentration of mineralizer, the reaction time and temperature and the concentration of materials, have been studied systematicly on the formation of PT nanoplates. Using P25TiO2as titanium source,6M-8M KOH concentration and1.25:1~1.5:1of Pb/Ti molar ratio were determined to be desired condition to prepare PT nanoplates when the reaction temperature is below220℃.
     (4) DC-EFM results demonstrated that dark and bright regions images that correspond to the positively and negatively polarized domains were obtained in the amplitude images, which indicates that the PT nanoplates are single-domain ferroelectric nanoplates. Domain reveral depends on the magnitude and duration of the applied tip bias Vdc.The scan rate is0.5Hz. The voltage which made the domain reversal was10V and the voltage of the read of the all domains was1V. And the read and writte scale was500nm×500nm.
     (5) Pt/PT nanoparticles were prepared by impregnation-reduction method. PT nanoplates and H2PtC16.6H2O were used as the starting materials and NaBH4was used as the reductant. The catalytic activity of ferroelectric PT nanoplates and Pt/PT nanoplates for the oxidation of CO were evaluated. For the pure PT nanoplates, the CO conversion into CO2starts around110℃and increases slowly up to25℃. At least80%conversion is observed at250℃. For Pt/PT nanoplates, the CO conversion into CO2starts around60℃and increases significantly from70℃to100℃, with100%conversion occurring at100℃.
     (6) Cubic-phase-dodecahedral and tetragonal-phase-decaoctahedral BT nanocrystals were synthesized by a facile hydrothermal method. TEM and HRTEM results displayed that the dodecahedral nanocrystal with exposed{110} facets shows a hexagonal projection and the decaoctahedron nanocrystal with exposed{110} and{100} facets shows an octagonal projection. Based on the study of hydrothermal reaction time, BT polyhedral nanocrystals were suggested to grow via an "Ostwald ripening"(OR) mechanism. And the products consist of cubic-phase and tetragonal-phase BT nanocrystals and it is difficult to obtain100%pure tetragonal-phase BT nanocrystals. The high concentration OH" ions could serve as mineralizer and surfactant to promote the formation of BT polyhedral nanoparticles.
     (7) The shape and size of perovskite PT, BT et.al nanocrystals can be tailored during hydrothermal synthesis by using K2Ti6O13nanowires as the precursor. By changing alkaline concentration, reaction temperature and time, the tetragonal phase PT nanoparticles experienced an aggregation of plate-like particles (~200nm), irregular plate (~900nm), regular rectangular plate (~600nm) and then trapezoidal platform particles (~600nm). The perovskite BT nanoparticles developed from tetragonal-phase BT dendrites (~600nm), cubic-phase BT cubic particles composed of aggregated of small particles (~350nm), cubic-phase hexapod (6-pods) shape particles composed by aggregation of small particles (~350nm) to tetragonal-phase dodecahedral particles (~200nm). Simultaneously, the monoclinic structure of K2Ti6O13nanowires was synthesized by using the amorphous precipitation of titanium hydroxide from a highly disordered raw material. The results reveal that the formation mechanism for titanate nanostructures is dissolution/recrystallization model.
引文
[1]张立德,牟季美.纳米材料与纳米技术.科学出版社,2001.
    [2]朱静等,纳米材料和纳米器件.北京,清华大学出版社,2003.
    [3]M.E. Lines, A.M. Glass. Principles and applications of ferroelectrics and related materials, Clarendon press, Oxford,1977.
    [4]J.G. Bednorz, A.K. Muller. Perovskite-type oxides-The new approach to high-Tc superconductivity, Rev. Mod. Phys.,1988,60:585-600.
    [5]Y. Tokura. Colossal magnetoresistive oxides, Gordon and Breach Science, New York,2000.
    [6]H. Irie, Y. Maruyama, K. Hashimoto. Ag+ and Pb+ doped SrTiO3 photocatalysts, a correlation between band structure and photocatalytic activity, J. Phys. Chem. C,2007,111(4):1847-1852.
    [7]J.M. Macak, C. Zollfrank, B.J. Rodriguez, H. Tsuchiya, M. Alexe, P. Greil, P. Schmuki. Ordered ferroelectric lead titanate nanocellular structure by conversion of anodic TiO2 nanotubes, Adv. Mater., 2009,21:1-5.
    [8]N. Nuraje, K. Su, A. Haboosheh, J. Samson, E.P. Manning, N. Yang, H. Matsui. Room temperature synthesis of ferroelectric barium titanate nanoparticles using peptide nanorings as templates, Adv. Mater,2006,18:807-811.
    [9]X.H. Zhu, Z.H. Zhang, J.M. Zhu, S. Ye, S.H. Zhou, Z.G, Liu. Single-crystalline PbTiO3 nanowires synthesized by microwave-hydrothermal process and their structure characterization by electron microscopy, Ferroelectrics,2010,402:10-15.
    [10]王中林,康振川.功能材料结构演化与结构分析,科学出版社,北京,2002.
    [11]F. Li, S.J. Zhang, Z. Xu, X.Y. Wei, T.R. Shrout. Critical property in relaxor-PbTiO3 single crystal-Shear piezoelectric response, Adv.Funct. Mater.,2011,21:2118-2128.
    [12]M.L. Calzada, M. Torres, J. Ricote, L. Pardo. Ferroelectric PbTiO3 nanostructures onto Si-based substrates with size and shape control, J. Nanopart Res.,2009,11:1227-1233.
    [13]L.G. Tejuca, J.L.G. Fierro, J.M.D. Tascon. Structure and reactivity of perovskite-type oxides, Advan. Catal,1989,36:237-328.
    [14]李大光,章弘毅,张鹤丰,郭清泉,曹明澈.钙钛矿型复合氧化物的研究与应用进展,材料导报,2006,20:296-299.
    [15]G. Fiquet, A. Dewaele, D. Andrault, M. Kunz, T. Le Bihan. Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions, Geophys. Res. Lett.,2000,27(1):21-24.
    [16]B. Magyari-Kope, L. Vitos, G. Grimvall, B. Jahansson, J. Kollar. Low-temperature crystal structure of CaSiO3 perovskite:An ab initio total energy study, Phys. Rev. B,2002,65(193107):1-4.
    [17]X. Liu, R.C. Liebermann. X-ray powder diffraction study of CaTiO3 perovskite at high temperatures, Phys. Chem. Minerals,1993,20(3):171-175.
    [18]许煜寰等.铁电与压电材料,北京,科学出版社,1978.
    [19]T. Kimura, T. Goto, H. Ishizaka, T. Arima, Y. Tokura. Magnetic control of ferroelectric polarization, Nature,2003,426(6):55-58.
    [20]Y.F. Duan, H.L. Shi, L.X. Qin. Studies of tetragonal PbTiO3 subjected to uniaxial stress along the c-axis,J. Phys.:Condens. Matter.,2008,20(175210):1-5.
    [21]J. Kirchnerove, D.B. Hibbert. Structures and properties of La1-xSrxCoO3-y prepared by freeze drying, J. Mater. Sci.,1993,28:5800-5808.
    [22]J. Shu, S. Kailiaguene. Well-dispersed perovskite-type oxidation catalysts, Appl. Catal. B:Environm, 1998,16:303-308.
    [23]B.A. Hernandez-Sanchez, K.S. Chang, M.T. Scancella, J.L. Burris, S. Kohli, E.R. Fisher, P.K. Dorhout, Examination of size-induced ferroelectric phase transitions in template synthesized PbTiO3 nanotubes and nanofibers, Chem. Mater,2005,17(24):5909-5919.
    [24]H.S. Gu, Y.M. Hu, J. You, Z.L. Hu, Y. Yuan, T.J. Zhang, Characterization of single-crystalline PbTiO3 nanowire growth via surfactant-free hydrothermal method, J. Appl. Phys.,2007,101(024329):1-7.
    [25]K.H.H. Xu, L. Zhang, Generalized low-temperature synthesis of nanocrystalline rare-earth orthoferrites LnFeO3 (Ln=La, Pr, Nd, Sm, Eu, Gd), Cryst. Growth Des.,2008,8(7):2061-2065.
    [26]S.O.A.R. Oganov, theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in earth's D" layer. Nature,2004,430,445-448.
    [27]Z.H. Ren, G. Xu, Y. Liu, X. Wei, Y.H. Zhu, X.B. Zhang, G.L. Lv, Y.W. Wang, Y.W. Zeng, P.Y. Du, W.J. Weng, G. Shen, J.Z. Jiang, G.R. Han, PbTiO3 nanofibers with edge-shared TiO6 octahedra, J. Am. Chem. Soc.,2010,132(16):5571-5573.
    [28]Z. Xiao, Z.H. Ren, Z.Y. Liu, X. Wei, G. Xu, Y. Liu, X. Li, G. Shen, G.R. Han, Single-crystal nanofibers of Zr-dopped new structured PbTiO3: hydrothermal synthesis, characterization and phase transformation, J. Mater. Chem.,2011,21(11):3562-3564.
    [29]L.H. Ni, Y. Liu, Z.H. Ren, X. Li, G. Xu, C.L. Song, G.R. Han, Theoretical and experimental study of Raman spectra of pre-perovskite PbTiO3, J. Appl. Phys.,2011,110(063506):1-5.
    [30]G. Shirane, S. Hoshino, K. Suzuki. X-ray study of the phase transition in lead titanate, Phys. Rev.,1950, 80:1105-1106.
    [31]殷之文,电介质物理学.科学出版社,北京,2003.
    [32]魏晓.钙钛矿氧化物纳米结构的控制生长和性能研究[博士学位论文].杭州:浙江大学材料系,2008.
    [33]M.H. Frey, D.A. Payne. Grain-size effect on structure and phase transformations for barium titanate, Phys. Rev.,1996,54(5):3158-3168.
    [34]W. Maison, R. Kleeberg, R.B. Heimann, S. Phanichphant. Phase comtent, tetragonality, and crystallite size of nanoscaled barium titanate synthesized by the catecholate process:effect of calcination temperature, J. Eur. Ceram. Soc.,2003,23:127-132.
    [35]肖长江,王春华.钛酸钡结构和性能尺寸效应的研究进展,硅酸盐通报,2008,27(1):111-114.
    [36]任召辉.钙钛矿和前钙钛矿氧化物纳米材料的制备、结构与性能研究[博士学位论文].杭州:浙江大学材料系,2008.
    [37]R.E. Cohen. Origin of ferroelectricity in perovskite oxides, Nature,1992,358:136-138.
    [38]N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4, Nature,2005,436(25):1136-1138.
    [39]B.V. Aken, T.T.M. Palstra, A. Filippetti, N.A. Spaldin. The origin of ferroelectricity in magnetoelectric YMnO3, Nat. Mater.,2004,3:164-170.
    [40]D.V. Efremov, J.V.D. Brink, D.I. Khomskii. Bond-versus site-centred ordering and possible ferroelectricity in manganites, Nat. Mater.,2004,3:853-856.
    [41]Y. Kuroiwa, S. Aoyagi, A. Sawada, J. Harada, E. Nishibori, M. Takata, M. Sakata. Evidence for Pb-O covalency in tetragonal PbTiO3, Phys. Rev. Lett.,2001,87(217601):1-4.
    [42]R.A. Mckee, F.J. Walker, M.F. Chisholm. Physical structure and inversion charge at a semiconductor interface with a crystalline oxide, Science,2001,293(20):468-471.
    [43]T. Tybell, P. Paruch, T. Giamarchi, J.M. Triscone. Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films, Phys. Rev. Lett.,2002,89(9):097601-097604.
    [44]S.M. Yang, J.G. Yool, T.W. Noh. Nanoscale studies of defect-mediated polarization switching dynamics in ferroelectric thin film capacitors, Curr. Appl. Phys.,2011,11:1111-1125.
    [45]宋红章,李永祥,殷庆瑞.铁电体中相变临界尺寸的研究现状,无机材料学报,2007,22(4):583-589.
    [46]K. Uchino, E. Sadanaga, T. Hirose. Dependence of the crystal-structure on paticle-size in Barium-titanate, J. Am. Ceram. Soc.,1989,72(8):1555-1558.
    [47]K. Ishikawa, K. Yoshikawa, N. Okada. Size effect on the ferroelectric transition in PbTiO3 ultrafine particles, Phys. Rev. B,1988,37(10):5852-5855.
    [48]Y.G. Wang, W.L. Zhong, P.L. Zhang. Size driven phase-transition in ferroelectric particles, Solid State Comm.,1994,90(5):329-332.
    [49]Y.G. Wang, W.L. Zhong, P.L. Zhang. Size effects on the curie-temperature of ferroelectric particles, Solid State Comm.,1994,92(6):519-523.
    [50]W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu. Phenomenological study of the size effect on phase-transition in ferroelectric particles, Phys. Rev. B,1994,50(2):698-703.
    [51]W.L. Zhong, Y.X. Wang, P.L. Zhang. Size drive ferroelectric-paraelectric phase transition from the surface energy viewpoint, Chin. Phys. Lett.,2003,20(7):1134-1136.
    [52]W.L. Zhong, Y.X. Wang, C.L. Wang, B. Jiang, L.A. Bursill. Domain structure in ferroelectric particles. Ferroelectrics,2001,252(1-4):223-231.
    [53]A. Roelofs, T. Schneller, K. Szot, R. Waser. Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity, Appl. Phys. Lett.,2002,81:5231-5233.
    [54]E.K. Akdogan, C.J. Rawn, W.D. Porter, E.A. Payzant, A. Safari. Size effects in PbTiO3 nanocrystals: effect of particle size on spontaneous polarization and strains,J. Appl. Phys.,2005,97(084305):1-8.
    [55]M. Tanaka, Y. Makino. Finite size effects in submicron barium titanate particles, Ferroelectr. Lett. Sect.,1998,24(1-2):13-23.
    [56]T. Ohno, T. Mori, H. Suzuki, F.S. Fu, W. Wunderlich, M. Takahashi, K. Ishikawa. Size effect for lead zirconium titanate nanopowders with Pb(Zr0.3Ti0.7)O3, Jpn.J. Appl. Phys.,2002,41(11B):6985-6988.
    [57]S. Chattopadhyay, P. Ayyub, V.R. Palkar, M. Multani. Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO3, Phys. Rev. B,1995,52:13177-13183.
    [58]W.L. Zhong, B. Jiang, P.L. Zhang, J.M. Ma, H.M. Cheng, Z.H. Yang, L.X. Li. Phase-transition in PbTiO3 ultrafine particles of different sizes, J. Phys.:Condens. Matter,1993,5(16):2619-2624.
    [59]H.I. Hsiang, F.S. Yen. Effect of crystallite size on the ferroelectric domain growth of Ultrafine BaTiO3 powders,J. Am. Ceram. Soc.,1996,79(4):1053-1060.
    [60]T. Yu, Z.X. Shen, W.S. Toh, J.M. Xue, J. Wang. Size effect on the ferroelectric phase transition in SrBi2Ta2O9 nanoparticles, J. Appl. Phys.,2003,94(1):618-620.
    [61]Y.L. Du, M. S. Zhang, Q. Chen, Z.R. Yuan, Z. Yin, Q.A. Zhang. Size effect and evidence of a size-drive phase transition in Bi4Ti3O12 nanocrystals, Solid State Commun.,2002,124(3):113-118.
    [62]J.J. Urban, W.S. Yun, Q. Gu, H. Park. Synthesis of single-crystalline perovskite nanorods composed of Barium titanate and Strontium titanate, J. Am. Chem. Soc.,2002,124:1186-1187.
    [63]W.S. Yun, J.J. Urban, Q. Gu, H. Park. Ferroelectric properties of individual Barium titanate nanowires investigated by Scanned probe microscopy, Nano. Lett.,2002,2:447-450.
    [64]J.E. Spanier, A.M. Kolpak, J.J. Urban, I. Grinberg, O.Y. Liao, W.S. Yun, A.M. Rappe, H. Park. Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires, Nano Lett.,2006,6(4): 735-739.
    [65]G. Geneste, E. Bousquet, J. Junquera, P. Ghosez. Finite-size effect in BaTiO3 nanowires, Appl. Phys. Lett.,2006,88(112906):1-3.
    [66]J.J. Urban, J.E. Spanier, O.Y. Liao, W.S. Yun, H. Park. Single-crystalline Barium titanate nanowires. Adv. Mater.,2003,15(5):423-426.
    [67]B.A. Hernandez-Sanchez, K.S. Chang, M.T. Scancella, J.L. Burris, S. Kohli, E.R. Fisher, P.K. Dorhout. Examination of size-induced ferroelectric phase transitions in template synthesized PbTiO3 nanotubes and nanofibers, Chem. Mater.,2005,17(24):5909-5919.
    [68]J. Junquera, P. Ghosez. Critical thickness for ferroelectricity in perovskite ultrathin films, Nature,2003, 422(6931):506-509.
    [69]P. Ghosez, K.M. Rabe. Microscope mode of ferroelectricity in stress-free PbTiO3 ultrathin films, Appl. Phys. Lett.,2000,76(19):2767-2769.
    [70]T. Tybell, C.H. Ahn, J.M. Triscone. Ferroelectricity in thin perovskite film, Appl. Phys. Lett.,1999, 75(6):856-858.
    [71]Y. Drezner, S. Berger. Nanoferroelectric domains in ultrathin BaTiO3 films, J. Appl. Phys.,2003, 94(10):6774-6778.
    [72]D.D. Fong, G.B. Stephenson, S.K. Streiffer. Ferroelectricity in ultrathin perovskite films, Science,2004, 304:1650-1653.
    [73]N. Yanase, K. Abe, N. Fukushima, T. Kawakubo. Thickness dependence of ferroelectricity in heteropitaxial BaTiO3 thin film capacitors, Jpn. J. Appl. Phys.,1999,38(9B):5306-5308.
    [74]T. Maruyama, M. Saitoh, I. Sakai, T. Hidaka, Y. Yano, T. Noguchi. Growth and characterization of 10-nm-thick c-axis oriented epitaxial PbZr0.25Ti0.75O3 thin films on (100)Si substrate, Appl. Phys. Lett., 1998,73(24):3524-3526.
    [75]R. Castro-Rodriguez, M. Quadrelli, E. Vasco, F. Calderon, F. Leccabue, B.E. Watts, Effects of particle size on the phase transition in Pb(Zr,Ti)O3 grown by the sol-gel technique, Mater. Lett.,1998,34(3-6): 326-331.
    [76]S.K. Streiffer, J.A. Eastman, D.D. Fong, C. Thompson, A. Munkholm, M.V.R. Murty, O. Auciello, G.R. Bai, G.B. Stephenson. Observation of nanoscale 180 degrees stripe domains in ferroelectric PbTiO3 thin films, Phys. Rev. Lett.,2002,89(067601):1-4.
    [77]Y. Drezner, S. Berger. Thermodynamic stability of BaTiO3 nano-domains, Mater. Lett.,2005,59(12): 1598-1602.
    [78]I.I. Naumov, L. Bellaiche, H.X. Fu. Unusual phase transitions in ferroelectric nanodisks and nanorods, Nature,2004,432:737-740.
    [79]M.M. Saad, P. Baxter, R.M. Bowman, J.M. Gregg, F.D. Morrison, J.F. Scott. Intrinsic dielectric response in ferroelectric nano-capacitors, J. Phys. Condens. Mat.,2004,16:L451-L456.
    [80]L.M. Chang, M. McMillen, F.D. Morrison, J.F. Scott, J.M. Gregg. Size effect on thin film ferroelectrics:Experiments on isolated single crystal sheets, Appl. Phys. Lett.,2008,93(132904):1-3.
    [81]L.W. Chang, M. Alexe, J.F. Scott, J.M. Gregg. Settling the "Dead layer" debate in nanoscale capacitors, Adv. Mater.,2009,21:4911-4914.
    [82]J.F. Scott. Applications of modern ferroelectrics, Science,2007,315:954-959.
    [83]R. Asiaie, W. Zhu, S.A. Akbar, P.K. Dutta. Characterization of submicron particles of tetragonal BaTiO3, Chem. Mater.,1996,8:226-234.
    [84]M.B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigereald. Crystal structure and the paraelectric-to ferroelectric phase transition of nanoscale BaTiO3, J. Am. Chem. Soc.,2008,130(22):6955-6963.
    [85]H.C. Du, S. Wohlrab, M. Weiβ,S. Kaskel. Preparation of BaTiO3 nanocrystals using a two-phase solvothermal method,J.Mater. Chem.,2007,17:4605-4610.
    [86]Y.G. Wang, G. Xu, L.L. Yang, Z.H. Ren, X. Wei, W.J. Weng, P.Y. Du, G. Shen, G.R. Han. Hydrothermal synthesis of single-crystal BaTiO3 dendrites. Mater. Lett.,2009,63(2):239-241.
    [87]Y.G. Wang, G. Xu, L.L. Yang, Z.H. Ren, X. Wei, W.J. Weng, P.Y. Du, G. Shen, G.R. Han. Formation of single-crystal SrTiO3 dendritic nanostructures via a simple hydrothermal method, J. Cryst.Growth, 2009,311(8):2519-2523.
    [88]X.M. Zhang, J.H. Zhang, Y. Jin, H.F. Zhao, X.J. Wang. Large-scale fabrication of Pr3+ doped or undoped nanosized ATiO3(A=Ca, Sr, Ba) with different shapes via a facile solvothermal technique, Cryst. Growth Des.,2008,8(3):779-781.
    [89]Y.R. Lin, Y.T. Liu, H.A. Sodano. Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire array, Appl. Phys. Lett.,2009,95:1-3.
    [90]S.J. Limmer, S. Seraji, M.J. Forbess, Y. Wu, T.P. Chou, C. Nguyen, G.Z. Cao. Electrophoretic growth of lead zirconate titanate nanorod, Adv. Mater.,2001,13(16):1269-1272.
    [91]S.J. Limmer, S. Seraji, Y. Wu, T.P. Chou, C. Nguyen, G.Z. Cao. Template-based growth of various oxide nanorods by sol-gel electrophoresis, Adv. Funct. Mater.,2002,12:59-64.
    [92]B.A. Hernandez, K.S. Chang, E.R. Fisher, P.K. Dorhout, Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes, Chem. Mater.,2002,14(2):480-482.
    [93]A. Ayala, T.G. Holesinger, P.G. Clem, V. Matias, Q.X. Jia, H.Y. Wang, S.R. Foltyn, B. Gibbons. Synthesis and characterization of Cu-doped SrTiO3 powders and sol-gel processed buffer layers on IBAD MgO templates, IEEE. T. Appl. Supercon.,2005,15(2):2703-2706.
    [94]徐如人,庞文琴.无机合成与制备化学,高等教育出版社,北京,2001.
    [95]施尔畏,夏长态,王步国等.水热法的应用于发展,无机材料学报,1996,11:193-206.
    [96]K. Byrappa, M. Yoshimura. Handbook of hydrothermal technology, Noyes Publication, New Jersey, USA,2001.
    [97]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用,化学工业出版社,北京,2002.
    [98]C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed. Chemistry and properties of nanocrystals of different shapes, Chem. Rev.,2005,105(4):1025-1102.
    [99]C.J. Briuker, G.W. Scherer. Sol-gel science the physics and chemistry of S-G processing. New York: academic press Inc,1990.
    [100]蒋华麟,陈萍华.溶胶-凝胶法制备纳米材料研究进展,广东化工,201O,37(11):262-264.
    [101]王焆,李晨,徐博.溶胶-凝胶法的基本原理、发展及应用现状,化学工业与工程,2009,26(3):273-277.
    [102]S. O'Brien, L. Brus, C.B. Murray. Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis, J. Am. Chem. Soc.,2001, 123(48):12085-12086.
    [103]C. Liu, B.S. Zou, A.J. Rondinone, Z.J. Zhang. Sol-gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles, J. Am. Chem. Soc.,2001,123(18):4344-4345.
    [104]G. Garnweitner, M. Niederberger. Nonaqueous and surfactant-free synthesis routes to metal oxide nanoparticles, J. Am. Ceram. Soc.,2006,89:1801-1808.
    [105]G. Garnweitner, M. Niederberger. Nonaqueous and surfactant-free synthesis routes to metal oxide nanoparticles, J. Am. Ceram. Soc.,2006,89:1801-1808.
    [106]M. Niederberger. Nonaqueous sol-gel routes to metal oxide nanoparticles, Acc. Chem. Res.,2007,40: 793-800.
    [107]陈彰旭,郑炳云,李先学,傅明连,谢署光,邓超,胡亍华.模板法制备纳米材料研究进展,化工进展,2010,29(1):94-99.
    [108]李宁,刘晓峰,孔庆平,张文彦.浅谈模板法制备纳米材料,中国高新技术企业,2010,(3):178-179.
    [109]Y. Liu, I. Szafraniak, N.D. Zakharov, V. Nagarajan, M. Steinhart, R.B. Wehrspohn, J.H. Wendorff, R. Ramesh, M. Alexe. Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate, Appl. Phys. Lett.,2003,83(3):440-442.
    [110]X.Y. Zhang, X. Zhao, C.W. Lai. Synthesis and piezoresponse of highly ordered PbZr0.53Ti0.47O3 nanowires array, Appl. Phys. Lett.,2004,85:4190-4192.
    [111]M. Liu, X. Li, H. Imrane,Y.J. Chen, T. Goodrich, Z.H. Cai, K.S. Ziemer, J.Y. Huang, N.X. Sun. Synthesis of ordered array of multiferroic NiFe2O4-PbZr0.52Ti0.48O3 core-shell nanowires, Appl. Phys. Lett.,2007,90(15):152501-152503.
    [112]Z.L. Qian, H.S. Gu, Y.M. Hu, D. Zhou, Z. Wang, H.T. Xia. Fabrication and characterization of K.o.5Nao.5Nb03 nanotube array by sol-gel AAO template method, J. Inorg. Mater,2010,25(7): 687-690.
    [113]J. Wang, M.Y. Li, X.L. Liu, L. Pei, J. Liu, B.F. Yu, X.Z. Zhao. Synthesis and multiferroic properties of BiFeO3 nanotubes, Chimes Phys. Lett.,2009,26(11):117301.
    [114]Q.A. Wu, M. Sadakane, H. Ogihara, W. Ueda. Immobilization of nanofibrous A-or B-site substituted LaMnO3 perovskite-type oxides on macroscopic fiber with carbon nanofibers templates, Mater. Res. Bull,2010,45(9):1330-1333.
    [115]W.J. Wu, Y.X. Li. Topochemical synthesis of plate-like Na0.5Bi0.5TiO3 temolates from Bi4Ti3O12, Mater. Lett.,2010,64(10):1157-1159.
    [116]J.Q. Qi, L. Sun, P. Du, L.T. Li. Slurry synthesis of bismuth sodium titanate with a transient aurivillius-type structure, J. Am. Ceram. Soc.,2010,93(4):1044-1048.
    [117]S.F. Poterala, Y.F. Chang, T. Clark, R.J. Meyer, Jr., G.L. Messing. Mechanistic interpretation of the aurivillius to perovskite topochemical microcrystal conversion process, Chem. Mater,2010,22(6): 2061-2068.
    [118]S.F. Poterala, R.J. Meyer, G.L. Messing. Synthesis of high aspect ratio PbBi4Ti4O15 and topochemical conversion to PbTiO3-based microplatelets, J. Am. Ceram. Soc.,2011,94(8):2323-2329.
    [119]M. Alexe, D. Hesse, V. Schmidt, S. Senz, H.J. Fan, M. Zacharias, U. Gosele. Ferroelectric nanotubes fabricated using nanowires as positive templates,Appl. Phys. Lett.,2006,89:171907-172909.
    [120]D. Chen, H.T. Zhang, R. Chen, X.Y. Deng, J.B. Li, G.Q. Zhang, L.M. Wang. Well-ordered array of ferroelectric single-crystalline BaTiO3 nanostructures, Phys. Status. Solidi A.,2012,209(4):714-717.
    [121]G. Xu, Z.H. Ren, P.Y. Du, W.J. Weng, G. Shen, G.R. Han. Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires, Adv. Mater.,2005,17(7):907-910.
    [122]G.F. Teixeira, G. Gasparotto, E.C. Paris, M.A. Zaghete, E. Longo, J.A. Varela. Photoluminescence properties of PZT 52/48 synthesized by microwave hydrothermal method using PVA with template, J. Lumin.,2012,132:46-50.
    [123]Y.X. Liu, H.X. Dai, Y.C. Du, J.G. Deng, L. Zhang, Z.X. Zhao. Lysine-aided PMMA-templating preparation and high performance of three-dimensionally ordered macroporous LnMnO3 with mesoporous walls for the catalytic combustion of toluene, Appl. Catal. B.,2012,119-120:20-31.
    [124]N. Nuraje, K. Su, A. Haboosheh, J. Samson, E.P. Manning, N. Yang, H. Matsui. Room temperature synthesis of ferroelectric barium titanate nanoparticles using peptide nanorings as templates, Adv. Mater.,2006,18:807-811.
    [125]A. Schilling, R.M. Bowman, G. Catalan, J.F. Scott. Morphological control of polar orientation in single-crystal ferroelectric nanowires, Nano Lett.,2007,7(12):3787-3791.
    [126]J.Y. Son, Y.H. Shin, S. Ryu, H. Kim, H.M. Jang. Dip-Pen lithography of ferroelectric PbTiO3 nanodots,J. Am. Chem. Soc.,2009,131(41):14676-14678.
    [127]K. Nishida, T. Yamamoto, M. Osada, O. Sakata, S. Kimura, K. Saito, M. Nishide, T. Katoda, S. Yokoyama, H. Funakubo. Orientation controlled deposition of Pb(Zr,Ti)O3 fimes using a micro-size parrerned SrRuO3 buffer layer, J. Mater. Sci.,2009,44(19):5339-5344.
    [128]H.P. Zhou, P.F. Wang, Z.C. Qiu, G.D. Zhu, P. Liu. Flower-like Pb(Zr0.52Ti0.48)O3 nanoparticles on the CoFe2O4 seeds, J. Cryst. Growth,2008,310(2):508-512.
    [129]V. Avrutin, H.Y. Liu, N. Izyumskaya, B. Xiao, U. Ozgur, H. Morkoc. Growth of Pb(Ti,Zr)O3 thin films by metal-organic molecular beam epitaxy, J. Cryst. Growth,2009,311(5):1333-1339.
    [130]C. Liu, B. Zou, A.J. Rondinone, Z.I. Zhang. Sol-gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles,J. Am. Chem. Soc.,2001,123(18):4344-4345.
    [131]M.L. Calzada, M. Torres, L.E. Fuentes-Cobas, A. Mehta, J. Ricote, L. Pardo. Ferroelectric self-assembled PbTiO3 perovskite nanostructures onto (100)SrTiO3 substrates from a novel microemulsion aided sol-gel preparation method, Nanotechnology,2007,18(375603):1-8.
    [132]M.L. Calzada, M. Torres, J. Ricote, L. Pardo. Ferroelectric PbTiO3 nanostructures onto Si-based substrates with size and shape control, J. Nanopart Res.,2009,11:1227-1233.
    [133]R.L. Brutchey, D.E. Morse. Template-free, low-temperature synthesis of crystalline barium titanate nanoparticles under bio-inspired conditions, Angew. Chem. Int. Ed.,2006,45(39):6564-6566.
    [134]R.L. Brutchey, G.S. Cheng, Q. Gu, D.E. Morse. Positive temperature coefficient of resistivity in donor-doped BaTiOj ceramics derived nanocrystals synthesized at low temperature, Adv. Mater.,2008, 20(5):1029-1033.
    [135]G. Garnweitner, M. Niederberger. Nonaqueous and surfactant-free synthesis routes to metal oxide nanoparticles, J. Am. Ceram. Soc.,2006,89:1801-1808.
    [136]M. Niederberger. Nonaqueous sol-gel routes to metal oxide nanoparticles, Acc. Chem. Res.,2007, 40(9):793-800.
    [137]H. Zhu, Z.J. Guo, W.D. Yang, W.F. Chang, C.C. Wang. Preparation and characterization of nanometer-sized (Pb1-xBx)TiO3 powders using acetylacetone as a chelating agent in a non-aqueous sol-gel process, Ceram. Int.,2011,37:3203-3209.
    [138]Y. Deng, L. Liu, C.W. Nan, S. Zhao. Hydrothermal synthesis and characterization of nanocrystalline PZT powders, Mater. Lett.,2003,57:1675-1678.
    [139]S.W. Lu, B.I. Lee, Z.L. Wang, W.D. Samuels. Hydrothermal synthesis and structure characterization of BaTiO3 nanocrystals, J. Cryst. Growth,2000,219:269-276.
    [140]X. Wei, G. Xu, Z.H. Ren, Y.G. Wang, G. Shen, G.R. Han. Synthesis of highly dispersed barium titanate nanoparticles by a novel solvothermal method, J. Am. Ceram. Soc.,2008,91(1):315-318.
    [141]H. Zhang, X.H. Wang, Z.B. Tian, C.F. Zhong, Y.C. Zhang, C.K. Sun, L.T. Li. Fabrication of monodispersed 5-nm BaTiO3 nanocrystals with narrow size distribution via one-step solvothermal route, J. Am. Ceram. Soc.,2011,94(10):3220-3222.
    [142]M. Niederberger, N. Pinna, J. Polleux, M. Antonietti. A general soft-chemistry route to perovskite and related materials:Synthesis of BaTiO3, BaZrO3, and LiNbO3 nanoparticles, Angew. Chem. Int. Ed., 2004,43(17):2270-2273.
    [143]M. Niederberger, G. Garnweitner, N. Pinna, M. Antonietti. Nonaqueous and hadide-free route to crystalline BaTiO3, SrTiO3, and (Ba,Sr)TiO3 nanoparticles via a mechanism involving C-C bond formation,J.Am. Chem. Soc.,2004,126(29):9120-9126.
    [144]H.C. Du, S. Wohlrab, M. Weiss, S. Kaskel. Preparation of BaTiO3 nanocrystals using a two-phase solvothermal method, J. Mater. Chem.,2007,17(43):4605-4610.
    [145]Y.V. Kolen'ko, K.A. Kovnir, I.S. Neira, T. Taniguchi, T. Ishigaki, T. Watanabe, N. Sakamoto, M. Yoshimura. A novel controlled, and high-yield solvothermal drying route to nanosized barium titanate powders, J. Phys. Chem. C,2007,111(20):7306-7318.
    [146]S. Ray, Y.V. Kolen'ko, D.H. Fu, R. Gallage, N. Sakamoto, T. Watanabe, M. Yoshimura, M. Itoh. Direct observation of ferroelectricity in quasi-zero-dimensional barium titanate nanoparticles. Small, 2006,2(12):1427-1431.
    [147]J. Aizenberg, A.J. Black, G.M. Whitesides. Control of crystal nucleation by patterned self-assembled monolayers, Nature,1999,398:495-498.
    [148]T.V. Anuradha. Template-assisted sol-gel synthesis of nanocrystalline BaTiO3, E-J. Chem.,2010,7(3): 894-898.
    [149]S. Kronholz, S. Rathgeber, S. Karthauser, H. Kohlstedt, S. Clemens, T. Schneller. Self-assembly of diblock-copolymer micelles for template-based praparation of PbTiO3 nanograins. Adv. Func. Mater., 2006,16(18):2346-2354.
    [150]W.V. Zoelen, A.H.G. Vlooswijk, A. Ferri, A.M. Andringa, B. Noheda, G.T. Brinke. Orderd arrays of ferroelectric nanoparticles by pulsed laser deposition on PS-b-P4VP(PDP) supramolecule-based templates, Chem. Mater,2009,21(19):4719-4723.
    [151]Y. Kim, H. Han, Y. Kim, W. Lee, M. Alexe, S. Baik, J.K. Kim. Ultrahigh density array of epitaxial ferroelectric nanoislands on conducting substrates, Nano Lett.,2010,10:2141-2146.
    [152]J.N. Li, M. Luo, W.J. Weng, K. Cheng, P.Y. Du, G. Shen, G.R. Han. Enhanced field emission from PbTiO3 nanodots prepared by phase separation approach, Appl. Surf. Sci.,2009,256:342-345.
    [153]H. Fujisawa, M. Okaniwa, H. Nonomura, M. Shimizu, H. Niu. Ferroelectricity of the 1.7nm-high and 38-wide self-assembled PbTiO3 island, J. European. Ceram. Soc.,2004,24(6):1641-1645.
    [154]M. R(?)rvik, T. Grande, M.A. Einarsrud. One-dimensional nanostructures of ferroelectric perovskite. Adv. Mater.,2011,23:4007-4304.
    [155]B.A. Hernandez-Sanchez, K.S. Chang, E.R. Fisher, P.K. Dorhout. Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes, Chem. Mater.,2002,14(2):480-482.
    [156]S. Singh, S.B. Krupanidhi. Synthesis and structure characterization of Ba0.6Sr0.4TiO3 nanotubes, Phys. Lett. A,2007,367(4-5):356-359.
    [157]M.C. Hsu, I.C. Leu, Y.M. Sun, M.H. Hon. Template synthesis and characterization of PbTiO3 nanowire arrays from aqueous solution,J. Solid State Chem.,2006,179:1421-1425.
    [158]Y.P. Jiang, Y. Wang, L.W.H. Chan, X.G. Tang, Y.C. Zhou. Sol-gel template synthesis and photoluminescence properties of (Pb0.5Sr0.5)TiO3 nanotube arrays, Chin. Phys. Lett.,2011,28(077702): 1-4.
    [159]L.F. Liu, T.Y. Ning, Y. Ren, Z.H. Sun, F.F. Wang. Synthesis, characterization, photoluminescence and ferroelectric properties of PbTiO3 nanotube arrays. Mater. Sci. Eng. B,2008,149:41-46.
    [160]J.M. Macak, C. Zollfrank, B.J. Rodriguez, H. Tsuchiya, M. Alexe, P. Greil, P. Schmuki. Ordered ferroelectric lead titanate nanocellular structure by conversion of anodic TiO2 nanotubes. Adv. Mater., 2009,21:1-5.
    [161]Y. Yang, X.H. Wang, C.K. Sun, L.T. Li. Photoluminescence of high-aspect-ratio PbTiO3 nanotube array, J. Am. Ceram. Soc.,2008,91(11):3820-3822.
    [162]B.1m, H. Jun, K.H. Lee, S.H. Lee, Ⅱ K. Yang, Y.H. Jeong, J.S. Lee. Fabrication of a vertically aligned ferroelectric perovskite nanowire array on conducting substrate, Chem. Mater.,2012,22(16): 4806-4813.
    [163]Y.R. Lin, Y.T. Liu, H.A. Sodano. Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays, Appl. Phys. Lett.,2009,95(112901):1-3.
    [164]J. Kim, S.A. Yang, Y.C. Choi, J.K. Han, K.O. Jeong, Y.J. Yun, D.A. Kim, S.M. Yang, D. Yoon, H.S. Chang, T.W. Noh, S.D. Bu. Ferroelectricity in high ordered arrays of ultra-thin walled Pb(Zr,Ti)O3 nanotubes composed of nanometer-sized perovskite crystallines, Nano Lett.,2008,8(7):1813-1818.
    [165]W.J. Dong, B.J. Li, Y. Li, X.B. Wang, L.N. An, C.R. Li, B.Y. Chen, G. Wang, Z. Shi. General approach to well-defined perovskite MTiO3(M=Ba, Sr, Ca, and Mg) nanostructures, J. Phys. Chem. C, 2011,115:3918-3925.
    [166]Y.G. Wang, G. Xu, L.L. Yang, Z.H. Ren, X. Wei, W.J. Weng, P.Y. Du, G. Shen, G.R. Han. Preparation of single-crystal PbTiO3 nanorods by phase transformation from Pb2Ti206 nanorods, J. Alloys Compd., 2009,481:L27-L30.
    [167]Z.H. Ren, G. Xu, X. Wei, Y. Liu, G. Shen, G.R. Han. Shape evolution of Pb(Zr,Ti)O3 nanocrystals under hydrothermal condition, J. Am. Ceram. Soc.,2007,90(8):2645-2648.
    [168]H.S. Gu, Y.M. Hu, H. Wang, X.R. Yang, Z.L. Hu, Y. Yuan, J. You. Fabrication of lead titanate single crystalline nanowires by hydrothermal method and their characterization, J. Sol-gel Sci. Techn.,2007, 42:293-297.
    [169]J. Wang, A. Durussel, C.S. Sandu, M.G. Sahini, Z.B. He, N. Setter. Mechanism of hyfrothermal growth of ferroelectric PZT nanowires, J. Cryst. Growth,2012,347:1-6.
    [170]S.B. Cho, M. Oledzka, R.E. Riman. Hydrothermal synthesis of acicular lead zirconate titanate(PZT), J. Cryst. Growth,2001,226:313-326.
    [171]U.A. Joshi, J.S. Lee. Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires, Small,2005,1(12):1172-1176.
    [172]U.A. Joshi, S.H. Yoon, S.G. Baik, J.S. Lee. Surfactant-free hydrothermal synthesis of high tetragonal barium titanate nanowires:A structure investigation, J. Phys. Chem. B,2006,110(25):12249-12256.
    [173]Y. Jing, S. Jin, Y.Z. Jia, J.D. Han, J.H. Sun. Preparation of SrTiO3 nanofibers by hydrothermal method, J. Mater. Sci.,2005,40(23):6315-6317.
    [174]A. Magrez, E. Vasco, J.W. Seo, C. Dieker, N. Setter, L. Forro. Growth of single-crystalline KNbO3 nanostructures,J. Phys. Chem. B,2006,110(1):58-61.
    [175]P.M. Rorvik, A. Almli, A.T.J. van Helvoort, R. Holmestad, T. Tybell, T. Grande, M.A. Einarsrud. PbTiO3 nanorod arrays grown by self-assembly of nanocrystals, Nanotechnology,2008,19(22): 225605.
    [176]Y.M. Hu, H.S. Gu, Z.L. Hu, W.N. Di, Y. Yuan, J. You, W.Q. Cao, Y. Wang, H.L.W. Chan. Controllable hydrothermal synthesis of KTa1-xNbxO3 nanostructures with various morphologies and their growth mechanism, Cryst. Growth Des.,2008,8(3):832-837.
    [177]X.H. Zhu, Z.H. Zhang, J.M. Zhu, S. Ye, S.H. Zhou, Z.G. Liu. Single-crystalline PbTiO3 nanowires synthesized by microwave-hydrothermal process and their structure characterization by electron microscopy, Ferroelectrics,2010,402:10-15.
    [178]X.F. Lu, D.L. Zhang, Q.D. Zhao, C. Wang, W.J. Zhang, Y. Wei. Large-scale synthesis of necklace-like single-crystalline PbTiO3 nanowires, Macromol. Rapid. Comm.,2006,27(1):76-80.
    [179]A. Calleja, X. Granados, S. Ricart, J. Oro, J. Arbiol, N. Mestres, E. Carrillo, X. Palmer, F. Cano, J.A. Tornero, T. Puig, X. Obradors. High temperature transformation of electrospun BaZrO3 nanotubes into nanoparticles chains, CrystEngComm,2011,13:7224-7230.
    [180]A. Baji, Y.W. Mai, Q. Li, S.C. Wong, Y. Liu, Q.W. Yao. One-dimensional multiferroic bismuth ferrite fibers obtained by electrospinning techniques, Nanotechnology,2011,22(235702):1-5.
    [181]J.H. Song, J.H. Nam, J.H. Cho, B.I. Kim, M.P. Chun. Microstructures and multiferroic properties of electrospun BiFeO3 nanofibers, J. Korean Phys. Soc.,2011,59(3):2308-2312.
    [182]Y. Xia, T. Fei, Y He, R. Wang, F. Jiang, T. Zhang. Preparation and humidity sensing properties of Ba0.8Sr0.2TiO3 nanofibers via electrospinning, Mater. Lett.,2012,66:19-21.
    [183]M. Hossain, A. Kim. The effect of acetic acid on morphology of PZT nanofibers fabricated by electrospinning. Mater. Lett.,2009,63(9-10):789-792.
    [184]J.T. McCann, J.I.L. Chen, D. Li, Z.G. Ye, Y.A. Xia. Electrospinning of polycrystalline barium titanate nanofibers with controllable morphology and alignment, Chem. Phys. Lett.,2006,424(1-3):162-166.
    [185]Z.Y. Cai, X.R. Xing, R.B. Yu, X.Y. Sun, G.R. Liu. Morphology-controlled synthesis of lead titanate powders, Inorg. Chem.,2007,46(18):7423-7427.
    [186]Y. Deng, J.L. Wang, K.R. Zhu, M.S. Zhang, J.M. Hong, Q.R. Gu, Z. Yin. Synthesis and characterization of single-crystal PbTiO3 nanorods. Mater. Lett.,2005,59(26):3272-3275.
    [187]C.L. Jiang, K. Kiyofumi, Y.F. Wang, K. Koumoto, Synthesis of BaTiO3 nanowires at low temperature, Cryst. Growth Des.,2007,7(12):2713-2715.
    [188]X.B. Fan, W.C. Peng, Y. Li, X.Y. Li, S.L. Wang, G.L. Zhang, F.B. Zhang. Deoxygenation of exfoliated graphite oxide under alkaline conditions:A green route to graphene preparation, Adv. Mater., 2008,20:4490-4493.
    [189]K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong. Large-scale pattern growth of grapheme films for stretchable transparent electrodes, Nature,2009,457: 706-710.
    [190]J.N. Coleman, M. Lotya, A. O'Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi. Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science,2011,331(6017):568-571.
    [191]R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O'Neill, G.S. Duesberg, J.C. Grunlan, G. Moriarty, J. Chen, J.Z. Wang, A.I. Minett, V. Nicolosi, J.N. Coleman. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solution, Adv. Mater.,2011,23:3944-3948.
    [192]G.R. Blake, A.R. Armstrong, E. Sastre, W. Zhou, P.A. Wright. The preparation of a novel layered lead titanate and its conversion to the perovskite lead titanate PbTiO3, Mater. Res. Bull,2001,36: 1837-1845.
    [193]C. Schliehe, B.H. Juarez, M. Pelletier, S. Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Kornowski, C. Klinke, H. Weller. Ultrathin PbS sheets bu two-dimensional oriented attachment, Science,2010,329:550-553.
    [194]J.T. Jang, S. Jeong, J.W. Seo, M.C. Kim, E. Sim, Y.H. Oh, S. Nam, B. Park, J. Cheon. Ultrathin zirconium disulfide nanodiscs, J. Am. Chem. Soc.,2011,133:7636-7639.
    [195]X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie, L.S. Zheng. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties, J. Am. Chem. Soc.,2009,131: 3152-3153.
    [196]C.Z. Wen, H.B. Jiang, S.Z. Qiao, H.G. Yang, G.Q. Lu. Synthesis of high-reactive facets dominated anatase TiO2, J. Mater. Chem.,2011,21:7052-7061.
    [197]X.Y. Zhang, L. Bourgeois, J.F. Yao, H.T. Wang, P.A. Webley. Tuning the morphology of bismuth ferrite nano- and microcrystals:From sheets to fibers, Small,2007,3(9):1523-1528.
    [198]李越,蔡伟平,孙丰强,张立德.二维胶体晶体刻蚀法及其应用,前沿进展,2003,32(3):153-158.
    [199]W. Ma, D. Hesse, U. Gosele. Formation of ferroelectric perovskite nanostructure patterns using latex sphere monolayers as masks:An ambient gas pressure effect during pulsed laser deposition, Small, 2005,1(8-9):837-841.
    [200]H.J. Liu, C.H. Sow, C.K. Ong. Fabrication of quasi-one-dimensional oxide nanoconstriction array via nanosphere lithography:A simple approach to nanopatterns of multicomponents oxides, J. Appl. Phys., 2006,100(014306):1-3.
    [201]W. Ma, D. Hesse, U. Gosele. Nanostructure patterns of piezoelectric and ferroelectric complex oxides with various shapes, obtained by natural lithography and pulsed laser deposition, Nanotechnology, 2006,17:2536-2541.
    [202]M.M. Saad, P. Baxter, R.M. Bowman, J.M. Gregg, F.D. Morrison, J.F. Scott. Intrinsic dielectric response in ferroelectric nano-capacitors, J. Phys.:Condens. Matter,2004,16:L451-L456.
    [203]L.W. Chang, M. McMillen, F.D. Morrison, J.F. Scott, J.M. Gregg. Size effect on thin film ferroelectrics:Experiments on isolated single crystal sheets, Appl. Phys. Lett.,2008,93(132904):1-3.
    [204]L.W. Chang, M. Alexe, J.F. Scott, J.M. Gregg. Settling the "Dead layer" debate in nanoscale capacitors, Adv. Mater.2009,21:4911-4914.
    [205]赵巍,杜松昭,赵丹,周和平.制备片状BaTi03晶体的研究进展.中国陶瓷,2012,48(1):5-9.
    [206]T. Sato, T. Kimura. Preparation of<111>-textured BaTiO3 ceramics by templated grain growth method using novel template particles, Ceram. Int.,2008,34:757-760.
    [207]S. Su, R.Z. Zuo, D.Y. Lv, J. Fu. Synthesis and characterization of (001) oriented BaTiO3 platelets through a topochemical conversion, Powder Technol.,2012,217:11-15.
    [208]Y.K. Yan, D. Liu, W. Zhao, H.P. Zhou. Topochemical synthesis of a high-aspect-ratio platelet NaNbO3 template, J. Am. Ceram. Soc.,2007,90(8):2399-2403.
    [209]X.Y. Zhang, L. Bourgeois, J.F. Yao, H.T. Wang, P.A. Webley. Tuning the morphology of Bismuth ferrite nano- and microcrystals:From sheets to fibers. Small,2007,3(9):1523-1528.
    [210]M. Xu, Y.N. Lu, Y.F. Liu, S.Z. Shi, F. Fang, Synthesis of monosized strontium titanate particles with tailored morphologies, J. Am. Ceram. Soc.,2006,89(12):3631-3634.
    [211]F. Maxim, P. Ferreira, P.M. Vilarinho, I. Reaney. Hydrothermal synthesis and crystal growth studies of BaTiO3 using Ti nanotube precursors, Cryst. Growth Des.,2008,8(9):3309-3315.
    [212]X.M. Zhang, J.H. Zhang, Y. Jin, H.F. Zhao, X.J. Wang. Large-scale fabrication of Pr3+ doped or undoped nanosized ATiO3 (A=Ca, Sr, Ba) with different shapes via a facile solvothermai technique, Cryst. Growth Des.,2008,8(3):779-781.
    [213]郑忠,胶体化学导论.北京,高等教育出版社,1989.
    [214]P.C. Hiemenz,胶体与表面化学原理.北京,北京大学出版社,1986.
    [215]郝保红,黄俊华.晶体生长机理的研究综述,北京石油化工学院学报,2006,14(2):58-64.
    [216]H. Colfen, M. Antonietti. Mesocrystals:Inorganic superstructures made by highly parallel crystallization and controlled alignment, Angew. Chem. Int. Ed.,2005,44:5576-5591.
    [217]M. Niederberger, H. Colfen. Oriented attachment and mesocrystals:Non-classical crystallization mechanism based on nanoparticle assembly, Phys. Chem. Chem. Phys.,2006,8:3271-3287.
    [218]V.M. Yuwono, N.D. Burrows, J.A. Soltis, R.L. Penn. Oriented aggregation:Formation and transformation of mesocrystal intermediates revealed, J. Am. Chem. Soc.,2010,132:2163-2165.
    [219]H. Colfen, M. Antonietti. Mesocrystals:Inorganic superstructures made by highly parallel crystallization and controlled alignment, Angew. Chem. Int. Ed.,2005,44:5576-5591.
    [220]M. Niederberger, H. Colfen. Oriented attachment and mesocrystals:Non-classical crystallization mechanisms based on nanoparticle assembly, Phys. Chem. Chem. Phys.,2006,8:3271-3287.
    [221]M. Alexe, D.Hesse. Self-assembled nanoscale ferroelectrics, J. Mater. Sci.,2006,41(1):1-11.
    [222]R.F. Service. Nanogenerators tap waste energy to powder ultrasmall electronics. Science,2010, 328(5976):304-305.
    [223]S. Xu, B.J. Hansen, Z.L. Wang. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics, Nature Commun.,2010,1:1-5.
    [224]X. Chen, S.Y. Xu, N. Yao, Y. Shi.1.6V nanogenerator for mechanical energy harvesting using PZT nanofibers, Nano Lett.,2010,10:2133-2137.
    [225]S.S. Arbuj, R.R. Hawaldar, S. Varma, S.B. Waghmode, B.N. Wani. Synthesis and characterization of ATiO3(A=Ca, Sr and Ba) perovskite and their photocatalytic activity under solar irradiation, Sci. Adv. Mater.,2012,4(5-6):568-572.
    [226]U. Sulaeman, S. Yin, T. Sato. Solvothermal synthesis and photocatalytic properties of chromium-doped SrTiO3 nanoparticles, Appl. Catal. B-Environ.,2011,105(1-2):206-210.
    [227]X. Wei, G. Xu, Z.H. Ren, C.X. Xu, W.J. Weng, G. Shen, G.R. Han. Single-crystal-like mesoporous SrTiO3 spheres with enhanced photocatalytic performance, J. Am. Ceram. Soc.,2010,93(5): 1297-1305.
    [228]X. Wei, G. Xu, Z.H. Ren, C.X. Xu, G. Shen, G.R. Han. PVA-assisted hydrothermal synthesis of SrTiO3 nanoparticles with enhanced photocatalytic activity for degradation RhB, J. Am. Ceram. Soc., 2008,91(11):3795-3799.
    [229]C.A. Chagas, F.S. Toniolo, R.N.S.H. Magalhaes, M. Schmal. Alumina-supported LaCoO3 perovskite for selective CO oxidation (SELOX), Int. J. Hydrogen Energ.,2012,37(6):5022-5031.
    [230]G.C.M. Rodriguez, K. Kelm, B. Saruhan. H-2-selective catalytic reduction of NOX activity and microstructural analysis of new BaTi0.95Pd0.05O3 catalyst, Appl. Catal. A-Gen.,2010,387(1-2): 173-184.
    [231]K.J. Wang, P. Zhong. A kinetic study of CO oxidation over the perovskite-like oxide LaSrNiO4, J. Serb. Chem. Soc,2010,75(2):249-258.
    [232]J.A. Enterkin, W. Setthapun, J.W. Elam, S.T. Christensen, F.A. Rabuffetti, L.D. Marks, P.C. Stair, K.R. Poeppelmeier, C.L. Marshall. Propane oxidation over Pt/SrTiO3 nanocuboids, ACS Catal.,2011,1: 629-635.
    [233]A.M. Kolpak, I. Grinberg, A.M. Rappe. Polarization effects on the surface chemistry of PbTiO3-supported Pt films, Phys. Rev. Lett.,2007,98(166101):1-4.
    [234]K. Garrity, A.M. Kolpak, S. Ismail-Beigi, E.I. Altman. Chemistry of Ferroelectic surfaces, Adv. Mater.,2010,22:2969-2973.
    [235]B. Raveau, A. Maignan, C. Martin, M. Hervieu. Colossal magnetoresistance manganite perovskites: Relations between crystal chemistry and properties, Chem. Mater.,1998,10(10):2641-2652.
    [236]L. Han, C.L. Chen. Magnetocaloric and colossal magnetoresistance effect in layered perovskite La1.4Sr1.6Mn2O7, J. Mater. Sci. Technol.,2010,26(3):234-236.
    [237]L.S. Ewe,1. Hamadneh, H. Salama, N.A. Hamid, S.A. Halim, R. Abd-Shukor. Magnetotransport properties of La0.67Ca0.33MnO3 with different grain sizes, Appl. Phys. A-Mater. Sci. Processing,2009, 95(2):457-463.
    [238]M. Staruch, D. Hires, A. Chen, Z. Bi, H. Wang, M Jain. Enhanced low-field magnetoresistance in La0.67Sr0.33MnO3:MgO composite films,J.Appl. Phys.,2011,110(113913):1-5.
    [239]A.P. Chen, Z.X. Bi, C.F. Tsai, L. Chen, Q. Su, X.H. Zhang, H.Y. Wang. Tilted aligned epitaxial La0.7Sr0.3MnO3 nanocolumnar films with enhanced low-filed magnetoresistance by pulsed laser oblique-angle deposition, Cryst. Growth Des.,2011,11(12):5405-5409.
    [240]P.R. Evans, X.H. Zhu, P. Baxter, M. Mcmillen, J. Mcmillen, F.D. Morrision, J.F. Scott, R.J. Pollard, R.M. Bowman, J.M. Gregg. Toward self-assembled ferroelectric random access memories: hard-wired switching capacitor arrays with almost Tb/in-2 densities, Nano Lett.,2007,7:1134-1137.
    [241]M.P. Warusawithana, C. Cen, C.R. Sleasman, J.C. Woicik, Y. Li, L.F. Kourkoutis, J.A. Klug, H. Li, L.P. Wang, M. Bedzyk, D.A. Muller, L.Q. Chen, J. Levy, D.G. Schlom. A ferroelectric oxide made directly on silicon, Science,2009,324:367-370.
    [242]G.H. Gilmer. Computer-models of crystal-growth, Science,1980,208(4442):355-363.
    [243]J.B. Collins, H. Levine. Diffuse interface model of diffusion-limited crystal-growth, Phys. Rev. B, 1985,31(9):6119-6122.
    [244]A. Brednikhina, V.A. Debelov. On a geometric model of crystal growth on a flat substrate, J. Cryst. Growth,2009,311 (3):666-669.
    [245]M.C. Weinberg, W.H. Poisl, L.Granasy. Crystal growth and classical nucleation theory, C.R. Chim., 2002,5(11):765-771.
    [246]J.F. Banfield, S.A. Welch, H.Z. Zhang, T.T. Ebert, R.L. Penn. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products, Science,2000, 289(5480):751-754.
    [247]Q. Zhang, S.J. Liu, S.H. Yu. Recent advances in oriented attachment growth and synthesis of functional materials:concept, evidence, mechanism, and future, J. Mater. Chem.,2009,19(2): 191-207.
    [248]J. Zhang, F. Huang, Z. Liu. Progress of nanocrystalline growth kinetics based on oriented attachment, Nanoscale,2010,2(1):18-34.
    [249]J.A. Dirksen, T.A. Ring. Fundamentals of crystallization-kinetic effects on particle-size distributions and morphology, Chem. Eng. Sci.,1991,46(10):2389-2427.
    [250]X.L. Chen, H.Q. Fan, L.J. Liu. Synthesis and crystallization behavior of lead titanate from oxide precursors by a hydrothermal route, J. Cryst. Growth,2005,284(3-4):434-439.
    [251]I. Maclaren, C.B. Ponton. A TEM and HREM study of particels formation during barium titanate synthesis in aqueous solution, J. Eur. Ceram. Soc.,2000,20(9):1267-1275.
    [252]G.G. Aguilar, A.Wu, M.A. Reis, A.R. Ramos, I.M.M. Salvado, E. Alves, M.E.V. Costa. Diffusion processes in seeded and unseeded SBT thin films with varied stoichiometry, Surf. Sci.,2006,600(9): 1780-1786.
    [253]D. Hoebbel, T. Reinert, H. Schmidt. On the hydrolytic stability of organic ligands in Al-, Ti-, and Zr-alkoxide complexes, J. Sol-Gel Sci. Technol,1997,10(2):115-126.
    [254]L. Znaidi, R. Seraphimova, J.F. Bocquet, C. Colbeau-Justin, C. Pommier. A semi-continuous process for the synthesis of nanosize TiO2 powders and their use as photocatalysts, Mater. Res. Bull.,2001, 36(5-6):811-825.
    [255]J.P. Lee, Y.J. Jang, M. Sung. Atomic layer deposition of TiO2 thin film on mixed self-assembled monolayers studied as a function of surface free energy, Adv. Funct. Mater.,2003,13(11):873-876.
    [256]A.D. Polli, F.F. Lange, C.G. Levi. Metastability of the fluorite, pyrochlore, and perovskite structures in the PbO-ZrO2-TiO2 system, J. Am. Ceram. Soc.,2000,83(4):873-881.
    [257]A. Leaustic, F. Babonneau, J. Livage. Structure investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 (OR=OPr, OEt) modified by acetylacetone.1. Study of the alkoxide modification, Chem. Mater.,1989,1:240-247.
    [258]A. Leaustic, F. Babonneau, J. Livage. Structure investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 (OR=OPr', OEt) modified by acetylacetone.2. From the modified precursor to the colloids, Chem. Mater.,1989,1:248-252.
    [259]S. Watanabe, Y. Yoshida, S. Kayashima, S. Yatsu, M. Kawai, T. Kato. In situ observation of self-organizing nanodot formation under nanosecond-pulsed laser irradiation on Si surface, J. Appl. Phys.,2010,108:1-5.
    [260]Y.N. Xia, P.D. Yang, Y.G. Sun, YY. Wu, B. Mayers, B. Gates, YD. Yin, F. Kim, YQ. Yan. One-dimensional nanostructures:synthesis, characterization, and applications, Adv. Mater.,2003, 15(5),353-389.
    [261]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara. Titania nanotubes prepared by chemical processing, Adv. Mater.,1999,11 (15):1307-1311.
    [262]X.H. Zhu, Z.G. Liu, N.B. Ming. Perovskite oxide nanotubes:synthesis, structure characterization, properties and application, J. Mater. Chem.,2010,20(20):4015-4030.
    [263]X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie, L.S. Zheng. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties, J. Am. Chem. Soc.,2009, 131(9):3152-3153.
    [264]A. Tao, P. Sinsermsuksakul, P. Yang. Tunable plasmonic lattices of silver nanocrystals, Nat. Nanotechnol. 2007,2(7):435-440.
    [265]X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos. Shape control of CdSe nanocrystals, Nature,2000,404(6773):59-61.
    [266]F.X. Redl, K..S. Cho, C.B. Murray, S.O'Brien. Three-dimensional binary supperlattices of magnetic nanocrystals and semiconductor quantum dots, Nature,2003,423(6943):968-971.
    [267]Z.Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour. Growth of graphene from solid carbon sources. Nature,2010,468(7323):549-552.
    [268]A. Yella, E. Mugnaioli, M. Panthofer, U. Kolb, W. Tremel. Mismatch strain versus dangling bonds: fromation of "coin-roll nanowires" by stacking nanosheets, Angew. Chem. Int. Ed.,2010,49(19): 3301-3305.
    [269]D.Y. Wang, Y.J. Kang, V.D. Nguyen, J. Chen, R. Kiingas, N.L. Wieder, K. Bakhmutsky, R.J. Gorte, C.B. Murray. Synthesis and oxygen storage capacity of two-dimensional ceria nanocrystals, Angew. Chem. Int. Ed.,2011,50(19):4378-4381.
    [270]J.J. Urban, W.S. Yun, Q. Gu, H.Park. Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate, J. Am. Chem. Soc.,2002,124(7):1186-1187.
    [271]D.R. Modeshia, R. I. Walton. Solvothermal synthesis of perovskites and pyrochlores:crystallization of functional oxides under mild conditions, Chem. Soc. Rev.,2010,39(11):4303-4325.
    [272]J.F. Scott, H.J. Fan, S. Kawasaki, J. Banks, M. Ivanov, A. Krotkus, J. Macutkevic, R. Blinc, V.V. Laguta, P. Cevc, J.S. Liu, A.L. Kholkin, Terahertz emission from tubular Pb(Zr, Ti)O3 nanostructures, Nano Lett.,2008,8(12):4404-4409.
    [273]S. Zhang, L. M. Peng, Q. Chen, G. H. Du, G. Dawson, W. Z. Zhou. Formation mechanism of H2Ti3O7 nanotubes, Phys. Rev. Lett.,2003,91(25):1-4.
    [274]R. Menzel, A.M. Peiro, J. R. Durrant, M. S. P. Shaffer. Impact of hydrothermal processing conditions on high aspect ratio titanate nanostructures, Chem. Mater.,2006,18(25):6059-6068.
    [275]R.I. Walton, F. Millange, R.I. Smith, T.C. Hansen, D. O'Hare. Real time observation of the hydrothermal crystallization of Barium titanate using in Site neutron powder diffraction, J. Am. Chem. Soc.,2001,123(50):12547-12555.
    [276]Z.A. Peng, X.G. Peng. Mechanisms of the shape evolution of CdSe nanocrystals,J. Am. Chem. Soc., 2001,123(7):1389-1395.
    [277]J. Q. Huang, Y. G. Cao, M. L. Wang, C. G. Huang, Z. H. Deng, H. Tong, Z. G. Liu. Tailoring of low-dimensional titanate nanostructures, J. Phys. Chem. C,2010,114(35):14748-14754.
    [278]Z.Y. Tang, N.A. Kotov, M. Giersig. Spontaneous organization of single CaTe nanoparticles into luminescent nanowires. Science,2002,297(5579):237-240.
    [279]K.S. Cho, D.V. Talapin, W. Gaschler, C.B. Murray. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles, J. Am. Chem. Soc,2005,127(19):7140-7147.
    [280]G. Burns, B.A. Scott. Raman structures of underdamped soft modes in PbTiO3, Phys. Rev. Lett.,1970, 25(3):167-170.
    [281]X.T. Zhou, H.B. Ji, X.J. Huang. Photocatalytic degradation of methyl orange over metalloporphyrins supported on TiO2 Degussa P25, Molecules,2012,17:1149-1158.
    [282]J.W. Hong, K.H. Noh, S. Park, S.I. Kwun, Z.G. Khim. Surface charge density and evolution of domain structure in triglycine sulfate determined by electrostatic-force microscopy, Phy. Rev. B,1998, 58(8):5078-5084.
    [283]Z.Y. Wang, J. Hu, M.F. Yu. One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire, Appl. Phys. Lett.,2006,89(26):263119.
    [284]H.P. Zhou, H.S. Wu, J. Shen, A.X. Yin, L.D. Sun, C.H. Yan. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity, J. Am. Chem. Soc.,2010,132(14):4998-4999.
    [285]J.A. Enterkin, W. Setthapun, J.W. Elam, S.T. Christensen, F.A. Rabuffetti, L.D. Marks, P.C. Stair, K.P. Poeppelmeier, C.L. Marshall. Propane oxidation over Pt/SrTiO3 nanocuboids, ACS Catal.,2011,1(6): 629-635.
    [286]R.N.S.H. Magalhaes, F.S. Toniolo, V.T. da Silva, M. Schmal. Selective CO oxidation reaction (SELOX) over cerium-dopped LaCo03 perovskite catalysts, Appl. Catal. A-Gen.,2010,388(1-2): 216-224.
    [287]H.Q. Zhan, X.F. Yang, C.M. Wang, J. Chen, Y.P. Wen, C.L. Liang, H.F. Greer, M.M. Wu, W.Z. Zhou. Multiple Nucleation and Crystal Growth of Barium Titanate, Cryst. Growth Des.,2012,12(3): 1247-1253.
    [288]X.Y. Li, D.P. Liu, S.Y. Song, X. Wang, X. Ge, H.J. Zhang. Rhombic dodecahedral Fe3O4:ionic liquid-modulated and microwave-assisted synthesis and their magnetic properties, CrystEngComm, 2011,13(20):6017-6020.
    [289]K.J. Leonard, S. Sathyamurthy, M.P. Paranthaman. Characterization of BaZrO3 nanoparticles prepared by reverse micelle synthesis, Chem. Mater.,2005,17(15):4010-4017.
    [290]J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters, Science,2007,315(5809):220-222.
    [291]V.R. Stamenkovic, B. Fowler, B.S. Mun, G.F. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science,2007, 315(5811):493-497.
    [292]Y. Sang, B.Y. Geng, J. Yang. Fabrication and growth mechanism of three-dimensional spherical TiO2 architectures consisting of TiO2 nanorods with{110} exposed facets, Nanoscale,2010,2:2109-2113.
    [293]R. Narayanan, M.A. El-Sayed. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution, Nano Lett.,2004,4(7):1343-1348.
    [294]H. Lee, S.E. Habas, S. Kweskin, D. Butcher, G.A. Somorjai, P.D. Yang. Morphological control of catalytically active platinum nanocrystals, Angew. Chem. Int. Ed.,2006,45(46):7824-7828.
    [295]N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, Z.L. Wang. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity, Science,2007,316(5825):732-735.
    [296]H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, G.Q. Lu. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominants{001} facets,J. Am. Chem. Soc.,2009,131:4078-4083.
    [297]X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie, L.S. Zheng. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties, J. Am. Chem. Soc.,2009,131: 3152-3153.
    [298]C. Z. Wen, H.B. Jiang, S. Z. Qiao, H.G. Yang, G.Q. Lu. Synthesis of high-reactive facets dominated anatase TiO2, J. Mater. Chem.,2011,21:7052-7061.
    [299]Y.H. Xiao, L.Z. Lu, A.Q. Zhang, Y.H. Zhang, L. Sun, L. Huo, F. Li. Highly enhanced acetone sensing performances of porous and single crystalline ZnO nanosheets:high percentage of exposed (100) facets working together with surface modification with Pd nanoparicles, ASC Appl. Mater. Interface, 2012,4:3797-3804.
    [300]N.V. Suramwar, S.R. Thakare, N.N. Karade, N.T. Khaty. Green synthesis of predominant (111) facet CuO nanoparticles:heterpgeneous and recyclable catalyst for N-arylation of indoles, J. Mol. Catal. A-Chem.,2012,359:28-34.
    [301]G.H. Haertling. Ferroelectric ceramics:History and technology, J. Am. Ceram. Soc.,1999, 82(4):797-818.
    [302]P.P. Phule, S.H. Risbud. Low-temperature synthesis and processing of electronic materials in the BaO-TiO system, J. Mater. Sci.,1990,25(2B):1169-1183.
    [303]S. Sen, R.N.P. Choudhary, P. Pramanik. Synthesis and characterization of nanostructured ferroelectric compounds, Mater. Lett.,2004,58:3486-3488.
    [304]C. Ang, Z. Yu, Z. Jing. Piezoelectric and electrostrictive strain behavior of Ce-doped BaTiO3 ceramics, Appl. Phys. Lett.,2002,80:3424-3426.
    [305]Y. Masuda, T. Yamada, K. Koumoto. Synthesis of acicular BaTiO3 particles using acicular barium oxalates, Cryst. Growth Des.,2008,8:1169-1171.
    [306]J. Miao, C.G. Hu, H. Liu, Y.F. Xiong. BaTiO3 nanocubes:size-selective formation and structure analysis. Mater. Lett.,2008,62(2):235-238.
    [307]S.O. Kang, H.S. Jang, K.B. Kim, B.H. Park, M.J. Jung, Y.I. Kim. Synthesis of single-crystal barium titanate nanorods transformed from potassium titanate nanostructures. Mater. Res. Bull.,2008,43(4): 996-1003.
    [308]C.L. Jiang, K. Kiyofumi, Y.F. Wang, K. Koumoto. Synthesis of BaTiO3 nanowires at low temperature, Cryst. Growth Des.,2007,7(12):2713-2715.
    [309]J. Yuh, J.C. Nino, W.A. Sigmund. Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning, Mater. Lett.,2005,59(28):3645-3647.
    [310]H.Q. Zhan, X.F. Yang, C.M. Wang, J. Chen, Y.P. Wen, C.L. Liang, H.F. Greer. M.M. Wu. W.Z. Zhou. Multiple Nucleation and Crystal Growth of Barium Titanate, Cryst. Growth Des.,2012,12(3): 1247-1253.
    [311]S.B. Qin, D. Liu, F.F. Zheng, Z.Y. Zuo, H. Liu, X.G. Xu. (111) twinned BaTiO3 microcrystallites, CrystEngComm,2010,12:3003-3007.
    [312]L.F. Fei, J.K. Yuan, Y.M. Hu, C.Z. Wu, J.L. Wang, Y. Wang. Visible light responsive perovskite BiFeO3 pills and rods with dominant{111}c facets, Cryst. Growth Des.,2011,11:1049-1053.
    [313]R.I. Walton, F. Millange, R.I. Smith, T.C. Hansen, D. O'Hare. Real time observation of the hydrothermal crystallization of Barium titanate using in Site neutron powder diffraction, J. Am. Chem. Soc.,2001,123(50):12547-12555.
    [314]C.M. Lopez, K.S. Choi. Electrochemical synthesis of dendritic zinc films composed of systematically, Langmuir,2006,22(25):10625-10629.
    [315]T. Kuroda, T. Irisawa, A. Ookawa. Growth of a polyhedral crystal from solution and its morphological stability, J. Cryst. Growth,1977,42:41-46.
    [316]M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, Y. Sawada. Fractal structures of Zinc metal leaves grown by electrodeposition, Phys. Rev. Lett.,1984,53(3):286-289.
    [317]A. Bassano, M.T. Buscaglia, V. Buscaglia, P. Nanni. Particles size and morphology control of perovskite oxide nanopowders for nanostructured materials, Integr. Fermelectr.,2009,109:1-17.
    [318]X.L. Tian, J. Li, K. Chen, J. Han, S.L. Pan, Y.J. Wang, X.Y. Fan, F. Li, Z.X. Zhou. Nearly monodisperse ferroelectric BaTiO3 hollow nanoparticles:size-related solid evacuation in Ostwald-ripening-induced hollowing process, Cryst. Growth Des.,2010,10:3990-3995.
    [319]J.X. Fang, B.J. Ding, X.P. Song, Y. Han. How a silver dendritic mesocrystal converts to a single crystal, Appl. Phys. Lett.,2008,92(17):173120.
    [320]S. Lv, P. Li, J. Sheng, W.D. Sun. Synthesis of single-crystalline BaCO3 nanostructures with different morphologies via a simple PVP-assisted method, Mater. Lett.,2007,61:4250-4254.
    [321]J.A. Dirksen, T.A. Ring. Fundamentals of crystallization:Kinetic effects on particles size distributions and morphology, Chem. Eng. Sci.,1991,46(10):2389-2427.
    [322]M.L. Moreira, J. Andres, J.A. Varela, E. Longo. Synthesis of fine micro-sized BaZrO3 powders based on a decaoctahedron shape by the microwave-assisted hydrothermal method, Cryst. Growth Des., 2009,9(2):833-839.
    [323]V.R. Calderone, A. Testino, M.T. Buscaglia, M. Bassoli, C. Bottino, M. Viviani, V. Buscaglia, P. Nanni. Size and shape control of SrTiO3 particles grown by epitaxial self-assembly, Chem. Mater., 2006,18(6):1627-1633.
    [324]K. Kajiyoshi, N. Ishizawa, M. Yoshimura. Preparation of tetragonal barium titanate thin film on titanium metal-substrate by hydrothermal method, J. Am. Ceram. Soc.,1991,74(2):369-374.
    [325]X.H. Zhu, Z.H. Zhang, J.M. Zhu, S.H. Zhou, Z.G. Liu. Morphology and atomic-scale surface structure of barium titanate nanocrystals formed at hydrothermal conditions, J. Cryst. Growth,2009, 311:2437-2442.
    [326]M.M. Wu, R.R. Xu, S.H. Feng, L. Li, D.H. Chen, Y.J. Luo. The influence of anions on the products of BaTiO3 under hydrothermal conditions, J. Mater. Sci.,1996,31(23):6201-6205.
    [327]E.M. Ciftci, M.N. Rahaman, M. Shumsky. Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles, J. Mater. Sci.,2001,36(20):4875-4882.
    [328]Y.B. Khollam, A.S. Deshpande, A.J. Patil, H.S. Potdar, S.B. Deshpande, S.K. Date. Microwave-hydrothermal synthesis of equi-axed and submicron-sized BaTiO3 powders, Mater. Chem. Phys.,2001,71:304-308.
    [329]F. Dang, K. Kato, H, lmai, S. Wada, H. Haneda, M. Kuwabara. Oriented aggregation of BaTiO3 nanocrystals and large particles in the ultrasonic-assistant synthesis, CrystEngComm,2010,12: 3441-3444.
    [330]M.M. Lencka, R.E. Riman. Thermodynamics of the hydrothermal synthesis of Calcium titanate with reference to other alkaline-earth titanates, Chem. Mater,1995,7(1):18-25.
    [331]M.M. Lencka, A. Anderko, R.E. Riman. Hydrothermal precipitation of lead zirconate solid solution: Thermodynamic modeling and experimental synthesis, J. Am. Ceram. Soc.,1995,78(10):2609-2618.
    [332]S.K. Lee, T.J. Park, G.J. Choi, K.K. Koo, S.W. Kim. Effect of KOH/BaTi and Ba/Ti ratios on synthesis of BaTiO3 powder by coprecipitation/hydrothermal reaction. Mater. Chem. Phys.,2003,82: 742-749.
    [333]S.K. Lee, G.J. Choi, U.Y. Hwang, K.K. Koo, T.J. Park. Effect of molar ratio of KOH to Ti-isopropoxide on the formation of BaTiO3 powders by hydrothermal method, Mater. Lett.,2003,57: 2201-2207.
    [334]H. Tokudome, M. Miyauchi. Electrochromism of titanate-based nanotubes, Angew. Chem. Int. Ed., 2005,44(13):1974-1977.
    [335]Y.D. Hou, H.R. Zheng, Z.X. Ding, L. Wu. Effects of sintering temperature on physicochemical properties and photocatalytic activity of titanate nanotubes modified with sulfuric acid. Powder Technol.,2011,214 (3):451-457.
    [336]T. Kubo, H. Nagata, M. Takeuchi, M. Matsuoka, M. Anpo, A. Nakahira. Structural evaluation and photocatalytic properties of Pt-supported titanate nanotubes, Res. Chem. Intermed.,2008,34(4): 339-346.
    [337]Y. lde, M. Matsuoka, M. Ogawa. Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate, J. Am. Chem. Soc.,2010,132(47):16762-16764.
    [338]S. Uchida, R. Chiba, M. Tomiha, N. Masaki, M. Shirai. Application of titania nanotubes to a dye-sensitized solar cell, Electrochemistry,2002,70(6):418-420.
    [339]M. Adachi, Y. Murata, I. Okada, S. Yoshikawa. Formation of titania nanotubes and application for dye-sensitized solar cells, J, Electrochem. Soc.,2003,150(8):G488-G493.
    [340]A. Riss, M. J. Elser, J. Bernardi, O. Diwald. Stability and photoelectronic properties of layered titanate nanostructures, J. Am. Chem.Soc.,2009,131(17):6198-6206.
    [341]Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, H.F. Xu. Large oriented arrays and continuous films of TiO2-based nanotubes, J. Am. Chem. Soc.,2003,125(41):12384-12385.
    [342]T. Kubo, A. Nakahira, Y. Yamasaki. Fabrication of mesoporous bulk composed of titanate nanotubes by hydrothermal hot-pressing technique, J. Mater. Res.,2007,22(5):1286-1291.
    [343]T. Kasuga, M. Hiramatsu, A. Hoson, T.Sekino, K. Niihara. Formation of titanium oxide nanotube, Langmuir,1998,14(12):3160-3163.
    [344]B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang, N. Wang. Formation mechanism of TiO2 nanotubes, Appl. Phys. Lett.,2003,82(2):281-283.
    [345]C. C. Tsai, H. Teng. Structural features of nanotubes sybthesized from NaOH treatment on TiO2 with different post-treatments, Chem. Mater.,2006,18(2):367-373.
    [346]L. M. Sikhwivhilu, S. S. Ray, N. J. Coville. Influence of bases on hydrothermal synthesis of titanate nanostructures, Appl. Phys. A,2009,94(4):963-973.
    [347]Z. V. Saponjic, N. M. Dimitrijevic, D. M. Tiede, A. J. Goshe, X. B. Zuo, L. X. Chen, A. S. Barnard, P. Zapol, L. Curtiss, T. Rajh. Shaping nanometer-scale architecture through surface chemistry, Adv. Mater.,2005,17(8):965-971.
    [348]D. V. Bavykin, V. N. Parmon, A. A. Lapkin, F. C. Walsh. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes, J. Mater. Chem.,2004,14(22):3370-3377.
    [349]E.K. Yihainen, M.R. Nunes, A.J. Silvestre, O.C. Monteiro. Synthesis of titanate nanostructures using amorphous precursor material and their adsorption/photocatalytic properties, J. Mater. Sci.,2012, 47(10):4305-4312.
    [350]A.H. Lu, E.L. Salabas, F. Schuth. Magnetic nanoparticles:Synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed.,2007,46(8):1222-1224.
    [351]Y. Yin, A.P. Alivisatos. Colloidal nanocrystal synthesis and the organic-inorganic interface, Nature, 2005,437(7059):664-670.
    [352]Y.N. Xia, Y.J. Xiong, B. Lim, S.E. Skrabalak. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?, Angew. Chem. Int. Ed.,2009,48:60-103.
    [353]C.T. Dinh, T.D. Nguyen, F. Kleitz, T.O. Do. Shape-Controlled synthesis of highly crystalline titania nanocrystals, ACS Nano.,2009,3(11):3737-3743.
    [354]W.J. Dong, B.J. Li, Y. Li, X.B. Wang, L.N. An, C.R. Li, B.Y. Chen, G. Wang, Z. Shi. General approach to well-defined perovskite MTiO3 (M=Ba, Sr, Ca, and Mg) Nanostructures, J. Phys. Chem. C, 2011,115:3918-3925.
    [355]N.Z. Bao, L.M. Shen, G. Srinivasan, K. Yanagisawa, A. Gupta. Shape-controlled monocrystalline ferroelectric barium titanate nanostructures:From nanotubes and nanowires to ordered nanostructures, J. Phys. Chem. C,2008,112(23):8634-8642.
    [356]G.H. Du, Q. Chen, P.D. Han, Y. Yu, L.M. Peng. Potassium titanate nanowires:structure, growth, and optical properties, Phys. Rev. B,2003,67(3):1-7.
    [357]Y. Suzuki, S. Yoshikawa. Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method, J. Mater. Res.,2004,19(4):982-985.
    [358]Y. Su, M. L. Balmer, B. C. Bunker. Raman spectroscopic studies of silicotitanates, J. Phys. Chem. B, 2000,104 (34):8160-8169.
    [359]J. C. Parker, R. W. Siegel. Calibration of the raman-spectrum to the oxygen stoichiometry of nanophase TiO2, Appl. Phys. Lett.,1990,57(9):943-945.
    [360]S. Nosheen, F. S. Galasso, S. L. Suib. Role of Ti-O Bonds in phase transitions of TiO2, Langmuir, 2009,25(13):7623-7630.
    [361]T.X. Wu, G.M. Liu, J.C. Zhao, H. Hidaka, N. Serpone. Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions, J. Phys. Chem. B,1998,102(30):5845-5851.
    [362]C. Zhang, Y.F. Zhu. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts, Chem. Mater,2005,17(13):3537-3545.
    [363]K. V. Baiju, S. Shukla, K. S. Sandhya, J. James, K. G. K. Warrier. Photocatalytic activity of soi-gel-derived nanocrystalline titania, J. Phys. Chem. C,2007,111 (21):7621-7622.
    [364]G. Palmisano, V. Augugliaro, M. Pagliaro, L. Palmisano. Photocatalysis:a promising route for 21st century organic chemistry, Chem. Commun.,2007, (33):3425-3437.
    [365]J. Moon, S. Suvaci, T. Li, S.A. Costantino, J.H. Adair. Phase development of barium titanate from chemically modified-amorphous titanium (hydrous) oxide precursor, J. Eur. Ceram. Soc.,2002,22(6): 809-815.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700