基于PZT阻抗法的混凝土强度检测试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,强度是混凝土最主要的指标之一,加强混凝土质量监控和检测,保证混凝土质量,是建筑工程管理中的重要环节。然而,由于传统的立方块抗压强度试验的局限性,人们需要不断研究在原位检测条件下混凝土强度的非破损检测新方法。同时,为了适应当今快速施工的需要,利用早期强度预测混凝土后期强度也成为国内外工程学术界关注的重要课题。
     本文首先概述了传统混凝土抗压强度检测方法的研究状况,并指出它们的不足和难以解决的问题,介绍了近年来混凝土抗压强度无损检测的新方法,论述了各种方法的国内外研究进展。随之介绍了PZT阻抗法用于结构强度检测的基本理论,论文最后给出了基于PZT阻抗法的28天龄期内混凝土立方块抗压强度检测试验及其分析结果,验证了PZT阻抗法应用于混凝土强度检测的可行性。
     试验结果表明:在混凝土28天龄期内,PZT电导纳频谱曲线的峰值出现明显的漂移;随着混凝土龄期的增长,压电导纳曲线逐渐向峰值频率增大的方向移动;在混凝土8天龄期内,压电导纳曲线移动幅度较大,8天以后移动幅度相对较小。混凝土试块28天龄期内压电导纳的变化规律与破坏试验得到的混凝土立方块抗压强度的变化规律是一致的。分别利用导纳的实部和虚部建立了量化评价指标—均方差根指数对混凝土龄期内压电导纳进行分析,分析结果也呈现出与混凝土抗压强度一致的变化趋势。
     作为一种新的检测方法,压电阻抗法还处于发展阶段,各项研究成果还不成熟,今后还需对压电阻抗法在其他类型混凝土以及在不同养护条件下的应用作更深入的研究。此外对将PZT埋入混凝土内部进行混凝土初凝前的强度监测作进一步的研究。
As known to all, the strength is one of the most important indicators of concrete. To strengthen concrete quality control and testing becomes an important part of building management. However, because of the limitations of the traditional cubes compression strength test, people continue to study on situ detection of structural concrete strength under different conditions using nondestructive testing method. Meanwhile, in order to meet the current needs of the rapid construction, predicting concrete late strength with early strength also becomes an important topic in academic fields.
     This thesis first outlines the research of the traditional detection methods of the concrete compression strength, points out their deficiencies and the issue difficult to resolve, then introduces new methods of nondestructive testing of concrete compression strength, discusses the research progress of various methods. The basic theory of PZT impedance method for the detection of structural strength is shown followed. Finally, based on the experimental results and analysis of the concrete cubes compression strength testing during 28 days using PZT impedance method, the effectiveness of PZT impedance method applying to the concrete strength testing is verified.
     Test results show that: the peak of PZT electric admittance spectrum curve turns out apparent drift during 28 days period. With the growth of age, piezoelectric admittance curve gradually moves on the direction of the peak frequency increased. Compared to the changes of the compression strength of concrete cubes in experiment, they have consistency, that is, the curve grows rapid before eight days, and then relative ease after eight days. When another parameter RMSD(root mean square deviation) is used to value the admittance of the real and imaginary parts, it also shows the same trend with the strength.
     As a new detection method, piezoelectric impedance method is still in the development stage, and the researches are not ripe yet. The application of piezoelectric impedance method in other types of concrete and under different curing conditions needs more in-depth research in the future. In addition, the monitoring of concrete strength before the initial setting needs further study with the PZT embedded in the concrete.
引文
[1]岩崎训明.日本土木工程手册,混凝土(第三版).滕家禄译.北京:中国铁道出版社, 1983. 75-79
    [2]万朝均,李利.现代混凝土技术状况及展望.建筑技术开发. 1998, 28(2): 43-46
    [3]武欣慧.基于人工神经网络的普通混凝土强度预测的研究[硕士学位论文].呼和浩特:内蒙古农业大学, 2005
    [4]国家建筑工程质量监督检验中心编.混凝土无损检测技术(第一版).北京:中国建材工业出版社. 1996. 30-50
    [5]陈建伟.混凝土强度现场检测与评定方法研究[硕士学位论文].唐山:河北理工大学, 2006
    [6] J.H. Bungey. The Testing of Concrete in Structures. Senior Lecture in Civil Engineering. University of Liverpool. Surrey University Press. 1989. 46
    [7] NJ. Carino. Nondestructive Testing of Concrete: History and Challenges. Concrete Institute, Detroit, MI, 1994. 623-678
    [8]李珂.商品混凝土强度非破损检测方法的研究[硕士学位论文].郑州:郑州大学, 2002
    [9]解咏平.抗拉法检测混凝土强度新技术试验研究[硕士学位论文].唐山:河北理工大学, 2006
    [10] Mori K, Spagnoli A. A new non-contacting non-destructive testing method for defect detection in concrete. NDT&E International, 2002(35): 399-406
    [11] Gucunski N, Woods R D. Inversion of rayleigh wave dispersion curve for SASW test, 5th Int. Conf. on Soil Dyn. and Earthquake Engineering. 1991. 127-138
    [12] Daniels D J. Introduction to subsurface radar. IEE proceeding, 1998, 133(4): 278-326
    [13]谷伟,孙逸增,刘斌.高强混凝土回弹仪测强曲线研究.沈阳建筑工程学院学报,2002, 18(2): 91-93.
    [14]缪群,李增选.高强混凝土的超声特性及检测标准问题探讨.混凝土, 2000, 11: 39-41
    [15]阎继红,胡云昌,林志伸.回弹法和超声回弹综合法判定高温后混凝土抗压强度的试验研究.工业建筑, 2001, 31(12): 46-47,82.
    [16]陈丽红,杨波,张科强.高温后混凝土强度的无损检测.混凝土, 2001, 1: 35-36.
    [17]吕天启,赵国藩,林志申等.应用回弹超声法评定火灾高温静置混凝土抗压强度的试验研究.混凝土, 2002, 8: 21-23,32.
    [18]申鲁.非破损法检测潮湿混凝土抗压强度试验研究[硕士学位论文].郑州:郑州大学, 2005
    [19] Liang C, Sun F P, Rogers C A. An impedance method for dynamic analysis of active material system. IEEE Transactions of the ASME, 1994, 116(1): 120-128
    [20] Liang C, Sun F P, Rogers C A. Coupled electromechanical analysis of adaptive material system-Determination of the actuator power consumption and system energy transfer. Journal of Intelligent Material Systems and Structures, 1994, 5(1): 12-20
    [21] F. P. Sun, C. Liang and C. A. Rogers. Structural modal analysis using collocated piezoelectric actuator/sensors-an electromechanical approach. Proceedings of the North American Conference on Smart Materials and Structures, 1994, 2: 13-18
    [22] Rogers C A, Lalande F. Solid-state active sensing for in-situ health monitoring. Proceedings, Society for Machinery Failure Prevention Technology Showcase, Mobile, AL, 1996, 4: 22-26
    [23] Ayres J W, Lalande F, Chaudhry Z and Rogers C A. Qualitative health monitoring of a steel bridge structure via piezoelectric actuator/sensor patches. Proceedings, SPIE Nondestructive Evaluation Techniques for Aging Infrastructure & Manufacturing, Scottsdale, AZ, 1996, 2946: 211-218
    [24] Tseng K K and Naidu A S K. Non-parametric damage detection and characterization using smart piezoelectric material. Journal of Smart Materials and Structures, 2002, 11: 317-329
    [25] Soh C K et al. Performance of smart piezoceramic patches in health monitoring of a RC bridge. Smart Materials and Structures, 2000, 9(4): 533-542
    [26] K. K-H. Tseng and A. S. K. Naidu. Non-parametric damage detection and characterization using smart piezoelectric material. Smart Materials and Structures, 2002, 11(3): 317-329
    [27] K. K-H. Tseng. Health monitoring of concrete structures subjected to environmental attacks. Proceedings of SPIE, 2002, 4696, 168-175
    [28] Woon C E and Mitchell L D. Variations in structural dynamic characteristics caused by changes in ambient temperature: Part I. Experimental. Proceedings, 14thInternational Modal Analysis Conference,Dearborn, MI, 12-l5 February, SEM, 1996. 963-971
    [29] Woon C E and Mitchell L D. Variations in structural dynamic characteristics caused by changes in ambient temperature: Part II. Analytical. Proceedings, 14thInternational Modal Analysis Conference, Dearborn, MI, 12-l5 February SEM, 1996. 972-980
    [30] Krishnamurthy K, Lalande F and Rogers C A. Temperature effects on piezoelectric elements used as collocated actuator/sensors. Proceedings, SPIE North American Conference on Smart Structures and Materials, San Diego, CA, 1996, SP publishing, Bellingham, WA, 1996, 2441: 276-286.
    [31] G. Park, K. Kabeya, H. H. Cudney et al. Inman. Removing effects of temperature changes from piezoelectric impedance-based qualitative health monitoring. Proceedings, SPIE Conference on Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, San Diego, CA, March, 1998,3330: 103-114
    [32] S. Bhalla and C. K. Soh. Structural health monitoring by piezo-impedance transducers I: Modeling. Journal of Aerospace Engineering, 2004, 17(4): 154-165
    [33] S. Bhalla and C. K. Soh. Structural health monitoring by piezo-impedance transducers II: Applications. Journal of Aerospace Engineering, 2004, 17(4): 166-175
    [34] S. Bhalla et all. Structural impedance based damage diagnosis by piezo-transducers. Earthquake Engineering and Structural Dynamics, 2003, 32: 1897-1916
    [35] G.. Park, H. H. Cudney and D. J. Inman. An integrated health monitoring technique using structural impedance sensors. Journal of Intelligent Material Systems and Structures, 2000, 11(6): 802-812
    [36] V. Jr. Lopes, G. Park and H. H. Cudney et al. Impedance based structural health monitoring with artificial neural network. Journal of Intelligent Material Systems and Structures, 2000, 11(3): 206-214
    [37]石立华,陶宝祺.压电智能结构的实验研究.南京航空航天大学学报, 1996, 28(4): 457-462
    [38]熊先锋,杨光瑜,杨拥民等.压电阻抗技术用于结构健康诊断的一种方法.传感器技术, 2003, 22(10): 62-64
    [39]孙明清,李卓球,侯作富.压电材料在土木工程结构健康检测中的应用.混凝土, 2003, 10(3): 22-24
    [40]周明华.对混凝土非破损检测方法的应用述评.施工技术. 2002, 18(4): 24-25
    [41]曹波,王宗勤.混凝土强度的非破损检测及操作要点.科技情报开发与经济. 2000, 10(6): 85-86
    [42]张彩霞.回弹法检测混凝土抗压强度实际应用分析.山西建筑. 2002, 28(1): 20-21
    [43]李为杜.混凝土无损检测技术(第一版).上海:同济大学出版社, 1989. 97-103
    [44]王宝勋.浅谈结构混凝土强度检测中的两个问题.工程质量. 2002, 4: 30-37
    [45]赵考重,贾留东,李安起等.混凝土强度检测方法的探讨.山东建筑工程学院学报. 1996, 11(2): 14-17
    [46]程朝霞,徐银芳,王毅翔.超声波检测混凝土强度方法的探讨.华中科技大学学报. 2003, 12(4): 95-98
    [47]赵冬霞.混凝土强度检测方法比较与应用.工程质量. 2002(12): 16-17
    [48]刘振江,王琳贤.结构混凝土强度检测技术的现状与展望.山西建筑. 2002, 28(12): 21-22
    [49]阿不利孜?徐.浅谈钻芯法检测混凝土强度的方法.西部探矿工程. 2002(001).
    [50]刘丽君.钻芯法检测混凝土抗压强度在建设工程中的探讨和应用.四川建筑科学研究. 2001, 27(4): 68-70
    [51]邵振东.钻芯法检测结构混凝土强度的若干问题探讨.安徽建筑. 1998: 24-25
    [52]朱永涛,徐阳.混凝土强度无损检测技术.南水北调与水利科技. 2002, 23(2): 37-39
    [53]马铭彬.拔出法在混凝土结构非破损检测中的应用.广西关系工程学院. 2003, 14(4): 35-38
    [54]张仁瑜.后装拔出法检测混凝土强度的试验研究.建筑技术. 1992, 1: 43-48
    [55]金南国,金贤玉.胶粘拔出法检测混凝土强度新技术的研究.建筑技术. 2003, 34(1): 58-59
    [56]陈启昕.长龄期混凝土强度非破损检测研究[硕士学位论文].唐山:河海大学, 2005
    [57]张志峰.采用超声回弹法检测混凝土构件强度.公路. 1998, 9: 48-50
    [58]张荣成,邱平.高强混凝土回弹法及超升回弹综合法的测强技术研究.施工技术. 1998, 11: 30-32
    [59]陈强.超声—回弹综合法强度检测应注意的问题.河南建材. 2002, 3: 33-34
    [60]李萌.混凝土强度质量的快速预测.广西土木建筑, 1997, 22(4): 177-179
    [61]韩素芳,麦坤良. C40级普通混凝土试验研究和应用.广东建筑施工技术交流会论文集,北京:中国建筑工业出版社, 2002. 111-117
    [62]刘俊岩,周波.新伴混凝土质量检测技术的应用.济南大学学报, 2002, 16(3): 251-255
    [63]高明道.利用多元相关分析预测混凝土强度.港口工程, 1992, 3: 29-33
    [64]司马玉洲,王爱兰.采用超声回弹法对混凝土强度的早期预测.施工技术, 2002, 31(4): 26-28
    [65]方光秀,李发千,郑文忠.混凝土成熟度新论及新成熟度准则运用.低温建筑技术, 2002, 2: 2-7
    [66]耳东.’94范堡罗航展上的材料.航空制造工程. 1995, 5: 29-30
    [67]田莳,徐永利.智能材料系统和结构中的压电材料.功能材料. 1996, 27(2): 103-109
    [68] Newnham R E, Ruschau G R. Smart Electroceramics. J. Am. Ceram. Soc. 1991, 74(3): 463-479
    [69] Rogers C A. Intelligent Materials-The Dawn of a New Materials Age. J Intll Mater Syst Struct, 1993, 4(1): 4-12
    [70]郭琳,张伟,魏建军.压电材料在土木结构损伤检测中的应用.现代物理知识. 2006, 18(3): 40-41
    [71]徐茂华.结构损伤检测PZT阻抗法的理论与试验研究[硕士学位论文].武汉:华中科技大学, 2005
    [72]李传兵,廖昌荣,张玉璘等.压电智能结构的研究进展.压电与声光, 2002, 24(1): 42-46
    [73]刘连新.混凝土强度与龄期的发展系数研究.粉煤灰, 2001, 20(4): 14-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700