采用弹性基底的磁电复合结构有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁电复合材料可以实现磁能与电能之间的相互转换,能够应用于磁场检测、微波泄漏监测、电磁场能量转换等领域。与颗粒混合结构相比层合结构具有更高的磁电电压转换系数,本课题组提出将片状磁致伸缩材料和压电材料复合到弹性基底上,构成一种采用弹性基底的三相磁电复合结构,相比磁致伸缩材料和压电材料层合的两相磁电复合结构,在谐振时该结构具用更高的磁电电压转换系数。针对这种三相复合结构,本文采用有限元方法,分析采用等截面弹性基底和采用尖楔形弹性基底的两种磁电复合结构的磁电特性。主要研究工作如下:
     1.应用有限元方法对压电问题的分析能力以及磁致伸缩-压电类比关系,分析采用基底复合结构的磁电效应。通过输入几何模型、选定单元类型、设置材料参数、划分网格、施加载荷和边界条件等步骤,建立了两种磁电复合结构的有限元分析模型。
     2.对两种采用弹性基底的磁电复合结构进行有限元分析,研究复合结构参数改变对结构磁电特性的影响,并在磁电转换电压系数最大化的前提下对结构进行了优化设计。对于采用等截面基底的复合结构,分析了压电材料长度、基底长度、基底材料机械品质因数以及复合结构整体宽度几个因素,对复合结构发生一阶纵向谐振时的磁电性能的影响;对于采用尖楔形基底的复合结构,分析了压电材料的粘贴位置、压电材料的长度、宽度以及基底长/宽比几个因素,对复合结构发生纵向谐振时的磁电性能的影响。对比两种结构在谐振时产生的磁电转换电压,验证采用尖楔形基底的复合结构聚能效果。并分析了由于弯曲谐振模态的存在,两种复合结构磁电转换电压随激励信号频率变化的曲线都存在多磁电转换电压峰值点的特性。
     3.制备了采用等截面弹性基底和尖楔形弹性基底的磁电复合结构器件,构建磁电效应实验系统,在实验系统上对器件的磁电电压转换系数进行实测。有限元分析结果与实验结果对比表明,有限元分析可以较准确地预测结构的谐振频率和磁电转换电压的变化趋势,得到的优化结构具有更高的磁电电压转换系数,可以为类似结构的设计和优化提供依据。
Magnetoelectric composites can interconvert energies between magnetic field and electric field, and can be applied in magnetic field detection, microwave leak monitoring and electromagnetic field energy conversion. The laminate composites have higher magnetoelectric voltage coefficients than the particle composites. The magnetoelectric composite of three phases by bonding the laminated magnetostrictive and piezoelectric materials onto an elastic substrate has been proposed by our research group. Compared with the two-phase magnetostrictive-piezoelectric laminate composite, it has higher magnetoelectric voltage coefficient at resonance. In this paper, the magnetoelectric performances of two composites are studied by finite element analysis, one with constant section substrate and another with sharp wedge-shaped substrate. The main work is as follows:
     1. The finite element analysis model of magnetostrictive effect is established in a way analogy to that of piezoelectric effect for the finite element analysis of the magnetoelectric effect of the magnetoelectric composite with elastic substrate. The finite element models of these two kinds of magnetoelectric composites are established by inputting geometric model, selecting element types, meshing solid model, applying loads and applying boundary conditions.
     2. These two kinds of magnetoelectric composites are analyzed by finite element method. The influences of the composites’parameters’variation on the magnetoelectric characteristics of the composites are studied. The composites are optimized in terms of maximizing the magnetoelectric voltage coefficients. For the magnetoelectric composite with constant section substrate, the influences of the length of the piezoelectric material, the length of the substrate, the mechanical quality factor of the substrate, and the width of the composite on the magnetoelectric characteristics of the composites are studied, at first-order longitudinal resonance. For the magnetoelectric composite with sharp wedge-shaped substrate, the influences of the position, the length and the width of the piezoelectric material, and the bottom width of the substrate on the magnetoelectric characteristics of the composites are studied, at longitudinal resonance. Compared with the constant section substrate composite, the energy-concentrated effect of the sharp wedge-shaped substrate composite is validated. Because of the flexural resonance, these two kinds of composites’magnetoelectric voltages varying with the frequency of the driving signal both have multiple peaks.
     3. The devices of these two kinds of magnetoelectric composites are prepared. And the magnetoelectric response measure system is established. The magnetoelectric performances of the devices are measured. Compared with the experimental results, finite element analysis can predict the harmonic frequency and the variation of the magnetoelectric voltage of the composite exactly. The optimal composite has higher magnetoelectric voltage coefficient, which is optimized by finite element analysis. The finite element method provides guidance for designing and optimizing the similar composites.
引文
[1] Shuxiang Dong, John G. Bai, J. Zhai, et al. Circumferential-mode, quasi-ring-type, magnetoelectric laminate composite-a highly sensitive electric current and/or vortex magnetic field sensor[J]. Applied Physics Letters, 2005, 86, 182506
    [2] D. A. Filippov, M. I. Bichurin, C. W. Nan, et al. Magnetoelectric effect in hybrid magnetostrictive-piezoelectric composites in the electromechanical resonance region[J]. Journal of applied physics, 2005, 97, 113910
    [3] P. Curie. Sur la symmetric dans les phenomenes physiques[J]. J.physiques 3e series, 1894, 3: 393
    [4] L. D. Landau, E. M. Lifshitz. Electrodynamics of continuous media[M]. American Juornal of Physics, 1961, 29(9): 647-648
    [5] D. N. Astrov. Magnetoelectric effect in chromium oxide[J]. Soviet Physics JETP, 13(4): 729-733
    [6] G. T. Rado, V. J. Folen. Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains[J]. Physical Review Letters, 1961, 7: 310
    [7] Manfred Fiebig. Revival of the magnetoelectric effect[J]. Journal of Physics D: Applied Physics, 2005, 38: 123-152
    [8] Tellegen B D H. Circuit theory: foundations and classical contributions[J]. Philips Research Reports, 1948, 3: 81
    [9] Van Suchtelen J. Product properties: a new application of composite materials[J]. Philips Research Reports, 1972, 27: 28-37
    [10]李言荣,恽正中.电子材料导论[M].北京:清华大学出版社, 2001,第一版
    [11]宛德福,罗世华.磁性物理[M].北京:电子工业出版社, 1987,第一版
    [12]张福学.现代压电学(上册)[M].北京:科学出版社, 2001,第一版
    [13] J. Van Den Boomgaard, A M T G. Van Run, J. Van Sunchtelen. Ferroelectrics: Magnetoelectricity in piezoelectric-magnetostrictive composites[J]. Philips Research Reports, 1976, 10: 295-298
    [14] J. Van Den Boomgaard, R.A.J.Born. A sintered magnetoelectric composite material BaTiO3-Ni(Co, Mn)Fe2O4[J]. Journal of Materials Science, 1978, 13: 1538-1548
    [15] Nan C W, Liu L, Cai N, et al. A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer[J]. Applied Physics Letters, 2002, 81: 3831-3833
    [16] Nan C W, Li M, Feng X Q, et al. Possible giant magnetoelectric effect of ferromagnetic rare-earth-iron-alloys-filled ferroelectric polymers[J]. Applied Physics Letters, 2001, 78(17): 2527-2529
    [17]施展,南策文.铁电/铁磁三相颗粒复合材料的磁电性能计算[J].物理学报, 2004, 53(8): 2766-2770
    [18] Cai N, Nan C W, Zhai J Y, et al. Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer[J]. Applied Physics Letters, 2004, 84(18): 3516-3518
    [19]蔡宁,翟俊宜,施展等. PZT/Terfenol-D/PVDF层状复合磁电材料谐振特性[J].稀有金属材料与工程, 2005, 34(5): 777-780
    [20]张辉,杨俊,方亮等.铁电-铁磁复合材料的研究现状及发展趋势[J].材料导报, 2003, 17(6): 64
    [21]万红,吴学忠,刘希从.层状复合材料磁电效应的数值分析[J].功能材料, 2005, 4(36): 509-512
    [22]万红,沈仁发,吴学忠.对称磁电层合板磁电转换效应理论研究[J].物理学报, 2005, 54(3): 1426-1429
    [23] Ryu J, Carazo A V, Uchino K, et al. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites[J]. Japanese Journal of applied physics, 2001, 40: 4948-4951
    [24] H. Yu, M. Zeng, Y. Wang, et al. Magnetoelectric resonance-bandwidth broadening of Terfenol-D/epoxy-Pb(Zr,Ti)O3 bilayers in parallel and series connections[J]. Applied Physics Letters, 2005, 86, 032508
    [25] Liu G, Nan C W, Cai N, et al. Calculations of giant magnetoelectric effect in multiferroic composites of rare-earth-iron alloys and PZT by finite element method[J]. International Journal of Solids and Structures, 2004, 41: 4423-4434
    [26] M. I. Bichurin, D. A. Filippov, V. M. Petrov, et al. Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites[J]. Physical Review B, 2003, 68, 132408
    [27] Y. K. Fetisov, K.E.Kamentsev, and A.Y.Ostashchenko. Magnetoelectric effect in multilayer ferrite-piesoelectric structures[J]. Journal of Magnetism and Magnetic Materials, 272-276 (2004) 2064-2066
    [28] J. G. Wan, J.-M. Liu, H. L. W. Chand, et al. Giant magnetoelectric effect of a hybrid of magnetostrictive and piezoelectric composites[J]. Japanese Journal of applied physics, 93(12): 9916-9919
    [29] Kwang-Ho Shin, Mitsuteru Inoue, Ken-Ichi Arai. Elastically coupled magneto-electric elements with highly magnetostrictive amorphous films and PZT substrates[J]. Smart Materials and Structure, 2000, 9: 357-361
    [30] Shuxiang Dong, Jiefang Li, Dwight Viehland. Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: Experiments[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2004, 51(7): 794-799
    [31] Shuxiang Dong, Jie-Fang Li, Dwight Viehland. Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: Theory[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2003, 50(10): 1253-1261
    [32] D. R. Tilley and J. F. Scott. Frequency dependence of magnetoelectric phenomena in BaMnF4[J]. Physical Review B, 1982, 25: 3251-3260
    [33] Shuxiang Dong, Jinrong Cheng, J. F. Li, et al. Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O3 under resonant drive[J]. Applied Physics Letters, 2003, 83(23): 4812-4814
    [34] Shuxiang Dong, Jie-Fang Li, Dwight Viehland. Magnetoelectric coupling, efficiency, and voltage gain effect in piezoelectric-piezomagnetic laminate composites[J]. Journal of Materials Science, 2006, 41(1): 97-106
    [35] U. Laletsin, N. Padubnaya, G. Srinivasan, et al. Frequency dependence of magnetoelectric interactions in layered structures of ferromagnetic alloys and piezoelectric oxides[J]. Applied Physics A, 2004, 78: 33-36
    [36] Zengping Xing, Shuxiang Dong, Junyi Zhai, et al. Resonant bending mode of Terfenol-D/steel/Pb(Zr,Ti)O3 magnetoelectric laminate composites[J]. Applied Physics Letters, 2006, 89, 112911
    [37] Ping Li, Yumei Wen, Leixiang Bian. Enhanced magnetoelectric effects in composite of piezoelectric ceramics, rare-earth iron alloys, and ultrasonic horn[J]. Applied Physics Letters, 2007, 90, 022503
    [38]卞雷祥,文玉梅,李平等. GMM, PZT和超声变幅杆复合结构磁电换能器研究[J].传感技术学报, 2007, 20(8): 1742-1746
    [39]卞雷祥,文玉梅,李平等. GMM, PZT和弹性基板复合磁电耦合效应研究[J].微纳电子技术, 2007,第7/8期: 43-55
    [40] G. Harshe, J. P. Dougherty, R. E. Newnham. Theoretical modeling of multilayer magnetoelectric composites[J]. International Journal of Applied Electromagnetics in Materials, 1993, 4(2): 145-159
    [41] M. I. Bichurin, V. M. Petrov, G. Srinivasan. Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers[J]. Physical Review B, 2003, 68: 054402
    [42] Nan C W, Li M, Huang J H. Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers[J]. Physical Review B, 2001, 63, 144415
    [43] Yang Fan, Wen Yumei, Li Ping, et al. Resonant magnetoelectric response of magnetostrictive/piezoelectric laminate composite in consideration of losses[J]. Sensors and Actuators A, 2008, 141: 129-135
    [44] Liu Y X, Wan J G, Liu J M, et al. Numerical modeling of magnetoelectric effect in a composite structure[J]. Journal of applied physics, 2003, 94: 5111-5117
    [45] Liu Y X, Zeng M, Wang Y, et al. Numerical modeling of magnetoelectric effect in a novel composite structure[J]. Ceramics International, 2004, 30: 1999-2003
    [46]万红,谢立强,吴学忠等. TbDyFe/PZT层状复合材料的磁电效应研究[J].物理学报, 2005, 54(8): 3872-3877
    [47]周剑平,施展,刘刚等.铁电铁磁1-3型结构复合材料磁电性能分析[J].物理学报, 2006, 55(7): 3766-3771
    [48]王成勖,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社, 1997年,第2版
    [49] T.H. O’Dell. A new class of materials[J]. Electronics and Power, 1965, 11: 266
    [50]胡渊,龚国斌,曹东升等.压电/磁致伸缩/环氧树脂层合复合材料的磁电效应及其频响特性[J].复合材料学报, 2007, 24(4): 29-33
    [51] Jungho Ryu, Shashank Priya, Kenji Uchino. Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials[J]. Journal of Electroceramics. 2002, 8, 2: 107-119
    [52] Junyi Zhai, Zengping Xing, Shuxiang Dong, et al. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature[J]. Applied Physics Letters, 2006, 88(6): 062510
    [53] H. W. Katz. Solid state magnetic and dielectric devices[M]. John Wiley and Sons, New York, 1959, 172-197
    [54] Andrey Bayrashev, William P. Robbins, Babak Ziaie. Low frequency wireless powering of microsystems using piezoelectric–magnetostrictive laminate composites[J]. Sensors and Actuators A, 2004, 114: 244-249
    [55] J. K. Huang, Robert C. O’Handley, David Bono. New, high-sensitivity, hybrid magnetostrictive/electroactive magnetic field sensors[C]. Smart Sensor Technology and Measurement Systems, Proceedings of the SPIE, 2003, 5050: 229-237
    [56]宛德福,罗世华.磁性物理[M].北京:电子工业出版社, 1987年,第一版
    [57]钟文定.铁磁学[M].北京:科学出版社, 1987年,第一版
    [58]北京大学物理系《铁磁学》编写组.铁磁学[M].北京:科学出版社, 1976年,第一版
    [59]贺西平.稀土超磁致伸缩换能器[M].北京:科学出版社, 2006年,第一版
    [60] A. E. Clark, H. Belson. Gaint room-temperature magnetostrictions in TbFe2 and DyFe2[J]. Physical Review B, 1972, 5: 3642-3648
    [61] A. E. Clark, R. Abbundi and W. R. Gillmor. Magnetzation and madnetic anisotropy of TbFe2, DyFe2, Tb0.27Dy0.73Fe2 and TmFe2[J]. IEEE Transaction on Magnetics, 1978, Volume Mag-14, No. 5: 542-544
    [62] A. E. Clark. Magnetostrictive rare earth-Fe2 compounds, Ferro-magnemtic Materials[M]. Wohifarth E P, North-Holland Publishing Co., 1980, 531-567
    [63]王博文.超磁致伸缩材料制备与器件设计[M].北京:冶金工业出版社, 2003年,第一版
    [64]夏春林,丁凡,路币祥.超磁致伸缩材料驱动器实验研究[J].电工技术学报, 1999, 14(4): 14-16
    [65]张福学.压电铁电应用[M].北京:国防工业出版社, 1987,第一版
    [66]张福学,王丽坤.现代压电学(中册)[M].北京:科学出版社, 2001,第一版
    [67]游达,董玉林.陶瓷/聚合物压电复合材料的国内外概况和应用展望[J].新材料产业, 2002, 9: 25-29
    [68]陈俊彦,王余君译.压电陶瓷材料[M].北京:科学出版社, 1982,第一版
    [69]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵(修订版)[M].北京:北京大学出版社, 2005
    [70]杨帆,文玉梅,李平等.考虑损耗的/压电层合材料谐振磁电响应分析[J].物理学报, 2007, 56(6): 3539-3545
    [71]林仲茂.超声变幅杆的原理和设计[M].北京:科学出版社, 1987,第一版
    [72] Shirley C. Tsai, T. Kuan Tseng, Y. F. Chou. High frequency silicon-based ultrasonic nozzles[C]. 2001 IEEE Ultrasonics Symposium, 637-640
    [73]王富耻,张朝晖. ANSYS10.0有限元分析理论与工程应用[M].北京:电子工业出版社, 2006,第一版
    [74]刘坤. ANSYS有限元方法精解[M].北京:国防工业出版社, 2005年,第一版
    [75] Allik. H, Hughes, J. R. Finite element method for piezoelectric vibration[J]. International Journal Numerical Methods of Engineering, 1970, 2: 151-157
    [76] ANSYS User’s Manual(Rev 10.0)[M]
    [77] John A. Hossack, Gordon Hayward. Finite-element analysis of 1-3 composite transducers[J]. IEEE Transactions on ultrasonics, Ferroelectrics and frequency control, 1991, 38(6): 618-629
    [78]莫喜平,朱厚卿,刘建国等. Terfenol-D超磁致伸缩换能器的有限元模拟[J].应用声学, 2000, 9(4): 5-8
    [79]郭硕鸿.电动力学[M].北京:高等教育出版社, 2001年,第二版
    [80]南策文.非均质材料物理-显微结构-性能关联[M].北京:科学出版社, 2005年,第一版
    [81]王矜奉,姜祖桐,石瑞大.压电振动[M].北京:科学出版社, 1989年,第一版
    [82]龚曙光. ANSYS基础应用及范例解析[M].北京:机械工业出版社, 2004年,第一版
    [83]提摩盛科.机械振动学[M].北京:机械工业出版社, 1958年,第一版
    [84] J. G. Wan, Z. Y. Li, Y. Wang. Strong flexural resonant magnetoelectric effect in Terfenol-D/epoxy-Pb(Zr,Ti)O3 bilayer[J]. Applied Physics Letters, 2005, 86, 202504

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700