偏置磁场对超磁致伸缩/压电复合材料磁电效应影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁电复合材料因其显著的磁电效应受到越来越多的关注。磁电复合材料可以用于磁电换能器,如磁场传感器等。研究发现磁电复合材料的磁电效应和偏置磁场密切相关。本文应用超磁致伸缩材料的非线性本构模型和层合材料的等效电路相结合的方法,分析了偏置磁场对磁电复合材料谐振磁电效应的影响,并进行了实验验证。本文主要工作如下:
     对比了超磁致伸缩材料的四种宏观唯象模型,发现Z-L模型能够很好的模拟超磁致伸缩材料的非线性特性。根据Z-L模型推导了超磁致伸缩材料的动态杨氏弹性模量、动态压磁系数和动态磁导率与外加磁场的关系。
     根据压电方程、压磁方程和动力学方程,运用等效电路法得到了超磁致伸缩/弹性/压电层合材料的等效电路。由于在层合材料的振动过程中,机械损耗是不可忽略的,则应用复参数法引入机械损耗,得到可以应用于层合材料谐振状态的包含损耗的等效电路,进而获得了层合材料的谐振频率方程和谐振磁电电压转换系数。
     把超磁致伸缩材料动态杨氏弹性模量和动态压磁系数代入谐振频率方程和谐振磁电电压转换系数中,得到谐振磁电效应和偏置磁场的关系。分析表明,偏置磁场通过影响超磁致伸缩材料的动态杨氏弹性模量而改变材料的谐振频率;偏置磁场通过影响超磁致伸缩材料的动态压磁系数和动态杨氏弹性模量而改变谐振磁电电压转换系数。
     制作了Terfenol-D/铍青铜/PZT-5H实验样片,在不同偏置磁场下进行了实验。通过理论和实验对比分析得到如下结论:①随着偏置磁场的增大,层合材料的谐振频率先逐渐减小后逐渐增大;②随着偏置磁场的增大,层合材料的谐振磁电电压转换系数先逐渐增大后逐渐减小;③存在最佳偏置磁场使层合材料的谐振磁电电压转换系数最大。
Magnetoelectric (ME) composite materials have received increasing attention because of its remarkable ME effect. ME composite materials can be used for magnetoelectric transducers, such as magnetic field sensors. The researches show that the ME effect in ME composite materials is closely related to bias magnetic fields. By combining nonlinear constitutive model for giant magnetostrictive material (GMM) with equivalent circuit of laminated materials, this paper analyzes the influence of bias magnetic field on the resonant ME effect of composite material, and compares the theoretical values with experimental results. The main work is as follows:
     Comparison is made on four kinds of macroscopic phenomenological models for GMM. It is found that the Z-L model is more accurate than other models in simulating nonlinear characteristics of GMM. Dynamic Young’s modulus, dynamic piezomagnetic coefficient and dynamic permeability of GMM are derived based on the nonlinear constitutive model for GMM.
     Based on the piezoelectric, piezomagnetic and dynamic equations, the equivalent circuit of magnetostrictive/elastic/piezoelectric laminate composite is obtained. Because the mechanical loss can not be neglected in the vibration process of the laminate composite, it is necessary to consider it in the equivalent circuit with the introduction of complex parameters. Such equivalent circuit with loss can be used to characterize the laminate composite at resonant frequency. We derive the resonant frequency equation and the ME voltage coefficient expression of the laminate composite.
     The dynamic Young’s modulus and the dynamic piezomagnetic coefficient are substituted in the resonance frequency equation and the ME voltage coefficient expression. Thus the relationship between ME effect and bias magnetic fields can be obtained. It is shown that the bias magnetic field changes the resonant frequency by affecting the dynamic Young’s modulus of GMM; the bias magnetic field changes the resonant ME voltage coefficient by affecting both the dynamic Young’s modulus and the dynamic piezomagnetic coefficient of GMM.
     Terfenol-D/beryllium bronze /PZT-5H sample is made. And its magnetoelectric performance is measured under different bias magnetic fields. By comparing the theoretical analysis with experimental results, it is showed that:①The resonant frequency of the composite firstly decreases, then increases as the bias magnetic field increases;②The resonant ME voltage coefficient of the composite increases firstly, then decreases as the bias magnetic field increases;③There is an optimal bias magnetic field at which the resonant ME voltage coefficient reaches its maximum.
引文
[1] L. D. Landau, E. M. Lifshitz. Electrodynamics of Continuous Media[J]. American Journal of Physics. 1961, 29(9): 647-648.
    [2] Manfred Fiebig. Revival of the Magnetoelectric Effect[J]. J. Phys. D: Appl. Phys, 2005, 38: 123-152.
    [3] Zhai J Y, et al. Dielectric Behavior and Magnetoelectric Properties of Lead Zirconate- Titanate/Co-ferrite Particulate Composites. Mater. Sci. Eng. B[J], 2003, 99: 329-331.
    [4] J. Van Suchetelene. Product Properties: a New Application of Composite Materials[J]. Philips Res. Rep. 1972, 27: 28-37.
    [5] J. Van Den Boomgaard, R. A. J. Born. A Sintered Magnetoelectric Composite Material BaTiO3-Ni(Co, Mn)Fe2O4[J]. Journal of Materials Science. 1978, 13(7): 1538-1548.
    [6] J. Van Den Boomgaard, A. M. J. G. Van Run, J. Van Suchtelen. Magnetoelectricity in Piezoelectric-Magnetostrictive Composites[J]. Ferroelectrics, 1976, 10: 295-298.
    [7] Jungho Ryu, Shashank Priya, Kenji Uchino,et al. Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials[J]. Journal of Electroceramics. 2002, 8(2): 107-119.
    [8] J. Ryu. Piezoelectric and Magnetoelectric Properties of Lead Zirconate Titanate/Ni-Ferrite Particulate Composites[J]. Journal of Electroceramics, 2001, 7(1): 17-24.
    [9] C. A. Randall, N. Kim. Intrinsic and Extrinsic Size Effects in Fine Grained Morphotropic- Phase-Boundary Lead Zirconate Titanate Ceramics[J]. Journal of the American Ceramic Society. 1998, 81: 677-688.
    [10] J. Ryu, A.V. Carazo. Magnetoelectric Properties in Piezoelectric and Magnetostrictive Laminate Composites[J]. Japanese Journal of Applied Physics. 2001, 40: 4948-4951
    [11] G. Srinivasan, E.T. Rasmussen, and R. Hayes, Magnetoelectric Effects in Ferrite-lead Zirconate Titanate Layered Composites: the Influence of Zinc Substitution in Ferrites[J], Phys. Rev. B, 67: 14418.
    [12] G. Srinivasan, E.T. Rasmussen, A. A. Bush, et al. Structural and Magnetoelectric Properties of MFe2O4-PZT(M=Ni, Co) and Lax(Ca, Sr)1-xMnO3-PZT Multilayer Composites[J], Appl. Phys. A, 2004, 78: 721-728.
    [13] G. Srinivasan, Review on Giant Magnetoelectric Effect in Oxide Ferromagnetic/Ferroelectric Layered Structures[J], Eprint arXiv: cond-mat/0401607v1, Jan. 2004.
    [14] Dong S X, Li F J, and D. Viehland, Characterization of Magnetoelectric Laminate CompositesOperated in Longitudinal-Transverse and Transverse-Transverse modes[J]. J.Appl. Phys, 2004, 95(5): 2625-2630.
    [15] Dong S X, Li F J, and D. Viehland. Longitudinal and Transverse Magnetoelectric Voltage Coefficients of Magnetostrictive/Piezoelectric Laminate Composite: Experiments[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2004, 51(7): 793-780.
    [16] Dong S X, Zhai J Y, and Xing Z P. Extremely Low Frequency Response of Magnetoelectric Multilayer Composites[J]. Appl. Phys. Lett. 2005,86: 102901
    [17] Dong S X, Cheng J R, and Li J F. Enhanced Magnetoelectric Effects in Laminate Composites of Terfenol-D/PbZrTi under Resonant Drive[J]. Appl. Phys. Lett. 2003, 83(23): 4812-4814.
    [18] Nersesse Nersessian, Siu Wing Or, and Gregory P. Carman. Magnetoelectric Behavior of Terfenol-D Composite and Lead Zirconate Titanate Ceramic Laminates[J]. IEEE Trans. on Magnetics, 2004, 40(4): 2646-2648.
    [19] Siu Wing Or, Nersesse Nersesssian, and Gregory P, et al. Dynamic Characterization of 1-3 Type Terfenol-D/Epoxy/Magnetostrictive Composite[C], 43rd AIAA/ASME/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, 2002: 22-25.
    [20] Liu Y X, Zeng M, Wang Y, et al. Numerical Modeling of Magnetoelectric Effect in a Novel Composite Structure[J], Ceramics International, 2004, 30: 1999-2003.
    [21] Liu Y X, Wan J G, Liu J M, et al. Numerical Modeling of Magnetoelectric Effect in a Composite Structure[J ]. J. Appl. Phys., 2003, 94(88): 5111-5117.
    [22] Wan J G, Li Z Y, Wang Y,et al. Strong Flexural Resonant Magnetoelectric Effect in Terfenol-D/epoxy/Pb(Zr,Ti)O3 Bilayer[J], Appl. Phys. Lett., 2005, 86: 202504.
    [23] Nan C W, Liu G, and Lin Y H, Influence of Interfacial Bonding on Giant Magnetoelectric Response of Multiferroic Laminated Composites of Tb1-xDyxFe2 and PbZrxTi1-xO3[J], Appl. Phys. Lett., 2001, 83(21): 4366-4368.
    [24] Nan C W, Liu L, Cai N, et al. Three-Phase Magnetoelectric Composite of Piezoelectric Ceramics, Rare-Earth Iron Alloys, and Polymer[J], Appl. Phys. Lett., 2002, 81(11): 3831-3833.
    [25] Nan C W, Cai N, Liu L, et al. Coupled Magnetic-Electric Properties and Critical Behavior in Multiferroic Particulate Composites[J]. J. Appl. Phys., 2003, 94(9): 5930-5936.
    [26] Cai N, Zhai J, Nan C W, Lin Y, and Shi Z. Dielectric, Ferroelectric, Magnetic, and Magnetoelectric Properties of Multiferroic Laminated Composites[J]. Phys. Rev. B, 2003, 68: 224103.
    [27] Nan C W, Li M, Huang J H, Calculations of Giant Magnetoelectric Effects in Ferroic Composites of Rare-earth-iron Alloys and Ferroelectric Polymers[J], Phys. Rev. B, 2001,63(14): 144415.
    [28] Li P, Wen Y M, and Bian L X. Enhanced Magnetoelectric Effects in Composite of Piezoelectric Ceramics, Rare-earth Iron Alloys, and Ultrasonic Horn[J], Appl. Phys. Lett.,2007, 90: 022503.
    [29]卞雷祥,文玉梅,李平,程磊,刘盼刚. GMM、PZT和弹性基板复合磁电耦合效应研究[J].微纳电子技, 2007, 7/8: 43-55.
    [30]卞雷祥,文玉梅,李平,杨帆,郑敏. GMM PZT和超声变幅杆复合结构磁电换能器研究[J].传感技术学报, 2007, 20(8): 1742-1746.
    [31] M. I. Bichurin, V. M. Petrov, G. Srinivasan, Theory of Low-Frequency Magnetoelectric Coupling in Magnetostrictive-Piezoelectric Bilayers[J], Phys. Rev. B, 2003, 68: 054402.
    [32] G. Harshe, J. P. Dougherty, R. E. Newnham, Theoretical Modeling of Multilayer Magnetoelectric Composites[J], International Journal of Applied Electromagnetics in Materials, 1993, 4(2): 145-159.
    [33] G. Harshe, Magnetoelectric Effect in Piezoelectric-Magnetostrictive Composite, Ph.D. Thesis, Pennsylvania State University, 1991.
    [34] W.D. Armstrong, An Incremental Theory of Magnetoelastic Hysteresis in Pseudo-Cubic Ferro-Magnetostrictive Alloys[J]. Journal of Magnetism and Magnetic Materials, 2003, 263: 208-218.
    [35] Dong S X, Li J F, Viehland D. Longitudinal and Transverse Magnetoelectric Voltage Coefficients of Magnetostrictive/Piezoelectric Laminate Composite: Theory[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(10): 1253-1261
    [36]杨帆,文玉梅,郑敏,李平.磁致/压电/磁致层合材料磁电响应分析[J].传感技术学报, 2006, 19(6): 2371-2375.
    [37]万红,吴学忠,刘希从.层状复合材料磁电效应的数值分析[J].功能材料, 2005, 4(36): 511-512.
    [38]万红,沈仁发,吴学忠.对称磁电层合板磁电转换效应理论研究[J].物理学报, 2005 54(3): 1426-1431
    [39] Dong S X, Li F J, D.Viehland, Magnetoelectric Coupling, Efficiency, and Voltage Gain Effect in Piezoelectric-Piezomagnetic Laminate Composites[J], Journal of Materials Science, 2006, 41: 97-106.
    [40]杨帆,文玉梅,李平,郑敏,卞雷祥.考虑损耗的磁致/压电层合材料谐振磁电响应分析[J],物理学报, 2007, 56(6): 3539-3545.
    [41]丁建明,仲崇贵.外电场对层状复合材料磁电效应的影响[J].苏州大学学报(自然科学版), 2007, 23(2): 65-68.
    [42] Chen Lang, Nagarajan V., Nonlinear Electric Field Dependence of Piezoresponse in EpitaxialFerroeleetric Lead Zirconate Litanate Thims[J] Journal of Applied Physics, 2003,94: 5147-5152.
    [43] Wan J G, Liu J M, Giant Magnetoelectric Effect of a Hybrid of Magnetostrictive and Piezoelectric Composites[J]. J. Appl. Phys., 2003, 93: 9916.
    [44] Xing Z P, Dong S X, Resonant Bending Mode of Terfenol-D/steel/Pb(Zr,Ti)O3 Magnetoelectric Laminate Composites[J], Appl. Phys. Lett., 2006, 89: 112911.
    [45] Dong S X, Li F J, Viehland D., Longitudinal-Longitudinal Mode Terfenol-D/ Pb(Mg1/3Nb2/3)O3-PbTiO3 Laminate Composite[J], Appl. Phys. Lett.,2004,85(22): 5305-5306.
    [46] Dong S X, Zhai J Y, Bai F M, Push-Pull Mode Magnetostrictive/Piezoelectric Laminate Composite with an Enhanced Magnetoelectric Voltage Coefficient[J], Appl. Phys. Lett., 2005, 87: 062502.
    [47] Wan Y P, Zhong Z, Magnetic Bias Field Dependence of the Magnetoelectric Effect in a Magnetoelectric Structure: a Simple Model[J], Modern Physics Letters B, 2004, 18: 963-969.
    [48] Graebner J. E., et al. Magnetically Tunable Surface Acoustic Wave Devices[P], 1999, US Patent, 5959388.
    [49] Zhai J Y, Xing Z P, Dong S X, et al. Detection of Pico-Tesla Magnetic Fields Using Magneto-Electric Sensors at Room Temperature[J], Appl. Phys., 2006, 88(6): 062510.
    [50] Dong S X, Zhai J Y, Li J F, Viehland D. Small Dc Magnetic Field Response of Magnetoelectric Laminate Composites[J], Appl. Phys. Lett., 2006, 88(8): 082907.
    [51] Andrey Bayrashev, William P. Robbins, Babak Ziaie, Low Frequency Wireless Powering of Microsystems Using Piezoelectric–Magnetostrictive Laminate Composites Sensors and Actuators A, 2004,114: 244–249.
    [52] J. K. Huang, Robert C. O’Handley, David Bono, High Efficiency Vibration Energy Harvester[P]. US Patent, 2006, 006984902B1.
    [53]张福学,王丽坤.现代压电学(上册)[M].北京:科学出版社, 2001.
    [54] A. M. J. G. Van Run, D.R. Terrell and J.H. Scholing, An in Situ Grown Eutectic Magnetoelectric Composite Material[J], Journal of Materials Science, 1974, 9(10): 1710-1714.
    [55]栾桂冬.张金铎,王仁乾.压电换能器和换能器阵(修订版)[M].北京:北京大学出版社, 2005: 94-95.
    [56]徐光宪.稀土(下册)[M].北京:冶金工业出版社, 1995.
    [57] IEEE Group on Sonics and Ultrasonics, IEEE Standard on Magnetostrictive Materials: Piezomagnetic Nomenclature[S], IEEE Transactions on Sonics and Ultrasonics, 1973: 67-78.
    [58]北京大学物理系《铁磁学》编写组.铁磁学[M].北京:科学出版社, 1976.
    [59]廖绍彬.铁磁学(下册)[M].北京:科学出版社, 2000.
    [60] Yang F, Wen Y M, Li P, and Zheng M, Magnetoelectric Response of Magnetostrictive/ Piezoelectric/Magnetostrictive Laminate Composite[C], IEEE International Conference on Information Acquisition, 2006, 1&2: 1010-1014.
    [61]王槐仁,张友纯,李张明.稀土超磁致伸缩材料及其在地球物理领域的应用[J].物探装备, 2003, 13(2): 73-77.
    [62] A.E.Clark, D.N.Crowder, High Temperature Magnetostriction of TbFe2 and Tb0.27Dy0.73Fe2 IEEE Transactions on Magnetics[J], 1985, 21(5): 1945-1947.
    [63] A.E.Clark, J.P.Teter, O.D.McMasters. Magnetostriction“jumps”in twinned Tb0.3Dy0.7Fe1.9 [J], J. Appl. Phys. 1988, 63(8): 3910-3912.
    [64] J.D.Verhoneven, J. E. Ostenson, E.D.Bibson, et al. The Effect of Composition and Magnetic Heat Treatment on the Magnetostrictive of TbxDy1-xFey Twinned Single Crystals[J]. J. Appl. Phys., 1988, 66(2): 772-779.
    [65] M.E.H. Benbouzid. Artificial Neural Network for Finite Element Modeling of Giant Magnetostrictive Devices[J]. Magnetics, IEEE Transactions on, 1998, 34(6): 3853-3856.
    [66] F. Claesyssen, N. L. Lherment, R. L. Letty, P. Bouchillous, Actuators. Transducers and Motors Based on Giant Magnetostrictive Materials[J]. Journal of Alloys and Commpounds, 1997, 258: 61-73.
    [67]蒋志红等.稀土超磁致伸缩材料的发展[J].稀土, 1991(2): 19-26.
    [68] Moffet MB, et al. Charaterization of Terfenol-D for Magnetostrictive Transducers[J]. The Journal of the Acoustical Society of America, 1991, 89(3): 1448-1455.
    [69]王博文.超磁致伸缩材料制备与器件设计[M].北京:冶金工业出版社. 2003.
    [70] K. Mori, J.Cullen, A. Clark. Magnetostriction in Tb0.27Dy0.73Fe2 Evidence for a Low Temperature Transition[J], IEEE Transaction on Magnetics, 1983,19 (5): 1967-1968.
    [71] D. Kendall, A. R. Pierey. Magnetization Processes and Temperature Dependence of the Magnetomechanical Properties of Tb0.27Dy0.73Fe1.9[J], IEEE Transaction on Magnetics, 1990, 26(5): 1837-1839.
    [72] A. Garc?a?-Arribas. Selectable Temperature Sensitivity of the Magnetoelastic Resonance[J], Sensors and Actuators A. 2003,103: 111-116.
    [73] H.T.Savage, A.E.Clark, J.H.Powers. Magnetomechanical coupling and△E Effect in Highly Magnetostrictive Rare Earth-Fe2 Compounds[J]. IEEE Transactions on Magnetics, 1975, 11(5): 1355-1358.
    [74] Greg P. Carman, Milan Mitrovic. Nonlinear Constitutive Relations for Magnetostrictive Materials with Applications to 1-D Problems[J]. J Intell Mat Sys & Struc, 1995, 6(5): 673-683.
    [75]万永平,方岱宁,黄克智.磁致伸缩材料的非线性本构关系[J].力学学报, 2001, 33(6):749-757.
    [76] Wan Y P, Fang D N, Hwang K. C. Non-linear Constitutive Relations for Magnetostrictive Materials[J]. International Journal of Non-Linear Mechanics, 2003, 38(7): 1053-1065.
    [77] Liu X. L., Zheng X. J. A Nonlinear Constitutive Model for Magnetostrictive Materials[J], Acta Mech Sinica, 2005,21: 278-285.
    [78] Zheng X. J., and Liu X. E. A Nonlinear Constitutive Model for Terfenol-D Rods[J], J. Appl. Phys., 2005,97: 053901.
    [79] G. A. Maugin. The Thermomechanics of Nonlinear Irreversible Behaviors: An Introduction[M], Singapore: World Scientific Publishing, 1999.
    [80] G. A. Maugin, M.Sabir. MechanicaI and Magnetic Hardening of Ferromagnetic Bodies: Influence of Residual Stresses and Application to Nondestructive Testing[J], Int. J. Plasticity, 1990,6: 573-589.
    [81] Feng X, Fang D L, Hwang K C. A Phenomenological Constitutive Model for Ferromagnetic Materials based on Rate-Independent Flow Theory[J], Key Engng. Mater. 2003, 233: 77-82.
    [82] G. N. Weisensel, Rick L. Zrostlik, Gregory P. Carman. Advanced Magnetostrictive Finite Element Method (FEM) Modeling Development[C], Proceedings of SPIE. Smart Structures and Materials 1999: Mathematics and Control in Smart Structures. 1999, 3667: 110-121.
    [83] Yan J C, Xie X Q, Yang S Q, et al. Magnetostriction of Tb-Dy-Fe Alloy with Different Crystal Axes Orientation[J]. Journa1 of Magnetism and Magnetic Materials, 2001, 223: 27-32.
    [84] D. C. Jiles. A self consistent genedized model for the calculation of minor loop excursions in the theory of hysteresis. IEEE Trans. Magn, 1992, 28: 2602-2604.
    [85] D. C. Jiles. Modelling the Effects of Eddy Current Losses on Frequency Dependent Hysteresis in Electrically Conducting Media[J]. Magnetics, IEEE Transactions on, 1994,30(6): 4326-4328.
    [86] C. C. H. Lo, E. Kinser, D. C. Jiles. Modeling the Interrelating Effects of Plastic Deformation and Stress on Magnetic Properties of Materials[J]. J. Appl.Phys., 2003,93(10): 6626-6628.
    [87]林书玉.超声换能器的原理与设计[M].北京:科学出版社, 2004.
    [88]吴崇试,数学物理方法[M].北京:北京大学出版社, 1999.
    [89]江理平,唐寿高,王俊民.工程弹性力学[M].上海:同济大学出版社, 2002.
    [90]张沛霖,张仲渊.压电测量[M].北京:国防工业出版社, 1983.
    [91]赵凯华,陈熙谋.电磁学[M].北京:高等教育出版社, 1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700