基于FTS的微结构表面金刚石切削加工若干技术问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微结构表面因其具有某些特定的性能,如光学特性、粘附性、摩擦性、润滑性、耐磨损性等,在民用和军用工业领域都有很广阔的应用背景。基于FTS超精密切削加工技术因其具有高频率响应、高定位精度等特点,已经成为微结构表面切削加工的一种主流技术。目前,世界上发达国家已经应用该技术成功地加工出了高精度的微结构表面,并已实现了工业应用。国内对该技术的研究还处于起步阶段,其中的关键基础技术还没有完全掌握,加工质量与国外相比还有一定差距。基于此,本文针对基于FTS切削加工微结构表面的关键性基础技术进行了研究。
     良好的刀具轨迹是获得高品质微结构表面的前提。使用FTS加工微结构表面时,微结构表面形貌是由主轴转角、X向溜板及FTS共同插补而成,这与常规的车削过程中工件表面形貌形成方式有所不同,因此需要使用特殊的刀具运动轨迹生成策略,同时由于FTS的行程有限,并不能直接加工大幅值的非回转对称微结构表面。为解决这些问题,本文提出了等弧长刀具轨迹驱动点生成策略,并基于曲面分解与重构原则,研究了大幅值微结构表面刀具轨迹的生成方法。为了提高刀具轨迹的精度,本文基于矢量数学原理,研究了由刀具几何参数和安装引起的刀具参考点位置误差的补偿方法。通过加工实验对上述理论的正确性和有效性进行了验证。实验结果表明,采用补偿后的刀具轨迹,使已加工表面粗糙度和面形误差都有了明显地降低。
     刀具技术是获得高质量微结构表面的关键技术。在微结构表面加工过程中刀具几何参数和刀具使用寿命是两个非常关键的问题。不合理的刀具几何参数会使刀具与已加工表面发生切削干涉,降低微结构表面的廓形精度和加工质量。为了避免切削干涉,在微结构加工过程中不得不使用尖刀形式的刀具,而这种刀具的使用寿命较短,限制了其在实际中的应用。因此,有必要对微结构表面加工用金刚石刀具的几何参数设计和刀具磨损进行研究,以便提高微结构表面加工质量和延长刀具使用寿命。本文提出了基于微结构表面特征的刀具主要几何参数设计原则。通过正弦波微结构表面的加工实验,研究了微结构表面加工用特种金刚石刀具磨损形式和磨损机理。实验结果表明,金刚石石墨化是刀具磨损的主要机制;微结构表面加工过程中的微冲击效应是导致刀尖破损的主要原因。
     在微结构表面加工过程中,切削深度随着微结构表面轮廓不断变化,刀具运动存在位置和速度的突变,这种突变会引起切削力的波动,易激励系统引起振动,导致切削过程不稳定,造成加工表面质量下降。所以,FTS的控制系统不仅要消除压电陶瓷本身的非线性效应,还要解决加工过程中切削力波动等因素引起的外界干扰。为了实现这一目的,文中提出了一种基于组合趋近律的FTS滑模变结构控制策略,并通过加工带有凸台结构的微结构表面对这一控制算法与基于指数趋近律的滑模变结构控制算法进行了对比实验,实验结果验证了该控制策略的有效性和正确性。
     由于不同的微结构表面具有特定的轮廓形状和特征尺寸,需要采用不同的加工参数和加工条件进行加工。为了减少优化工艺参数的实验次数,获得较高品质的微结构表面,本文以Matlab/ Simulink作为工具,综合考虑加工过程中线性和非线性因素的影响,建立了集刀具轨迹生成及补偿、刀具设计原则、机床控制系统、机床动力学系统特性、表面生成及表面评价于一体的基于FTS切削微结构表面加工过程仿真系统。通过正弦波微结构加工实验验证了该系统的正确性。利用该系统研究了主轴转速和进给量对方坑非回转对称微结构表面质量的影响,获得了优化的加工参数,并加工出了方坑非回转对称微结构表面。
The microstructured surfaces are widely used and have good prospects in lots of military and civilian industries applications, as their special and unique engineering functions, such as optical, conglutinative, tribological, lubricative, anti-abrasive characteristics and so on. Diamond cutting based on FTS featured high dynamic response and high positioning resolution is a popular microstructured surfaces manufacture technology. Some precision microstructured surfaces fabricated with FTS have been used industrially in many advanced countries. However the research on FTS diamond cutting of microstructured surfaces technology is at start stage in our country. In this dessertion, some works have been done to reduce the gap between our country and foreign countries in the research on ultra-precision machining of microstructured surfaces.
     High-precision tool path is a precondition for obtaining high quality microstructured surfaces which were formed by the position of spindle, X slide and FTS system. A special tool path generating method should be adopted in order to obtain high precision tool path for machining microstructured surfaces as the special cutting process. In addition to, the microstructured surfaces with large amplitude cannot be finished with FTS because of its shorter stroke. In this dissertation, the method of large amplitude microstructured surfaces tool path generation and allotment was studied base on freeform decomposing and reconstructing principle. A strategy of tool path drive points has been proposed. The compensation arithmetic of tool reference point position error caused by tool geometries and setting error was deduced base on vector mathematics. The methods and arithmetic mentioned above have been proved by trail results. The experimental results showed that the machined surfaces quality and form accuracy of microstructured surfaces manufactured with cpmpensated tool path have an obvious improvement.
     Tool geometries and tool wear are two key factors of affecting microstructured surfaces quality. A phenomenon of over cutting will appear with unreasonable tool geometries. The application of diamond cutting in practice for manufacturing microstructured surfaces is often limited by the rapid wear of diamond tools. In the dissertation, a general tool geometries design principle to avoid over cutting was proposed according to the 3D profile of microstructured surfaces. The wear of sharp point tip diamond tool was investigated by a series of sinusoidal microstructured surfaces cutting tests. The experimental results showed that the patterns of micro diamond tool include smooth wear with a low feed rate and catastrophic fracture with a high feed rate. The wear mechanism is believed that the diamond on the tool edge and tool tip has been transformed into graphite under the effect of the alternating cutting force loads, cutting thermal loads and micro impact loads in the cutting of microstructured surfaces. The wear of diamond tool with different geometries also was studied experimentally. The experiment results afford a foundation to design and employ diamond tool in diamond cutting of microstructured surfaces.
     The depth of cut changes along the profiles of microstructured surfaces in the diamond cutting process. The position and velocity of diamond tool movement is not smooth as the existence of sharp corner and step profiles which can cause fluctuation of cutting forces, excite cutting system vibration and make cutting process unstable. Therefore the task of FTS control system is not only to eliminate non-linearity characteristics of piezoelectric actuator but also to decrease effects of disturbances caused cutting force and un-modeling factors. In this case, a variable-structure sliding-mode control with combination approach arithmetic was proposed. The comparison with exponential approach arithmetic was fulfilled experimentally.
     In order to reduce cutting parameters optimization tests and obtain high quality machined surfaces, a simulation model was established with Matlab/Simulink for diamond cutting process of microstructured surfaces with FTS. Tool path generation and compensation, diamond tool geometries design, control system characteristics, machine tools dynamic response and surfaces generation were integrated in the model. Some linear and non-linear factors also were considered. The simulation model was validated with sinusoidal microstructured surfaces cutting tests. The effects of spindle speed and feed rate on the machined surfaces quality of micro square-pit non-rational symmetric surfaces were investigated by the simulation model. The square-pit non-rational symmetric surfaces were manufactured with the optimization cutting parameters which obtained with the simulation model.
引文
1 P.D. Brehm, S. Christopher. The Single Point Diamond Machining of Optical Microstructures and Free Form Surfaces. Proceedings of the 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology (euspen). Bremen, Germany. 1999: 114~116
    2 P. Benitez, J.C. Minano,M. Hernandez. On the Analysis of Microstructured Surfaces. Proceedings of SPIE. 2004, 5529: 186~197
    3 M. Weck,S. Fischer. Manufacturing of Microstructures Using Ultraprecision Machine Tools. Part of the Symposium on Design, Test, and Microfabrication of MEMS and MOEMS. Paris, France. 1999, 450~455
    4 M. Weck, S. Fischer. Manufacturing of Microstructures Surfaces Using Ultraprecision Turning, Milling and Shaping. Proceedings of the 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology (euspen). Bremen, Germany. 1999: 420~423
    5 E. Brinksmeier, W. Preuss. Complex Surfaces: Applications and Generation by Diamond Machining. Proceedings of the Twelfth Annual Meeting of the American Society for Precision Engineering. Norfolk, Virginia. 1997: 33~36
    6 P. Sandoz, B. Trolard, D. Marsaut, T. Gharbi. Micro-structured Surface-element for High-accuracy Position Measurement by Vision and Phase-measurement. Proceedings of the Society of Photo-Optical Instrumentation Engineers. 2004, 5622: 606~611
    7 H. Asoh, A. Oide, S. Ono. Formation of Microstructured Silicon Surfaces by Electrochemical Etching Using Colloidal Crystal as Mask. Electrochemistry Communications. 2006(8): 1817~1820
    8 C. Evans, J. Bryan. "Structured","Textured" or "Engineered" Surfaces. CIRP Annals. 1998, 48(2): 541~556
    9杨元华.基于FTS的微结构功能表面超精密切削加工关键技术.哈尔滨工业大学博士论文. 2007
    10 Imanaka Koichi. Microhybrid Integrated Devices and Components: Micro Photonic Devices. Proc. of SPIE. 1992, 1751: 343~353
    11 Brenner K.H., M. Kufner, S. Kufner, J. Moisel, A. Müller, S. Sinzinger, M. TestorfJ. G?ttert. Application of Three-dimensional Micro-optical Components Formed by Lithography, Electroforming, and Plastic Molding. Applied Optics. 1993, 32: 6464~6469
    12李荣彬,杜雪,张志辉.自由曲面光学设计与先进制造技术.香港理工大学出版社, 2005: 93~98
    13佟军民,胡松,李爱敏,谢常青.衍射光学元件在无掩模光刻中的应用.微细加工技术. 2006, 5: 18~23
    14潘峰,陈四海,王明,赖建军,易新建.菲涅耳微透镜衍射光学性能测试.华中科技大学学报(自然科学版). 2007, 35: 93~96
    15杨智,戴一帆,张沛.折衍混合在长焦物镜中的应用研究.激光技术. 2007, 31(2): 206~208
    16 H.P.赫尔齐克主编,周海宪等译.微光学元件、系统和应用.国防工业出版社, 2002
    17李东源,闫秀生,张晓光,侯蓝田,周桂耀.用于大截面传像光纤束的折衍混合光学系统设计.光电工程. 2006, 33(5): 136~140
    18 Scott Steve. Applications for Large Area Microstructured Optics. http://www.opticsinfobase.org/abstract.cfm?URI=DOMO-2004-DTuD4
    19 Brinksmeier E., O. RiemerR. Stern. Machining of Precision Parts and Microstructures. Proceedings of the 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology (euspen). Bremen, Germany. 1999: 3~11
    20 Bryant K., R. Cassin, L. Chaloux, Y. Tohme, D. Puczek, G. DunnH. Takeuchi. Freeform Cubic Phase Plate. http://www.tlatla.net/Res11/4/images/PDFs/Freeform- %20Cubic%20Phase%20Plate.pdf
    21陈松海,周东晓.浅析美军炮兵新概念武器系统.国防科技. 2006, 2: 29~33
    22苑立伟,杨建军,刘海平.国外低轨道卫星综述.航天返回与遥感. 2004, 25(4): 54~59
    23张维胜,王红兵,李辉.美国军用卫星现状与性能.中国航天. 2001, 6: 42~45
    24李升辉,杨长城.折/衍混合红外光学系统的消热差设计.光学与光电技术. 2006, 4(4): 1~3
    25田扬超,付绍军,洪义麟,胡一贯. LIGA技术制作微细金属图形的研究.仪器仪表学报. 1996, 17(1): 208~209
    26 C. Friedrich, P. Coane, J. Goettert, N. Gopinathin. Direct Fabrication of Deep X-ray Lithography Masks by Micromechanical Milling. Precision Engineering-Journal of the American Society for Precision Engineering. 1998, 22(3): 164~173
    27 S.M. Kim, D.M. Kim, S.N, Kang. Replication of Micro-optical Components by Ultraviolet-molding Process. Jounal of Microlithography Microfabrication and Microsystems. 2003, 2(4): 356~359
    28 S. Kim, S. Kang. Replication qualities and optical properties of UV-moulded microlens arrays. Journal of Physics D: Applied Physics. 2003, 36(20): 2451~2456
    29 S.D. Moon, S.N. Kang, J.U. Bu. Fabrication of Polymeric Microlens of Hemispherical Shape Using Micromolding. Optical Engineering. 2002, 41(9): 2267~2270
    30 H.Kiebling, Brauer AP.Dannberg. Replication of Refractive and Diffractive Optical Elements. Proceedings of the International Seminar on Precision Engineering and Mirco Technology (euspen). Aachen, Germany. 2000: 205~215
    31李铁才,王立松.纳米超精密加工技术.伺服控制. 2007, 3: 12~15
    32 M.A. Davies, C.J. Evans, S.R. Patterson, R. Vohra, B.C. Bergner. Application of Precision Diamond Machining to the Manufacture of Micro-photonics Components. Proc. of SPIE. 2003, 5183: 94~108
    33 J.N. Mait, H.P. Herzig. Diffractive Optics and Micro-optics: Introduction to the Feature Issue. Applied Optics. 1999, 38(14): 2977~2978
    34 Z.N. Lu, T. Yoneyama. Micro Cutting in the Micro Lathe Turning System. International Journal of Machine Tools & Manufacture. 1999, 39(7): 1171~1183
    35 J.Y. Yu, J.W. Yan, W.S. Ma, R.J. Han. Ultraprecision Diamond Turning of Optical Crystals. Proc. of SPIE. 1994, 2214: 51~59
    36 E. Brinksmeier, W. Preuss, J. Schmutz. Manufacture of Microstructures by Diamond Machining. Proceedings of the 9th IPES/UME 4th. Conf. Braunschweig, Germany. 1997: 503~507
    37 E. Brinksmeier, W. Preuss, A. Gessenharter. Manufacturing of Calibration Standard by Diamond Machining. Proc. of 2nd Euspen International Conference. Turin, Italy. 2001: 680~683
    38 J.W. Yan, K. Maekawa, J. Tamaki, T. Kuriyagawa. Micro Grooving on Single-crystal Germanium for Infrared Fresnel Lenses. Journal of Micromechanics and Microengineering. 2005, 15(10): 1925~1931
    39 M. Weck, S. Fischer, M. Wos. Fabrication of Microcomponents Using Ultraprecision Machine Tools. Nanotechnology. 1997, 8(3): 145~148
    40潘虹.非回转对称微结构金刚石切削技术研究.哈尔滨工业大学硕士论文. 2009.7
    41周京博.基于UMAC的微结构表面车削数控系统及其实验研究.哈尔滨工业大学硕士论文. 2009.7
    42卢猛.微结构功能表面金刚石超精密加工工艺的研究.哈尔滨工业大学硕士学位论文. 2007.7
    43海大鹏.菲涅尔透镜的加工工艺研究.哈尔滨工业大学硕士学位论文. 2007.7
    44李荣彬,张志辉,杜雪,高栋,王素娟.微结构光学元件快速伺服刀架加工技术研究.纳米技术与精密工程. 2005, 3(3): 216~221
    45 S. To, T.C. Kwok, C.F. Cheng, W.B. Lee. Study of Ultra-pricision Diamond Turningof a Microlens Array with a Fast Tool Servo System. Proc. of SPIE. 2006, 6149: 61490S-1~61490S-6
    46刘莉萍,王涌天,李荣刚,焦明印.制作在非球面基底上的红外衍射光学元件.红外与毫米波学报. 2004, 23(4): 308~312
    47谢军,黄燕华,吴卫东,唐永建.单点金刚石切削技术在ICF靶制备中的应用.原子能科学技术. 2005, 39(3): 274~277
    48 Y. Tohme, R. Murray. Principles and Applications of the Slow Slide Servo. Moore Precision Tools. http://www.nanotechsys.com/images/PDFs.
    49铁贵鹏,戴一帆,尹自强,关朝亮.慢刀伺服加工自由曲面的表面形貌预测.航空精密制造技术. 2009, 45(6): 6~9
    50张效栋,房丰洲,程颖.自由曲面超精密车削加工路径优化设计.天津大学学报. 2009, 42(3): 278~282
    51 F.Z. Fang, X.D. Zhang, X.T. Hu. Cylindrical Coordinate Machining of Optical Freeform Surfaces. Optics Express. 2008, 16(10): 7323~7329
    52 L. Li, X. Min, D. Chen, J. Wang. Special Techniques in Ultra-Presicion Machining. Proc. of SPIE. 2007, 6722: 1~4
    53 B. Nathan, T.A. Dow, A. Sohn, B. Norlund, J. Roblee. Live Axis Turning. Mechanical Engineering, North Carolina State University. 2005:1~3
    54王贵林.结构零件车削加工关键技术研究.国防科学技术大学硕士学位论文. 2008
    55 T.A. Dow, M.H. Miller, P.J. Falter. Application of a Fast Tool Servo for Diamond Turning of Nonrotationally Symmetric Surfaces. Precision Engineering. 1991, 13(4): 243~250
    56 M. Weck, F. Klocke, H. Oezmeral, J. Hennig. Manufacturing and Applications of Nonrotationally Symmetric Optics. Proc. of SPIE. 1999, 3739: 94~107
    57 W. Gao, T. Araki, S. Kiyono, Y. Okazaki, M. Yamanaka. Precision Nano-fabrication and Evaluation of a Large Area Sinusoidal Grid Surface for a Surface Encoder. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology. 2003, 27(3): 289~298
    58 M.J. Bono, R.L. Hibbard. Fabrication and Metrology of Micro-scale Sinusoidal Surfaces in Polymer Workpiece Materials. Proceedings of ASPE. Orlando. 2004, 34: 1~6
    59 R. Kirk, J. Roblee. Freeform Machining with Precitech Servo Tool Options. www.precitech.com/FreeformmachiningwithPrecitechServoTools052505.pdf
    60 R.C. Montesanti, D.L. Trumper. High Bandwidth Short Stroke Rotary Fast Tool Servo. Proceedings of the American Society for Precision Engineering Meeting. 2003, 30: 115-118
    61张元良,方家宝,刘欣,郭丽莎,陈懋圻.非轴对称光学表面加工技术基础研究.大连理工大学学报. 1993, 33(6): 672~677
    62张元良,陈懋圻,方加宝,刘欣,任要正.用单点金刚石车削非轴对称光学表面.大连理工大学学报. 1993, 12: 19~21
    63张元良,刘欣,方加宝,陈懋圻.非轴对称光学表面超精密加工若干关键技术.大连理工大学学报. 1999, 39(6): 766~770
    64任要正,庞思勤.数控单点金刚石车削非轴对称光学镜面.北京理工大学学报. 1998, 2: 119~123
    65任要正.自由非球光学曲面加工技术研究.北京理工大学博士论文. 2000
    66吴丹,孙京海,王先逵.非轴对称车削成型方法探讨.清华大学学报(自然科学版). 2006, 46(11): 1832 ~1835
    67蔺超.金刚石车削非回转对称光学曲面的刀具轨迹规划的研究.吉林大学硕士学位论文. 2009
    68蔡赟.基于NURBS非回转对称光学曲面金刚石车削轨迹的研究.吉林大学硕士学位论文. 2009
    69吴英,周兆英,江永清,向毅,小野崇人.金属三维微结构加工技术的研究.仪表技术与传感器. 2006, 1: 8~10
    70 G. Sze-Wei, L. Han-Seok, M. Rahman, F. Watt. A Fine Tool Servo System for Global Position Error Compensation for a Miniature Ultra-precision Lathe. International Journal of Machine Tools & Manufacture. 2007, 47(7-8): 1302~1310
    71 Y.J. Lin, T.S. Lee. An Adaptive Tool Path Generation Algorithm for Precision Surface Machining. Computer-Aided Design. 1999, 31(4): 237~247
    72 W.T. Lei, M.P. Sung, L.Y. Lin, J.J. Huang. Fast Real-time NURBS Path Interpolation for CNC Machine Tools. International Journal of Machine Tools & Manufacture. 2007, 47(10): 1530~1541
    73 C.C.A. Chen, C.M. Chen, J.R. Chen. Toolpath Generation for Diamond Shaping of Aspheric Lens Array. Journal of Materials Processing Technology. 2007, 192: 194~199
    74 X.D. Lu, D.L. Trumper. Spindle Rotary Position Estimation for Fast Tool Servo Trajectory Generation. International Journal of Machine Tools & Manufacture. 2007, 47(9): 1362~1367
    75 A.J. Shih. Finite Element Analysis of the Rake Angle Effects in Othogonal Metal Cutting. International Journal of Mechanical Sciences. 1995, 38(1): 1~17
    76 Pramanik, K.S. Neo, M. Rahman, X.P. Li, M. Sawa, Y. Maeda. Ultra-precision Turning of Electroless-nickel: Effect of Phosphorus Contents Depth-of-cut and Rake Angle. Journal of Materials Processing Technology. 2008, 208(1-3): 400~408
    77 H. Saglam, F. Unsacar, S. Yaldiz. Investigation of the Effect of Rake Angle and Approaching Angle on Main Cutting Force and Tool Tip Temperature. International Journal of Machine Tools & Manufacture. 2006, 46(2): 132~141
    78 M. Gunay, E. Aslan, I. Korkut, U. Seker. Investigation of the Effect of Rake Angle on Main Cutting Force. International Journal of Machine Tools & Manufacture. 2004, 44(9): 953~959
    79 S.P. Lo. An Analysis of Cutting under Different Rake Angles Using the Finite Element Method. Journal of Materials Processing Technology. 2000, 105(1-2): 143~151
    80 A.Q. Biddut, M. Rahman, K.S. Neo, K.M.R. Rahman, M. Sawa, Y. Maeda. Performance of Single Crystal Diamond Tools with Different Rake Angles during Micro-grooving on Electroless Nickel Plated Die Materials. International Journal of Advanced Manufacturing Technology. 2007, 33(9-10): 891~899
    81 J.A. Pattena, W. Gao. Extreme Negative Rake Angle Technique for Single Point Diamond Nano-cutting of Silicon. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology. 2001, 25(2): 165~167
    82 Q.L. Zhao, S. Dong, Y.C. Liang, Y. Zhao. Effects of Diamond Cutting Tool's Rake Angle and Edge Radius on the Diamond Turned Surface Quality. Optical Manufacturing and Testing Lv. 2001, 4451: 200~208
    83 M.A. ElBaradie. The Effect of Varying the Workpiece Diameter on the Cutting Tool Clearance Angle in Tool-life Testing. Wear. 1996, 195(1-2): 201~205
    84 Suzuki S., J. Kobayashi, T. TochigiH. Fukui. Machinability of Medium Density Fiberboard .1. The Effects of Clearance Angle and Depth of Cut on the Machinability in End Surface Cutting. Mokuzai Gakkaishi. 1997, 43(9): 731~737
    85 D.E. Gilsinn, M.A. Davies, B. Balachandran. Stability of Precision Diamond Turning Processes That Use Round Nosed Tools. Journal of Manufacturing Science and Engineering-Transactions of the ASME. 2001, 123(4): 747~748
    86 T.H.C. Childs, K. Sekiya, R. Tezuka, Y. Yamane, D. Dornfeld, D.E. Lee, S. Min, P.K. Wright. Surface Finishes from Turning and Facing with Round Nosed Tools. Cirp Annals-Manufacturing Technology. 2008, 57(1): 89~92
    87 M. Zhou, B.K.A. Ngoi, X.J. Wang. Tool Wear in Ultra-precision Diamond Cutting of Non-ferrous Metals with a Round-nose Tool. Tribology Letters. 2003, 15(3): 211~216
    88 K. Liu, X.P. Li, M. Rahman, K.S. Neo, X.D. Liu. A Study of the Effect of Tool Cutting Edge Radius on Ductile Cutting of Silicon Wafers. International Journal of Advanced Manufacturing Technology. 2007, 32(7-8): 631~637
    89 M.S. Uddin, K.H.W. Seah, X.P. Li, M. Rahman, K. Liu. Effect of CrystallographicOrientation on Wear of Diamond Tools for Nano-scale Ductile Cutting of Silicon. Wear. 2004, 257(7-8): 751~759
    90 E. Paul, C.J. Evans, A. Mangamelli, M.L. McGlauflin, R.S. Polavani. Chemical Aspects of Tool Wear in Single Point Diamond Turning. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology. 1996, 18(1): 4~19
    91 S. Shimada, T. Inamura, M. Higuchi, H. Tanaka, N. Ikawa. Suppression of Tool Wear in Diamond Turning of Copper under Reduced Oxygen Atmosphere. Cirp Annals 2000: Manufacturing Technology. 2000: 21~24
    92 J.W. Yan, K. Syoji, J. Tamaki. Some Observations on the Wear of Diamond Tools in Ultra-precision Cutting of Single-crystal Silicon. Wear. 2003, 255: 1380~1387
    93 M. Zhou, B.K.A. Ngoi, M.N. Yusoff, X.J. Wang. Tool Wear and Surface Finish in Diamond Cutting of Optical Glass. Journal of Materials Processing Technology. 2006, 174(1-3): 29~33
    94 M.B. Cai, X.P. Li, M. Rahman. Study of the Mechanism of Groove Wear of the Diamond Tool in Nanoscale Ductile Mode Cutting of Monocrystalline Silicon. Journal of Manufacturing Science and Engineering-Transactions of the ASME. 2007, 129(2): 281~286
    95 W.J. Zong, T. Sun, D. Li, K. Cheng, Y.C. Liang. XPS Analysis of the Groove Wearing Marks on Flank Face of Diamond Tool in Nanometric Cutting of Silicon Wafer. International Journal of Machine Tools & Manufacture. 2008, 48(15): 1678~1687
    96 R. Malz, E. Brinksmeier, W. Preuss, J. Kohlscheen, H.R. Stock, P. Mayr. Investigation of the Diamond Machinability of Newly Developed Hard Coatings. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology. 2000, 24(2): 146~152
    97 H. Richter, E.A. Misawa, D.A. Lucca, H. Lu. Modeling Nonlinear Behavior in a Piezoelectric Actuator. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology. 2001, 25(2): 128~137
    98 A.C. Miller, J.F. Cuttino. Performance Evaluation and Optimization of a Fast Tool Servo for Single Point Diamond Turning Machines. SPIE. 1997, 3134: 318~328
    99 H. Kim, E. Kim. Feed-forward Control of Fast Tool Servo for Real-time Correction of Spindle Error in Diamond Turning of Flat Surfaces. International Journal of Machine Tools & Manufacture. 2003, 43(12): 1177~1183
    100 H.F. Wang, D.J. Hu, D.P. Wan, H.B. Liu. Hysteresis Compensation for Piezoelectric Actuators in Single-point Diamond Turning. Proc. of SPIE. 2006, 6149: 341~347
    101王建林,刘文晖,胡晓东.压电执行器在超微定位系统中的应用.压电与声光. 1997, 19(2): 95~97
    102 L. Zhao, D. Chen, H. Kong. Neuron Net Control and It's Application in Precision Feed Mechanism of Machine Tool Driven by PZT. Proceedings of the IEEE International Conference on Industrial Technology. 1994: 176~180
    103傅星,胡晓唐.模糊控制在压电陶瓷控制中的应用.压电与声光. 1999, 21(3): 200~202
    104 M. Goldfarb, N. Celanovic. Modeling Piezoelectric Stack Actuators for Control of Micro Manipulation. IEEE Control Systems Magazine. 1997, 17(3): 69~79
    105 J.H. Oh, D.S. Bernstein. Semilinear Duhem Model for Rate-independent and Rate-dependent Hysteresis. IEEE Transactions and Automatic Control. 2005, 50(5): 631~645
    106 P. Ge, M. Jouaneh. Generalized Preisach Model for Hysteresis Nonlinearity of Piezoceramic Actuators. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology. 1997, 20(2): 99 ~111
    107 C.L. Hwang, B.S. Chen. Constant Turning Force Adaptive Control via Sliding Mode Control Design. Transactions of the ASME. 1990, 112(2): 308~312
    108 G.D. Buckner. Intelligent Sliding Mode Control of Cutting Force during Single-point Turning Operations. Journal of Manufacturing Science and Engineering-Transactions of the ASME. 2001, 123: 206~213
    109 C.F. Cheung, W.B. Lee. Modelling and Simulation of Surface Topograhpy in Ultra-precision Diamond Turning. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2000, 214(6): 463~480
    110 X. Luo, K. Cheng, R. Ward. The Effects of Machining Process Variables and Tooling Characterization on the Surface Generation: Modeling, Simulation and Application Promise. International Journal of Advanced Manufacture Technology. 2003, 25(11-12): 1089~1097
    111 R.G. Jasinevicius, J.G. Duduch, L. Montanari, P.S. Pizani. Phase Transformation and Residual Stress Probed by Raman Spectroscopy in Diamond-turned Single Crystal Silicon. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture. 2008, 222(9): 1065~1073
    112 R.G. Jasinevicius, J.G. Duduch, P.S. Pizani. Structure Evaluation Of Submicrometre Silicon Chips Removed by Diamond Turning. Semiconductor Science and Technology. 2007, 22(5): 561~573
    113 J.I. Jang, M.J. Lance, S.Q. Wen, J.J. Huening, R.J. Nemanich,G.M. Pharr. Micro-raman mapping and analysis of indentation-induced phase transformations in germanium. Fundamentals of Nanoindentation and Nanotribology III, Materials Research Society. Warrendale, 2005: 291~296
    114 Y.G. Gogotsi, A. Kailer, K.G. Nickel. Materials-Transformation of Diamond to Graphite. Nature. 1999, 401(6754): 663~664
    115 Y.G. Gogotsi, A. Kailer, K.G. Nickel. Pressure-induced Phase Transformations in Diamond. Journal of Applied Physics. 1998, 84(3): 1299~1304
    116 Y. Gogotsi, T. Miletich, M. Gardner, M. Rosenberg. Microindentation Device for in Situ Study of Pressure-induced Phase Transformations. Review of Scientific Instruments. 1999, 70(12): 4612~4617
    117 N.N. Zorev. Interrelationship between shear process occurring along the tool face and on the shear plane in metal cutting. International Research in Production Engineering ASME. 1963: 42~49
    118 Usui E.H. Takeyama. A Photoelastic analysis of machining stresses. Journal of Engineering for Industry ASME. 1960, 82: 303~308
    119 S. Kato, K. Yamaguchi, M. Yamada. Stress distribution at the interface between tool and chip in machining. Journal of Engineering for Industry Transaction American Society of Mechanical Engineers. 1972, 94: 683~689
    120 D. Buryta, R. Sowerby, I. Yellowley. Stress Distributions on the Rake Face during Orthogonal Machining. International Journal of Machine Tools & Manufacture. 1994, 34(5): 721~739
    121 Yigit Karpat, Tugrul ?zel. Predictive Analytical and Thermal Modeling of Orthogonal Cutting Process—Part I: Predictions of Tool Forces, Stresses, and Temperature Distributions. Journal of Manufacturing Science and Engineering-Transaction of the ASME. 2006, 128(2):435~444
    122 K.S. Woon, M. Rahman, K.S. Neo, K. Liu. The Effect of Tool Edge Radius on the Contact Phenomenon of Tool-based Micromachining. International Journal of Machine Tools & Manufacture, 2008, 48(12-13), 1395~1407
    123 Wilks J.E. Wilks. Properties and applications of diamond. Butterworth-Heinemann, UK, 1991:134~231.
    124 C. Pantea, J. Qian, G.A. Voronin, T.W. Zerda. High Pressure Study of Graphitization of Diamond Crystals. Journal of Applied Physics. 2002, 91(4): 1957~1962
    125 T. Evans, P.F. James. A Study of the Transformation of Diamond to Graphite. Proceedings of the Royal Society of London. Series A, Methmatical and Physical Sciences. 1964, 277(1369): 260~269
    126 C.Y. Zang, X.Z. Chen, Q. Hu, H.A. Ma, X.P. Jia. Mechanism of Diamond-to-graphite Transformation at Diamond-stable Conditions. Chinese Science Bulletin. 2009, 54(14): 2535~2538
    127周磊.微纳米动态切削系统建模及表面质量控制的研究.哈尔滨工业大学博士论文. 2009
    128刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社, 2005: 1~14
    129鲁恒.超精密机床动力学建模及分析.哈尔滨工业大学硕士论文. 2007
    130 C. Arcona, T.A. Dow. An Empirical Tool Force Model for Precision Machining. Journal of Manufacturing Science and Engineering-transactions of the Asme. 1998, 120, 4: 700~707
    131 Toropov, S.L. Ko. Prediction of Shear Angle for Continuous Orthogonal Cutting Using Thermo-mechanical Constants of Work Material and Cutting Conditions. Journal of Materials Processing Technology. 2007, 182(1-3): 167~173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700