涡街流量传感器小流量测量性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡街流量传感器是一种比较新型的速度式流量仪表,近30年发展迅速。因其具有可靠性高、压力损失小、量程比宽等优点,被广泛应用于化工、石油、冶金、轻工、食品等流程工业。对于目前工业现场常用的应力式涡街流量传感器,受其工作原理制约,在进行流量测量时易受到外界各种干扰,从而影响其测量精度及测量范围,该问题在小流量测量时尤为突出。本论文分别从数字信号处理方法、传感器结构优化——压电探头位置研究、纯硬件结构的仪表系数非线性修正几方面,对涡街流量传感器在小流量测量时的性能进行全面优化和改进。
     主要完成了以下工作:
     基于Hilbert-huang变换(HHT)的数字信号处理方法改进。通过对小流量时涡街信号进行时域和频域分析,总结有用信号、噪声的特征及形式。针对小流量时的信号特点,对HHT经典方法进行改进,使其更加适应涡街小信号去噪。通过与经典数字信号处理方法FFT的实验对比,验证了该方法在精确提取涡街有用信号、扩展测量下限方面的实用性。
     对目前工业中常用的应力式涡街流量传感器探头位置进行研究。分别在二维和三维涡街流场中对三种尺寸的梯形柱旋涡发生体进行实验,通过分析压力、速度信号在不同位置时的信号强度、信噪比、线性度等指标,最终分别确定了在二维、三维流场中压电探头的最佳检测位置,指出应将探头置于发生体下游涡的成熟区域,并推理出估算公式,揭示了影响该位置的因素。通过与涡街流量传感器原设计进行对比实验表明,不仅测量下限有所降低,测量精度也有提高。并借助流场数值仿真实验和理论分析对以下三个问题进行了详细讨论:二维、三维涡街流场差异;基于涡量输运方程的涡街流场研究;梯形柱与圆柱旋涡发生体流场差异。这些问题的研究与分析有助于更全面深刻地认识涡的产生、脱落机理、尾迹特征以及涡街流场的速度压力分布。
     提出基于CPLD的硬件式仪表系数非线性修正方法。利用三次样条插值法对小流量时超出线性度范围的仪表系数进行逼近,CPLD程序中嵌入查找表对仪表系数进行非线性修正,通过对查找表的优化,不仅节约了资源而且降低了功耗。实验证明,修正后的涡街流量计可以在保证精度的基础上有效地扩展测量范围。该方法对于存在仪表系数非线性问题的其他流量仪表也同样适用,具有良好的推广性。
Vortex flow sensor is a kind of novel velocity-type flow instrument which has been developed fast in recent thirty years. It has many advantages such as low pressure loss, wide measurement range, stabilization and so on. Therefore, it is widely used in chemical industry, petroleum, metallurgy, food industry and other flow industry. To the piezoelectric vortex flow sensor that is commonly used in industry field, the measurement is easily disturbed by any external inferences because of its operation principle, which affects the measurement precision and range of vortex flow sensor. The problem is more important in low flowrate measurement. The digital signal processing method, structural optimization on vortex flow sensor—the location of piezoelectric probe and K-factor modified method with hardware implementation are investigated respectively in the thesis. The aim is to improve the measurement performance of vortex flow sensor at low flowrates.
     The mainly research works of this thesis are listed in the following.
     The improvement method of Hilbert-huang transform(HHT). Firstly, the characteristics of vortex signal at low flowrate are analyzed in time-domain and frequency-domain respectively. The source and representation of noise components are summarized. Secondly, according to these characteristics, the HHT method is improved in order to perform its better denoise function in weak vortex signal detection. Finally, by experimental comparison with the classic digital signal processing method FFT, it is indicated that the improved HHT method can not only extract the useful vortex signal exactly but also expand the low limit of measurement.
     Research on location of the piezoelectric probe in vortex flow sensor. Experiments are carried out in two-dimensional and three-dimensional vortex flow fields respectively with three trapezoidal cylinders. The optimum detection positions of the probe in the two flow fields are finally determined by analysis on signal intensity of pressure and velocity signals, signal-to-noise ratio, linearity and so on. Furthermore, a formula for the optimum position estimation is deduced, which discloses influencing factors on it. By experimental contrast to the original design of the vortex flow sensor, it is illustrated that the improved design has better measurement precision and lower limit of measurement. Moreover, three problems appeared in experiments are mainly discussed by numerical simulations and theoretical analysis: the differences of two-dimensional and three-dimensional vortex flow fields; study of vortex flow based on vorticity-transport equation; the variance of flow fields with trapezoidal cylinder and circular cylinder, those of which are useful for us to get more knowledge in vortex flow field, such as generation and shedding of vortices, characteristics of wake, distribution of velocity and pressure and so on.
     Nonlinearity modified method of K-factor based on CPLD, which is implemented by hardware. The spline interpolation method is adopted to approximate relation curve of flowrate and K-factor. The modified algorithm is realized by look-up-table(LUT) which is embedded in CPLD. Design and optimization on the LUT is paid more attention, becasure it is not only reducing the power of system but also saving the CPLD resources. Through experiments, it is indicated that the measurement range is expanded within accuracy level by vortex flowmeter with nonlinearity modified. This method is applicable in any other flowmeters which have the same nolinearity problem of K-factor.
引文
[1]苏彦勋,李金海,流量计量,北京:中国计量出版社,1991
    [2]梁国伟,蔡武昌,流量测量技术及仪表,北京:机械工业出版社,2002
    [3]姜仲霞,涡街流量计现场应用的干扰与对策,自动化仪表,1992,13(8):31-36
    [4]汪林进,应力式涡街流量计使用须解决的问题,炼油化工自动化,1995,4:42-46
    [5] Yamasaki H.,Progress in hydrodynamic oscillator type flowmeters,Flow Measurement and Instrumentatioin,1993,4(4):241-247
    [6]孙淮清,姜仲霞,“流量测量技术与仪表选用”讲座第十八讲涡街流量计(一),自动化仪表,1998,19(9):43-48
    [7]孙淮清,姜仲霞,“流量测量技术与仪表选用”讲座第二十讲涡街流量计(二),自动化仪表,1998,19(10):42-46
    [8] Yamasaki H.,Rubin M.,The vortex flowmeter,Flow its Measurement and Control in Science and Industry,1974,975-983
    [9] Cousins T.,The performance and design of vortex meters,Proc. Int. Conf. Flow Measurement in the mid 1970s,1970
    [10] Miller R. W.,De Carlo J. P.,Cullen J. T.,A vortex flowmeter-calibration results and application experience,Proc. Flow-Con,1977
    [11] Lomas D. J.,Vortex flowmetering challenges the accepted techniques,Control Instrum,1975
    [12] Kalkhof H. G.,Influence of the bluff body shape on the measurement characteristics of vortex flowmeters,Proc. Conf. on Metering of Petroleum and its Products,1985
    [13] Cousins T,Foster S. A.,Johnson P. A.,A linear and accurate flowmeter using vortex shedding , Proc. Power Fluid for Process Control Symposium , Inst. Measurement and Control,1973,45-46
    [14] Igarashi T.,Flow characteristics around a circular cylinder with a slit (1st report,Flow control and flow patterns),Bull. JSME,1978,154:656-664
    [15] Igarashi T.,Flow characteristics around a circular cylinder with a slit (2nd report,Effect of boundary layer suction),Bull. JSME,1978,154:1389-1397
    [16] Igarashi T.,Fluid flow around a bluff body used for a Karman vortex flowmeter,Proc. Int. Symp. on Fluid Control and Measurement FLUCOME TOKYO’85,1985,1017-1022
    [17] Igarashi T.,Performance of new type vortex shedder for vortex flowmeter,Proc. 6th Triennal Int. Symp. on Fluid Control,Measurement and Visualisation FLUCOME 2000,2000,13-17
    [18] Olsen J. F.,Rajagopalan S.,Vortex shedding behind modified circular cylinders,J. Wind Eng. Ind. Aerodyn,2000,86:55-63
    [19] Popiel C. O.,Robinson D. I.,Turner J. T.,Vortex shedding form specially shaped cylinders,Proc. 11th Australasian Fluid Mechanics Conference,1992,503-506
    [20] Popiel C. O.,Robinson D. I.,Turner J. T.,Vortex shedding form a circular cylinder with a slit and concave rear surface,Appl. Sci. Res.,1993,51:209-215
    [21] Turner J. T.,Popiel C. O.,Robinson D. I.,Evolution of an improved vortex generator,Flow Meas. Instrum.,1993,4:249-259
    [22] Benson R. A.,Bentley J. P.,The optimization of blockage ratio for optimal multiple bluff body vortex flowmeters,Proc. 4th Int. Symp. on Fluid Control,Fluid Measurement and Visualization FLUCOME’94,1994,887-891
    [23] Bentley J. P.,The development of a vortex flowmeter for gas flows in large ducts,Proc. Int. Conf. on Flow Measurement FLOMEKO’85,1985,89-94
    [24] Bentley J. P.,Mudd J. W.,Vortex shedding mechanisms in single and dual bluff bodies,Flow Meas. Instrum.,2003,14:23-31
    [25]彭杰纲,旋涡型流体振动流量计流体振动特性仿真及实验研究,[博士学位论文],杭州,浙江大学,2003
    [26] Luo S. C.,Yazdani M. G.,Chew Y. T.,Lee T. S.,Effect of incidence and afterbody shape on flow past bluff cylinders,J. Wind Eng. Ind. Aerodyn,1994,53:375-399
    [27] Bentley J. P.,Benson R. A.,Shanks A. J.,The development of dual bluff body vortex flowmeters,Flow Meas. Instrum.,1996,7:85-90
    [28] Miau J. J.,Liu T. W. , Vortex flowmeter designed with wall pressure measurement,Rev. Sci. Instrum.,1990,10(61):2676-2681
    [29] Miau J. J.,Chiu E. G.,A proposal of a ring-type vortex flowmeter,Rev. Sci. Instrum.,1992,9(63):4213-4221
    [30] Miau J. J.,Wu C. W.,Hu C. C.,Chou J. H.,A study on signal quality of a vortexflowmeter downstream of two eblows out-of-plane , Flow Measurement and Instrumentation,2002,13:75-85
    [31] Saffman P. G.,Schatzman J. C.,Stability of vortex street of finite vortices,Fluid Mech.,1982,117:171-185
    [32] Saffman P. G.,Schatzman J. C.,An inviscid model for vortex-street wake,Fluid Mech.,1982,122:467-486
    [33] Taneda J. S.,Downstream development of the wakes behind cylinders,Phys Soc Japan,1959,14:843-848
    [34] Pankanin G. L.,Investigation of vortex signal stability as function of vortex meter configuration,Proc. Int. Symp. on Fluid Control,Measurement,Mechanics and Flow Visualisation FLUCOME’91,1991,455-458
    [35] Pankanin G. L.,Krystkowicz G.,Influence of sensor design on vortex meter properties,Proc. 2nd Brazilian Symp. on Flow Measurement,1995
    [36] Pankanin G. L.,Attempt of comprehensive evaluation of vortex meter design,Proc. Int. Conf. of Flow Measurement FLOMEKO’96,1996,132-137
    [37] Pankanin G. L.,Pytlak T.,Effect of meter configuration on quality of vortex signal,Proc. IMEKO XI Congress,1998
    [38]孙志强,基于差压原理的涡街流量计旋涡频率检测方法的数值仿真及实验研究,[硕士学位论文],长沙,中南大学,2004
    [39] Windorfer H.,Hans V.,Design aspects of ultrasonic measurement configuration in vortex flowmeters,Proc. IMEKO XVI Congress,2000
    [40] Windorfer H.,Hans V.,Correlation of ultrasound and pressure in vortex shedding flowmeters,Proc. Int. Conf. of Flow Measurement FLOMEKO,2000
    [41]杨行进,王杰礼,涡街流量计的量程扩展,传感器技术,1997,16(6):27-29
    [42] Miau J. J.,Hu C. C.,Chou J. H.,Response of a vortex flowmeter to impulsive vibrations,Flow Measurement and Instrumentiation,2000,11(1):41-49
    [43]刘晖,涡街流量计抗振性能的研究,矿业研究与开发,1997,17(1):49-51
    [44] Leo O. C.,Vortex meters: high-accuracy flow measurement,Mechanical Engineering,1991,10:46- 49
    [45]蒙建波,朱麟章,自适应频率测量方法(AMF)及其在涡街流量计中的应用,自动化学报,1992,18(3):362-366
    [46]朱麟章,蒙建波,叶志明等,ZLX型智能涡街流量显示仪,自动化仪表,1994,15(1):12-16
    [47]蒙建波,朱麟章,流体振荡与管道振动对涡街流量频率测量的影响与自适应频率测量方法,自动化仪表,1992,13(2):17-19
    [48]徐科军,汪枫,涡街流量计信号处理的软件方法,仪器技术与传感器,1995,5:22-25
    [49]顾倩,张崇巍,最大熵谱分析法在流量测量中的应用,全国第六届非电量电测会议论文,1990
    [50]汪安民,基于数字滤波的涡街流量计信号处理方法的研究,合肥:合肥工业大学电气与自动化工程学院,2000
    [51]徐科军,汪安民,涡街流量计信号估计的自适应陷波方法,仪器仪表学报,2000,21(2):222-224
    [52]徐科军,汪安民,基于小波变换的涡街流量计信号处理方法,仪器仪表学报,2001,22(6):636-639
    [53]徐科军,黄云志,强干扰下涡街流量计信号处理方法的研究,电子测量与仪器仪表学报,2000(增刊):437-440
    [54]徐科军,汪安民,涡街流量计的一种信号处理方法,山东工业大学学报,1999,34(3A):221-223
    [55]徐科军,吕迅宏,陈荣保等,基于DSP、具有谱分析功能的涡街流量计信号处理系统,仪器仪表学报,2001,22(3):255-264
    [56]黄咏梅,张宏建,胡赤鹰,新DFT递推算法在涡街流量信号处理中的应用,浙江大学学报工学版,2003,37(1):51-55
    [57]孙斌,周洪亮,张宏建,黄咏梅,基于Hilbert—Huang变换的涡街信号处理方法,浙江大学学报工学版,2005,39(6):801-804
    [58]陈洁,李斌,涡街流量信号处理中FFT谱分析法的探讨,上海大学学报,2004,10(3):244-247
    [59]龚振起,顾先立,龚海涛,智能化旋涡流量积算显示系统的研究,哈尔滨工业大学学报,1996,28(5):39-42
    [60]凌箐,涡街流量计信号处理的松弛陷波周期图法,[硕士学位论文],天津,天津大学,2002
    [61]吴鹏,子波消噪法在涡街流量传感器信号处理中的应用研究,[硕士学位论文],天津,天津大学,2003
    [62]张涛,吴鹏,基于子波变换的消噪方法在涡街流量传感器中的应用,天津大学学报,2003,36(1):33-36
    [63]张涛,吴鹏,基于子波变换的涡街流量传感器信号分析,计量学报,2003,24(3):199-201
    [64] Dandan Zheng,Tao Zhang,Research on vortex signal processing based on double-window relaxing notch periodogram,Flow Measurement and Instrumentation,2008,19:85-91
    [65]郑丹丹,张涛,基于混沌理论的涡街微弱信号检测方法研究,传感技术学报,2007,5(20):1103-1108
    [66]孙宏军,涡街信号数字处理技术研究,[博士学位论文],天津,天津大学,2007
    [67] Hongjun Sun,Tao Zhang,Huaxiang Wang,Wavelet denoising method used in the vortex flowmeter,International Conference on Machine Learning and Cybernetics,2003,2:1109-1112
    [68] Tao Zhang,Hongjun Sun,Peng Wu,Wavelet denoising applied to vortex flowmeters,Flow Measurement and Instrumentation,2004,15:325-329
    [69] Hongjun Sun,Tao Zhang,Digital signal processing based on wavelet and statistics method for vortex flowmeters,International Conference on Machine Learning and Cybernetics,2004,5:3160-3163
    [70] Schlatter,Gerald L.,Signal processing method and apparatus for flowmeter,1990,WO 90/04230
    [71] Kawano T.,Miyata T.,Shikuya N.,Intelligent vortex flowmeter,Proceedings of the Conference on Advances in Instrumentation and Control,1992,997-1009
    [72] Amadi-Echendu J. E.,Zhu H. J.,Higham E. H.,Analysis of from vortex flowmeter,Flow Measurement and Instrumentation,1993,4(4):225-232
    [73] Amadi-Echendu J. E.,Hengjun Zhu,Signal analysis applied to vortex flowmeters,IEEE Transactions on Instrumentation and Measurement,1992,41(6):1001-1004
    [74] Bernhard Menz,Vortex flowmeter with enhanced accuracy and reliability by means of sensor fusion and validation,Journal of the International Measurement Confederation,1997,22:123-128
    [75] Clarke D. W.,Ghaoud T.,A dual phase-locked loop for vortex flow metering,Flow Meas. Instrum.,2003,14:1-11
    [76] Masanori Hondoh,Masami Wada,Tetsuo Andoh,A vortex flowmeter with spectral analysis signal processing,Sensors for Industry Conference,2001,35-40
    [77] Masanori Hondoh,Masami Wada,A vortex flowmeter with spectral analysis signal processing,Sicon'01 Sensors for Industry Conference,2002
    [78] YOKOGAWA旋涡流量计选型设计资料
    [79] Lowell A.,Kleven,Rapid transfer function determination for a tracking filter,1999,8,US 5942696
    [80] Lowell A.,Kleven,Vortex flowmeter with signal processing,2002,7,US6412353B1
    [81] Wada,Vortex flowmeter,2002,11,US 6480812B1
    [82] Warren E.,Adaptive filter with sweep analyzer for a vortex flowmeter,2001,4,US6212975
    [83] ABB涡街流量计手册
    [84]沈阳兰申电器有限公司LVTC系列智能型涡街流量计使用说明书
    [85]张涛,段瑞峰,孙宏军,基于双核技术的数字涡街流量计信号处理系统,化工自动化及仪表,2004,31(6):71-74
    [86]邢娟,脉冲输出型数字涡街流量计的研究,[硕士学位论文],天津,天津大学,2005
    [87] Lomas D. J.,Vortex flowmetering challenges the accepted techniques,Control Instrum.,1975
    [88] White D. F.,Vortex shedding flowmeters-some fundamentals and some routine applications,Proc. Industry Oriented Conf. and Exhibit,1975,12-14
    [89] Hans V.,Poppen G.,Vonlavante E.,Vortex shedding flowmeters and ultrasound detection: signal processing and influence of bluff bodygeometry,Flow Measurement and Instrumentation,1998,9(2):79-82
    [90]李玲,李玉粱,应用基于RNG方法的湍流模型数值模拟钝体绕流的湍流流动,水科学进展,2000,4(11):357-361
    [91]吴文权,居江宁,圆柱绕流远场旋涡结构的数值研究,工程热物理学报,2001,6(22):17-20
    [92]李晓渝,索奇峰,强士中,钝体绕流的随机涡方法,西南交通大学学报,2002,1(37):40-43
    [93]孙志强,张宏建,黄咏梅,涡街流量计流场特性的数值仿真研究,自动化仪表,2004,5(25):10-13
    [94] Hulin J. P.,Fierfort C.,Condol R.,Experimental study of vortex emission behind bluff obstacles in a gas liquid vertical two-phase flow,Int. J. Multiphase Flow,1982,8(6):475-490
    [95] Yokosawa M.,Kozawa Y.,Inoue A.,Studies on two-phase cross flow part III: Characteristics of unsteady flow behavior,Int. J. Multiphase Flow,1986,12(2):185-202
    [96]李永光,林宗虎,王树众,气液两相流体涡街中旋涡结构的特性研究,西安交通大学学报,1996,30(2):36-41
    [97]李永光,林宗虎,气液两相涡街的数值计算,力学与实践,1997,19(3):14-18
    [98]李永光,林宗虎,气液两相涡街稳定性的研究,力学学报,1998,30(2):138-144
    [99]贾云飞,涡街流量传感器不同流体条件下测量特性的研究,[博士学位论文],天津,天津大学,2007
    [100] Roshko.A.,On the development turbulent wakes from vortex streets,NACA report 1191,1954
    [101] C.H.K.Williamson,Defining a universal and continuous Strouhal-Reynolds number relationship for the laminar vortex shedding of a circular cylinder,Phys. Fluids,1988,31(10):2742-2744
    [102] Fernando L.,Ponta,Strouhal-Reynolds Number Relationship for Vortex Streets, Physical Review Letters,2004,93(8):1-4
    [103]戴干策,陈敏恒,化工流体力学,北京:化学工业出版社,1988
    [104]张明友,吕明,信号检测与估计,北京:电子工业出版社,2004
    [105]张明友,吕明,近代信号处理理论与方法,北京:国防工业出版社,2005
    [106] Stanislav B. K.,Modern Spectrum Analysis,New York: IEEE Press,1986
    [107]黄咏梅,基于差压原理的涡街质量流量测量方法研究,[博士学位论文],杭州,浙江大学,2005
    [108] Nikias C. L.,Raghuveer M. R.,Bispectrum estimation: a digital signal processing framework,Proceedings of the IEEE,1987,75(7):869-891
    [109] Hinich M. J.,Detecting a transient signal by bispectral analysis,IEEE Transacrions on Acoustics,Speech and Signal Processing,1990,38(7):1277-1283
    [110] Mendel J. M.,Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applilcations,Proceedings of the IEEE,1991,79(3):278-305
    [111] Collis W. B.,White P. R.,Hammond J. K.,Higher-order spectra: the bispectrum and trispectrum,Mechanical System and signal Processing,1998,12(3):375-394
    [112] Brillinger D. R.,Irizarry R. A.,An investigation of the second-and higher-order spectra of music,Signal processing,1998,65(2):161-179
    [113] Bey N. Y.,Extraction of signals buried in noise. Part I: Fundamentals,Signal Processing,2006,86(9):2462-2478
    [114]张贤达,时间序列分析——高阶统计量方法,北京:清华大学出版社,1996
    [115] Xu Kejun,Huang Yunzhi,Power-spectrum-analysis-based signal processing system of vortex flowmeters,IEEE Trans. Instrum. Meas.,2006,55:1006-1011
    [116] Xu Kejun,Wang Xiaofen,Li Yongshan,Fundamental wave extraction and frequency measurement based on IIR wavelet filter banks,Measurement,2006,40:665-671
    [117] Huang N. E. et al,The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,Proc. R. Soc. Lond.,1998,A454:903-995
    [118]熊学军,郭炳火,胡筱敏,刘建军,EMD方法和Hilbert谱分析方法的应用与探讨,黄渤海海洋,2002,20(2):12-21
    [119]邓拥军,王伟,钱成春,王忠,戴德君,EMD方法及Hilbert变换中边界问题的处理,科学通报,2001,46(3):257-263
    [120] Pankanin G. L.,Pytlak T.,New development in vortex meter design,Proc. Int. Symp. on Fluid Control Measurement , Mechanics and Flow Visualisation FLUCOME’88,1988,479-483
    [121]杨福生,小波变换的工程分析与应用,北京:科学出版社,1999
    [122] Daubechies I.,Ten lectures on wavelets,CBMS,SIAM,1994
    [123]姜楠,王振东,舒玮,子波分析辨识壁湍流猝发事件的能量最大准则,力学学报,1997,29(4):406-411
    [124] Liandrant J.,Moret-Bailly F.,The wavelet transform: some applications to fluid dynamics and turbulence,Eur. J. Mech. Fluid,1990,9(1):1-19
    [125] S.J. Kolpatzik,A. Hilgenstock,H. Dietrich,B. Nath,The location of temperature sensors in pipe flows for determining the mean gas temperature in flow metering applications,Flow Measurement and Instrumentation,1998,9(1):43-57
    [126] V. Seshadri,B.K. Gandhi,S.N. Singh,R.K. Pandey,Analysis of the effect of body shape on annubar factor using CFD,Measurement,2004,35(1):25-32
    [127] S.N. Singh,B.K. Gandhi V.Seshadri,V.S. Chauhan,Design of a bluff body for development of variable area orifice-meter , Flowmeter Measurement and Instrumentation,2004,15(2):97-103
    [128]孙立军,降低涡轮流量传感器粘度变化敏感度的研究,[博士学位论文],天津,天津大学,2005
    [129]苏锋,减小流体粘性对浮子流量传感器测量影响的研究,[博士学位论文],天津,天津大学,2006
    [130]徐英,V形内锥流量计的数值模拟与实验研究,全国流量测量学术交流会论文集,2006,303-313
    [131]周光埛,严宗毅,许世雄,章克本,流体力学(上册),北京:高等教育出版社,2000
    [132] Ahlborn B,Seto M L,Noack B R,On drag, Strouhal number and vortex-street structure,Fluid Dynamics Research,2002,30:379-399
    [133] Pedram Roushan , X L Xu , Structure-based interpretation of the Strouhal-Reynolds number relationship,Physical Review Letters,2005,94:054504-1-4
    [134] Pankanin G L,Artur Kulinczak,Jerzy Berlinski,Investigations of Karman vortex street using flow visualization and image processing,Sensors and Actuators A,2007,138:366-375
    [135] V. C. Strouhal,On a particular way of tone generation,Wiedmann’s Annalen der Physik und Chemie,1878,5:216-251
    [136] A. Roshko,On the development of turbulent wakes from vortex streets,National Advisory Committee for Aeronautics NACA Tech Report 1191,1954
    [137] C. H. K. Williamson,The existence of two stages in the transition to three-dimensionality of a cylinder wake,Physics of Fluids,1988,31:3165-3168
    [138] A. K. Saha,G. Biswas,K. Muralidhar,Three-dimensional study of flow past a square cylinder at low Reynolds numbers,Heat and Fluid Flow,2003,24:54-66
    [139]中华人民共和国国家计量检定规程——速度式流量计,JJG 198-94,1994-12-01
    [140] Ernst von Lavante,Influence of shape deviations on the measurement precision of vortex flow meters,Proc. Int. Conf. of Flow Measurement FLOMEKO’2003,2003
    [141] Gerrard J. H.,The mechanics of the formations region of vortices behind bluff bodies,Journal of Fluid Mechanics,1966,25:401-413
    [142] Pankanin G. L.,Berlinski J.,Chmielewski R.,Simulation of Karman vortex street development using a new model,Metrology and Measurement System,2006,8(1):35-47
    [143]张也影,流体力学,北京:高等教育出版社,1991
    [144] C. H. K. Williamson,Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds number,J. Fluid Mech.,1989,206:579-627
    [145] Zhang H. Q.,Uwe F.,Noack B.R.,On the transition of the cylinder wake,Phys. Fluids,1995,7(4):779
    [146]郁春伟,圆柱尾迹三维转捩特性研究,[博士学位论文],北京,中国科学院力学研究所,1996
    [147] C. H. K. Williamson,The natural and forced formation of spot-like vortex dislocations in the transition of a wake,J. Fluid Mech.,1992,243:393
    [148]陈矛章,粘性流体动力学基础,北京:高等教育出版社,1993
    [149]夏学湔,工程分离流动力学,北京:北京航空航天大学出版社,1991
    [150] Eisenlohr H.,Eckelmann H.,Vortex splitting and its consequences in the vortex street wake of cylinders at low Reynolds number,Phys. Fluids A,1989,1:189
    [151] Koenig M.,Eisenlohr H.,Eckelmann H.,The fine structure in the St-Re relationship of the laminar wake of a circular cylinder,Phys. Fluid A,1990,2:1607
    [152] Hammache M.,Gharib M.,A novel method to promote parallel shedding in the wake of circular cylinders,Phys. Fluids A,1989,1:1611
    [153]山东大学压电铁电物理教研室,压电陶瓷及其应用,济南:山东人民出版社,1974
    [154]杨金生,唐怀璞,大口径低流速插入式切向涡轮流量计的研制,天津电子仪表质量品种效益学术会议论文集,1991
    [155]唐怀璞,刘蕴华,流量仪表中仪表系数的非线性修正,自动化仪表,2000,21(11):4-6
    [156]王道宪,CPLD/FPGA可编程逻辑器件应用与开发,北京:国防工业出版社,2004
    [157]赵曙光,郭万有,可编程逻辑器件原理、开发与应用,西安:西安电子科技大学出版社,2006
    [158]杜清府,压电晶体式涡街流量传感器放大电路的设计,自动化仪表,2005,26(3):52-54
    [159] Altera Corporation,MAX II Device Handbook,2004
    [160]徐士良,数值分析与算法,北京:机械工业出版社,2003
    [161]姜仲霞,姜川涛,刘桂芳,涡街流量计,北京:中国石化出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700