电压定标高灵敏电光探测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成电路的高速发展给集成电路芯片检测技术带来了巨大的挑战。电光探测作为一种电场探测的光学手段,由于其高响应速率(达到THz)、高空间分辨率和电场无侵扰等特性,引起人们的广泛关注。电光探测的机理是电介质材料的电光效应,即折射率在外加电场的作用下发生变化。电光探测通常把一小块电光晶体或极化聚合物附着在导光的石英锥或光纤的端面,然后把电光材料送到集成电路测量点的发散场中,发散场引起电光材料的折射率变化,从而通过干涉或检偏等方法把折射率变化测量出来,然后就可以推算出集成电路内部的电压信号。然而,电压定标困难和低的电压灵敏度始终是电光探测技术实用化的障碍。本论文的主要研究内容是围绕这两方面展开的。
     电压定标是电光探测的一个技术瓶颈,即很难通过测量到的电光信号的幅值来确定集成电路内部节点或传输线上的电压绝对值。原因主要有两个:芯片测量点的发散场分布与电路的布局布线有关;由于集成电路表面形貌的起伏、电光探头的不平整性和电光探头定位精度等原因,使得电光材料与被测量点之间不可避免地存在空气隙,而且空气隙厚度是不可控的。为了分析电压定标的具体问题,我们用有限差分法对集成电路表面的电场分布进行模拟。计算结果得知,电光材料厚度要小于或等于测量点与邻近互连线的间距,才能有效消除布线布局的影响;由于发散场分布在电路表面几微米处,只要有亚微米量级的空气隙对集成电路的定标造成巨大影响。针对空气隙问题,我们创新地提出参考电压法,即在电光材料的上表面引入已知的标准信号,用已知信号为被测信号定标。实验上,我们制作了以GaAs晶体为场敏感材料的电光探头,又设计了共面波导来模拟不同的集成电路。实验结果表明参考电压法的定标误差小于6%,基本满足集成电路检测要求。
     另一项研究内容是提高电光探测的电压灵敏度。传统电光晶体的电光系数很低,通常只有几pm/V,而且具有较大的介电常数,把集成电路发散场的大部分都屏蔽在空气隙内,因而造成电光转化效率很低。为了提高电压灵敏度,本论文提出了三种方法:1、利用电光材料的声学共振现象;2、利用极性液体分子的取向极化效应;3、利用聚合物稳定的手性液晶的巨大电光系数。
     首先,利用声学共振的方法提高电压灵敏度。本论文中,在理论上阐明电光材料是一定具备逆压电效应,而且通常情况下逆压电效应要比电光效应弱。然而,在外电场频率接近电光材料的压电共振频率时,逆压电效应的强烈形变可以辅助增强电光探测的电压灵敏度。实验上,通过GaAs电光探头的频率响应特性的测量,展示了逆压电共振现象并且在共振峰附近可以提高电压灵敏度两个量级以上。为了进一步证实共振效应,我们在电光探头上加不同重量的金属环,实验结果发现共振频率随外加重量增加而向低频移动,符合压电振子模型的理论。另外,ZnO多晶薄膜被引入到压电共振提高电压灵敏度的电光探测中。虽然ZnO薄膜电光系数很小,但是具有高的逆压电系数。实验上,采用磁控溅射的方法外延生长ZnO薄膜。经过生长条件摸索,在溅射功率为100W、基片温度为250℃和氩氧比为2:1的条件下,ZnO有较好的C轴取向和薄膜质量。同样,利用ZnO电光探头也测量到逆压电增强的频率曲线。因此在实际集成电路检测中,可以制作特定共振频率的电光探头用于故障诊断。
     其次,利用极性液体的取向极化来提高电光探测的电压灵敏度。液体的本质特性起到两个作用:一是由于液体的流动性解决了固体电光探测与被测点之间不可避免存在空气隙的问题;二是较大的电光系数可以进一步提高电压灵敏度,因为理论上极性液体的分子取向极化率要比无机晶体的离子位移极化或极化聚合物的电子位移极化大几个数量级。在实验上,我们设计了测量液体电光系数的光学系统,并测量了多种极性液体的电光系数。测量得到极性液体二甲基甲酰胺(DMF)的电光系数较大,达到250pm/V左右。此外,液态膜的电光探测结构使得被测电路和电光材料为一个整体,解决了困扰固体探头的探头定位问题。实验结果显示液态膜电光探测的电压灵敏度达到毫伏量级,在同一电学系统中至少比GaAs电光探头提高两个量级。另外,我们实验发现液态膜具有一阶电光效应的特性,而一阶电光效应只存在于没有反演对称中心的材料中。通过锁相放大器分频放大的方法把一阶和二阶电光调制信号分开,并分析出这两个信号的起源。实验发现液态膜的一阶和二阶电光效应都具有大的电光系数和低的响应频率等特点。根据这种电光效应的特性,我们提出液态膜一阶电光效应的物理模型:在电场的诱导下极性分子发生取向性的集聚,从而破坏了液体原有的各向同性。我们用红外吸收谱分析极性液体内在微观结构在电场作用下的变化。实验上,在脉冲电场的作用下,液体的吸收谱下降,并且这种变化能维持较长一段时间,从而证实了我们提出的物理模型。
     第三,利用聚合物稳定的手性液晶的巨大电光系数来提高电光探测的电压灵敏度。根据氟化液晶的低驱动电压、低粘度系数等优点,我们选择混合氟化液晶WTK83100和有较大折射率差的液晶单体5CB作为液晶主体材料。在不同的手性掺杂剂浓度下,制备出液晶聚合物并测量其电光系数。综合考虑液晶聚合物的稳定性和透明性等问题,实验上优化选择的手性液晶的螺距是1.2μm左右,其电光系数达到了7.2×10-9m/V2。我们把这种液晶聚合物用于电光探测,探头结构和液态膜类似,并实现了对短路和断路故障电路的测量。用Labview自动化软件控制对10μm线宽的叉指电极进行二维扫描电压定标探测,实验结果符合实际电压分布,且测量空间分辨率达到了1.25μm。
The fast-growing integrated-circuit (IC) industry brings great challenges into chipdetection. Electrooptical detection is now being considered as a powerful andattractive option for high precision local electric field measurement, primarily due toits unique merits like large intrinsic bandwidths (DC to THz), noninvasiveness andhigh spatial resolution. The core component of an electrooptical probe is a tiny pieceof electrooptical film consisting either of polymers or semiconductor crystals, affixedto the tip of a tapered waveguide or a fiber. If the optical performance of the film, e.g.,refractive index or birefringence, is affected by external electric field, the probe isfeasibly implemented as a proximity electric field sensor, functioning when it isbrought to the immediate surface of an integrated circuit (IC). Waveform of theelectric signal at a particular site of the IC is thus attainable by measuring the phasemodulation of a laser beam traveling through the film on the probe. This makes theelectrooptical detection a promising tool for IC fault diagnosis and designimprovement.
     Nevertheless, a drawback of electro-optical detection that is hindering itspractical use is the inherent difficulty in calibrating the voltage magnitude. Althoughsome proposals try to overcome the complexity, they are not applicable to theelectrooptical detection using an external probe. It is difficult to correctly determinethe value of the applied voltage because of the emanating field divergence from an ICcircuit line and the uncertainty of the physical contact between the probe tip and thecircuit. The former, associated with the IC layout, local routing, line width andspacing, is caused by interruption of neighbored nodes or lines. The latter is inevitablein different runs of each voltage measurement process since no appropriate and finedistance monitoring or feedback mechanism has been found for such system. Atip-grounded waveguide micro-sensor was proposed to overcome the difficulty of quantitative voltage calibration in electrooptical detection for integrated circuits test.On this basis, we optimized the thickness of the electrooptical material of the sensorto eliminate the influence of the circuit layout on the measured signals by fringe fieldsimulation. The improved sensor in return made it possible to calibrate the voltagewith known reference electric signals quantitatively. This method circumvented theuncertainty of the probe conditions of each measurement point. Finally, a calibrationaccuracy of better than6%was obtained, which satisfied broad applications inintegrated circuit industry.
     Another essential drawback of electro-optical detection is low voltage sensitivity,primarily due to (i) the electrooptical coefficients γijof crystals are generally small, atthe order of several pm/V;(ii) the emanating field from circuits are subject tosignificant decay by the air gap between the electrooptical probe and the circuit undertest because of the nature of the non-contact detection mode and the existence of thepassivation layer of the circuit surface. In this dissertation,we has made threeproposals to increasing voltage sensitivity:(i) acoustic resonant effect of inorganiccrystals;(ii) molecular orientation effect of polar liquids;(iii) the large Kerr effect ofpolymer-stable liquid crystals.
     First, we solve the voltage sensitivity problem with the help of the acoustic (e.g.,piezoelectric and electrostrictive) effect, a common property of almost all dielectrics.In contrast to the general electro-optic effect, the light phase modulation induced bythe acoustic effect is two orders of magnitude stronger at its resonant frequency, as weobserved in a GaAs thin film probe. Furthermore, this novel method shows a highlyreproducible linearity between the detected signals and the input voltages, whichfacilitates the voltage calibration. Beside, we introduced ZnO films of highpiezoelectricity to the electro-optical detection. ZnO thin films were epitaxiallydeposited on the tip of a tapered waveguide using a radio frequency magnetronsputtering method. Although the electro-optical coefficient was evaluated as only0.2pm/V, ZnO films exhibits high sensitivity in electro-optical detection due to thepizeo-rensonance.
     Second, efforts have therefore been devoted to exploration of novel electroopticalmaterials. Electrooptical polymer, due to the γijas high as of the order of hundreds ofpm/V has shown a promising prospect to enhance the sensitivity. However, problemsassociated with the polymer film are low abrasive resistance and weak adhesion to theglass cone, so that the probe is difficult to endure high-speed, multi-point, large areadetection as an atomic force microscopic tip does. In addition, the air gap between theelectrooptical probe and the measurement point still can’t be eliminated. In thisdissertation, we propose a novel electro-optical probe mechanism, which useliquid-state polar molecules as the sensing film, which is coated onto the circuitsurface, instead of being affixed to the scanning tip end. An electro-optical probeconfiguration with polar molecule liquids as the sensing film was designed forelectro-optical detetion. This scheme has not only eliminated the air gap, but also usedmolecular orientation as a response to the electric field excitation, leading to asensitivity of0.1mV/√Hz. This method exhibited voltage sensitivity enhancement oftwo orders of magnitude larger than the normal method using a GaAs probe in thesame measurement system. Based on the mechanism of orientation polarization, theelectro-optic coefficient was measured to be250pm/V by Teng-Man method atmodulation field of100Hz. This technology will be promising in applications oflow-frequency field detection. We present an anomalous electro-optic effect in polarliquid films: liquids, usually considered to be isotropic, possess the linearelectro-optic effect that occurs only in materials lacking inversion symmetry. Due tothe observed large effect in the low-frequency range and slow response speed, thisstrange effect was thought to come from the field-induced orientation of large mass.Therefore, we brought forward a physical model that contributed to the interpretationof this phenomenon: field-induced pre-oriented, short-range orderly dipole clusters inliquid films break the macroscopic symmetry and results in this asymmetric effect.Finally, combined with spectral analysis, the formation of clusters induced by anelectric pulse was proved.
     Third, polymer-stabilized liquid crystals (PSLC) with experimentally observed large electro-optic effect are introduced to the electro-optical detection to improve thevoltage sensitivity. The Kerr constant of materials prepared in this study reached ashigh as7.2×10~(-9) m/V~2, increasing the sensitivity by1000times than the conventionalelectro-optical materials. The noncontact detection configuration, using the laser beamas a probe, enables quick2-demension scanning measurements. This detection meansoffers several advantages including the following:(1) it uses the focused laser beamas a probe, which overcomes the complexity of the precision positioning ofconventional external probes;(2) due to the fluidity of PSLC materials before curing,field sensing materials could closely contact with the circuit surface,(3) an ITO layeris introduced to screen all the fringing electric field of the given circuit in the PSLCmaterial so as to further enhance the voltage sensitivity.
引文
[1] Texas Instrument, The chip that Jack built changed the word, Texas Instrument,1997.
    [2] MOORE G E, Cramming More Components into Integrated Circuits[J].Electronics,1965,38(8):82-85.
    [3]郝跃,刘红侠.维纳米MOS器件可靠性与失效机理[M].北京:科学出版社,2008.
    [4]陶丽芳,马琪,竺红卫.集成电路故障诊断方法研究[J].计算机与现代化,2009,165:26-28.
    [5] WENGARTEN K J, RODWELL M J W. Electron-beam testing of VLSI chipsgets practical[J]. Electronics,1986,3:51-54.
    [6] ISCOFF R. E-beam probing systems: Filling the submicron gap[J].Semiconductor Int.,1985,35:62-68.
    [7] MCINTOSH R B. Justification for infrared microimaging in the design,manufacture, test and screening of semiconductor microcircuits. SPIE[C],1987,780:148-153.
    [8] YAHIA A H. Infrared thermal mapping of microelectronic circuits. SPIE[C],1985,590:244-248.
    [9] MARCUS R B, WEINER A M, ABELES J H, et al. High-speed electricalsampling by fs photoemission[J]. Appl. Phys. Lett.,1986,49(6):357-359.4.
    [10]BOKOR J, JOHNSON A M, STORZ R H, et al. High-speed circuit measurementsusing photoemission sampling[J]. Appl. Phys. Lett.,1986,49(4):226-228.
    [11]WEINER A M, MARCUS R B, LIN P S D, et al. Photoemissive testing ofhighspeed electrical waveforms in Picosecond Electronics and Optoelectronics,New York: Springer-verlag,1987,18(4):89-93.
    [12]AUSTON D H. Effective elastic parameters of random composites[J]. Appl. Phys.Lett.,1980,37:377-379.
    [13]AUSTON D H, SMITH P R. Picosecond optical electronics for high speedinstrumentation[J]. Laser Focus,1982,18(4):89-93.
    [14]SHINAGAWA M, NAGATSUMA T. A laser-diode-based picosecond electroopticprober for high-speed LSIs[J]. IEEE T. Instrum. Meas.,1992,41:375-380.
    [15]NAGATSUMA T, SHIBATA T, SANO E, et al. Subpicosecond sampling using anoncontact electro-optic probe[J]. J. Appl. Phys.,1989,66:4001-4009.
    [16]BERDEN G, JAMISON S P, MACLEOD A M, et al. Electro-Optic techniquewith improved time resolution for real-time, nondestructive, single-shotmeasurements of femtosecond electron bunch profiles[J]. Phys. Rev. Lett.,2004,93:114802.
    [17]WU Q, ZHANG X C. Ultrafast electro-optic field sensors[J]. Appl. Phys. Lett.,1996,68:1604-1606.
    [18]ZHU Z H, WU M C, LO Y H, et al. Measurements on standing waves in GaAscoplanar waveguide at frequencies up to20.1GHz by electro-optic probing[J]. J.Appl. Phys.,1988,64:419-42.
    [19]VALDMANIS J A, MOUROU G, Gabel C W. Picosecond electro‐opticsampling system[J]. Appl. Phys. Lett.,1982,41:221-222.
    [20]FREEMAN J L, DIAMOND S K, FONG H, et al. Electro-optic sampling ofplanar digital GaAs integrated circuits[J]. Appl. Phys. Lett.,1985,47:1083-1084.
    [21]WENGARTEN K J, RODWELL M J W, HEINRICH H K, et al. Directelectro-optic sampling of GaAs integrated circuits[J]. Electron. Lett.,1985,21:765-766.
    [22]WEI S, TIAN X J, Yi M B, et al. Direct electro-optic sampling of internaldynamic characteristic in high-speed GaAs integrated circuit[J]. Chinese Journalof Infrared and Millimeter Waves,1995,13(5):441-446.
    [23]TIAN X J, YI M B, ZHANG D M, et al. Function testing and failure analysis ofintegrated circuit chip using laser probe[J]. Proceeding of SPIE,1998,3551:153-156.
    [24]FREEMAN J L, BLOOM D M, JEFFERIES S R, et al. Sensitivity of directelectro-optic sampling to adjacent signal lines[J]. Appl. Phys. Lett.,1989,54:478-480.
    [25]SHINAGAWA M. An automated electro-optic probing system forultra-high-speed IC’s[J]. IEEE Trans. Instrum. Meas.,1994,43(6):843-847.
    [26]VALDMANIS J A, et al.1THz-bandwidth prober for high-speed device andintegrated circuits[J]. Electron. Lett.,1987,23(24):1308-1310.
    [27]NAGATSUMA T. Measurement of high-speed devices and integrated circuitsusing electro-optic sampling technique[J]. IEICE Trans. Electron,1993,E76-C(1):55-63.
    [28]NAGATSUMA T, SHINAGAWA M. Picosecond electro-optic probing ofhigh-speed integrated circuits using external GaAs tip[J]. Eletron. Lett.,1991,27(21):1904-1905.
    [29]NEES J, MOUROU G. Noncontact electro-optic sampling with a GaAs injectionlaser[J]. Electron. Lett.,1986,22(17):918-919.
    [30]ZHANG H B, WANG R, CHEN K X, et al. Research of spatial resolution inexternal electro-optic probing[J]. Opt. Laser. Technol.,2002,34:283–286.
    [31]LIU H F, YI M B, ZHANG H B, et al. Electro-optic measurement system withhigh spatial resolution utilizing poled polymer film as external probe tip[J]. Opt.Laser. Technol.,2005,37:410–415.
    [32]张洪波.亚微米空间分辨率的电光探测技术[D].吉林:吉林大学电子科学与工程学院,2003.
    [1] VALDMANIS J A.1THz-bandwidth prober for high-speed device andintegrated circuits[J]. Electron. Lett.,1987,23(24):1308-1310.
    [2] SCHNEIDER A, GüNTER P. Measurement of the terahertz-induced phase shiftin electro-optic sampling for an arbitrary biasing phase[J]. Applied Optics,2006,45:6598-6601.
    [3] CHEN Z, JIA Gang, YI M. External electro-optic measuring system with highspatial resolution and high voltage sensitivity by using an electro-optic solidimmersion probe[J]. Journal of Physics D: Applied Physics,2001,34:3078–3082.
    [4] HEUTMAKER M S, HARVEY G T, BECHTOLD P F. Electro-optic samplingof high-speed silicon integrated circuits using a GaAs probe tip[J]. Appl. Phys.Lett.,1991,59(2):146-148.
    [5]石顺祥,陈国夫,赵卫,刘继芳.非线性光学[M].西安:西安电子科技大学出版社,2003.
    [6]马春生,刘式墉.光波导模式理论[M].吉林:吉林大学出版社,2007.
    [7] MITROFANOV O, GASPARYAN A, PFEIFFER L N, et al. Electro-optic effectin an unbalanced AlGaAs/GaAs microresonator[J]. Appl. Phys. Lett.,2005,86:202103.
    [8] HOLLRICHER O, RUDDERS F, BUCHAL C. Generation of guided polaritonsin electro-optic LiTaO3probes[J]. J. Appl. Phys.,1995,77(3):1903–1906.
    [9] CAO H, HEINZ T F, NAHATA A. Electro-optic detection of femtosecondelectro-magnetic pulses by use of poled polymers[J]. Opt. Lett.,2002,27(9):755–777.
    [10]SUN H, PYAJT A, LUO J, et al. All-dielectric electrooptic sensor based on apolymer microresonator coupled side-polished optical fiber[J]. IEEE SensorsJournal,2007,7(4):515–524.
    [11]HJELME D R, YADLOWSKY M J, MICKELSON A R. Two-dimensionalmapping of the microwave potential on MMIC’s using electroopticsampling[J]. IEEE Trans. Microwave Theory Tech.,1993,41:1149–1158.
    [12]DUVILLARET L, LOURTIOZ J M, CHUSSEAU L. Absolute voltagemeasurements on Ⅲ-Ⅴ integrated circuits by internal electro-opticsampling[J]. Electron. Lett.,1995,31:23–24.
    [13]QUANG D L, ERASME D, HUYART B. MMIC-calibrated probing by CWelectrooptic modulation[J]. IEEE Trans. Microwave Theory Tech.,1995,43:1031–1036.
    [14]MULLER P O, ERASME D, HUYART B. New calibration method inelectrooptic probing due to wavelengthcontrol and Fabry-Perot resonance[J].IEEE Trans. Microwave Theory Tech.,1999,47:308–314.
    [15]HOFMANN R, PFLEIDERER H J. Simulations of the potential distribution andthe resulting measurement signal in longitudinal external electro-optic probetips[J]. Microelectron Eng.,1996,31:377–384.
    [16]倪光正.电磁场的计算机辅助分析[M].西安:西安交通大学出版社,1985.
    [17]盛剑霓.电磁场数值分析[M].北京:科学出版社,1984.
    [18]刘鸿飞.可校准电压的电光探测技术[D].吉林:吉林大学电子科学与工程学院,2006.
    [19]SASABAYASHI T, ITO N, NISHIMURA E, et al. Comparative study onstructure and internal stress in tin-doped indium oxide and indium-zinc oxidefilms deposited by RF magnetron sputtering[J]. Thin Solid Films,2003,445:219-223.
    [20]BAIA I, FERNANDES B, NUNES P, et al. Influence of the process parameterson structural and electrical properties of r.f. magnetron sputtering ITO films[J].Thin Solid Films,2001,383:244-247.
    [21]KURDESAU F, KHRIPUNOV G, DA CUNHA A F, et al. Comparative study ofITO layers deposited by DC and RF magnetron sputtering at room temperature[J].J. Non-Cryst. Solids,2006,352:1446–1470.
    [1] MITROFANOV O, GASPARYAN A, PFEIFFER L N, et al. Electro-optic effectin an unbalanced AlGaAs/GaAs microresonator[J]. Appl. Phys. Lett.,2005,86:202103.
    [2] MATHEW S K. Experimentally determined γ13electro-optic coefficient for alithium niobate crystal[J]. Appl Optics,2003,42:3580-3582.
    [3] CECELJA F, BORDOVSKY M,BALACHANDRAN W. Lithium niobate sensorfor measurement of DC electric fields[J]. IEEE T. Instrum. Meas.,2001,50:465-469.
    [4] NAGATSUMA T, SHIBATA T, SANO E, et al. Subpicosecond sampling using anoncontact electro-optic probe[J]. J. Appl. Phys.,1989,66:4001-4009.
    [5] SEITZ S, BIELER M, HEIN G, et al. Characterization of an external electro-opticsampling probe: Influence of probe height on distortion of measured voltagepulses[J]. J. Appl. Phys.,2006,100:113124.
    [6] HOLLRICHER O, RIDDERS F, BUCHAL C. Generation of guided polaritons inelectro-optic LiTaO3probes[J]. J. Appl. Phys.,1993,77(3):1093-1096.
    [7] BERTRAM R P, SOERGEL E, BLANK H, et al. Strong electro-optic effect inelectrically poled photoaddressable polymers[J]. J. Appl. Phys.,2003,94:6208-6211.
    [8] KHANARIAN G,SOUNIK J, WALTON C, et al. Electro-optic characterizationof nonlinear-optical guest-host films and polymers[J]. J. Opt. Soc. Am. B,1996,13(9):1927-1934.
    [9] AKELAITIS A J P, OLBRICHT B C, SULLIVAN P A, et al. Synthesis andelectro-optic properties of amino-phenyl-thienyl donor chromophores[J]. Opt.Mater.,2008,30:1504-1513.
    [10]刘少林.分散红基有机电光薄膜特征及其在电光探测技术中的应用研究[D].吉林:吉林大学电子科学与工程学院,2010.
    [11]KIM T D, LUO J D, KA J W, et al. Ultralarge and thermally stable electro-opticactivities from Diels-Alder crosslinkable polymers containing binarychromophore systems[J]. Adv. Mater.,2006,18:3038-3042.
    [12]X Z, WU S, SOBOLEWSKI R, et al. Electro-optic sampling system with asingle-crystal4-N,N-dimethylamino-4'-N'-methyl-4-stilbazolium tosylatesensor[J]. Appl. Phys. Lett.,2003,82:2383-2385.
    [13]PAN F, KNOPFLE G, BOSSHARD C, et al. Electro-optic properties of theorganic salt4-N,N-dimethylamino-48-N8-methyl-stilbazolium tosylate[J]. Appl.Phys. Lett.,1996,69(1):13-15.
    [14]孙慷,张福学.压电学[M].北京:国防工业出版社,1984.
    [15]SHI W, DING Y J J, MU X D, et al. Electro-optic and electromechanicalproperties of poled polymer thin films[J]. Appl Phys Lett,2001,79:3749-3751.
    [16]WINKELHAHN H, WINTER H, NEHER D. Piezoelectricity and electrostrictionof dye-doped polymer electrets[J]. Appl. Phys. Lett.,1994,65(11):1347-1349.
    [17]BOTTOM V E. Measurement of the piezoelectric coefficient of quartz Using theFabry-Perot dilatometer[J]. J. Appl. Phys.,1970,41(10):3941-3944.
    [18]GARZARELLA A, QADRI S B, WIETING T J, et al. Piezo-induced sensitivityenhancements in electro-optic field sensors[J]. J. Appl. Phys.,2005,98:043113.
    [19]PAULIAT G, MATHEY P, ROOSEN G. Influence of piezoelectricity on thephotorefractive effect[J]. J. Opt. Soc. Am. B,1991,8(9):1942-1946.
    [20]HEUTMAKER M,HARVEY T,BECHTOLD P. Electra-optic sampling ofhigh-speed silicon integrated circuits[J]. Appl. Phys. Lett.,1991,59(2):146-148.
    [21]DYKAAR D, KOPF R, KEIL U, et al. Electro-optic sampling using an aluminumgallium arsenide probe[J]. Appl. Phys. Lett.,1993,62(15):1173-1175.
    [22]ASHIDA A, NAGATA T, FUJIMURA N. Electro-optical effect in ZnO: Mn thinfilms prepared by Xe sputtering[J]. J Appl Phys,2006,99:013509.
    [23] WACOGNE B, ROE M P, PATTINSON T J, et al. Effectivepiezoelectric activity of zinc oxide films grown by radio-frequency planarmagnetron sputtering[J]. Appl. Phys. Lett.,1995,67(12):1674-1676.
    [24]YANG Y C, SONG C, WANG X H, et al. Giant piezoelectric d(33) coefficient inferroelectric vanadium doped ZnO films[J]. Appl Phys Lett,2008,92:012907.
    [25]CARCIA P F, MCLEAN R S, REILLY M H, et al. Transparent ZnO thin-filmtransistor fabricated by rf magnetron sputtering[J]. Appl. Phys. Lett.,2003,82:1117-1119.
    [26]VALLE G G,HAMMER P,PULCINELLI S H,et a1.Transparent andconductive ZnO:A1thin films prepared by sol-gel dip coating[J]. Eur. Cera. Soc,2004,24:1009-1013.
    [27]MYOUNG J M, YOON W H, LEE D H, et al. Effects of thickness variation onproperties of ZnO thin films grown by pulsed laser deposition[J]. Jpn J. Appl.Phys.,2002,41:28-31.
    [28]LIU Y, GORLA C R, LIANG S, et al. Ultraviolet detectors based on epitaxialZnO films grown by MOCVD[J]. J. Electron. Mater.,2000,29:69-74.
    [29]JOHNSON M A L, FUJITA S, ROWLAND W H, et al. MBE growth andproperties of ZnO on sapphire and SiC substrates[J]. Journal of ElectronicMaterials,1996,25(5):855-862.
    [1]殷之文.电介质物理学[M].北京:科学出版社,2003.
    [2] KUZYK M G, SOHN J E, DIRK C W. Mechanisms of quadratic electro-opticmodulation of dye-doped polymer systems[J]. J. Opt. Soc. Am. B,1990,7(5):842–858.
    [3] TENG C C, MAN H T. Simple reflection technique for measuring theelectro-optic coefficient of poled polymers[J]. Appl. Phys. Lett.1990,56:1734–1736.
    [4] SHUTO Y, AMANO M. Reflection measurement technique of electro-opticcoefficients in lithium niobate crystals and poled polymer films[J]. J. Appl. Phys.,1995,77(9):4632-4638.
    [5]史伟,房昌水,潘奇伟,等.简单反射法测量聚合物薄膜线性电光系数的研究[J]. Chin. Phys. Soc.2000,49(2):262-266.
    [6] SHI J, CAO Z Q, SHANG Y K, et al. Method of measuring piezoelectriccoefficient of crystal based on the attenuated total reflection technique[J]. Mater.Lett.,2005,59:3595-3598.
    [7] JIANG Y, CAO Z Q, SHEN Q S, et al. Improved attenuated-total-reflectiontechnique for measuring the electro-optic coefficients of nonlinear opticalpolymers[J]. J. Opt. Soc. Am. B,2000,17(5):805-808.
    [8] ROCHAT N, CHABLI A, BERTIN F, et al. Attenuated total reflectionspectroscopy for infrared analysis of thin layers on a semiconductor substrate[J].J. Appl. Phys.,2002,91(8):5029-5034.
    [9] ZHANG D M, YI M B, CHEN K X, et al. Electro-optic measurement of poledpolymer-based asymmetric Fabry-Perot cavity[J]. Opt. Quant. Electron.,2000,32:1183-1190.
    [10]GULDE S, JOCHIM S, MOLL N, et al. A pump-and-probe method for thecharacterization of nonlinear material parameters within Fabry-Perotmicrocavities[J]. J. Appl. Phys.,2006,100:043112.
    [11]ELDERING C A, KNOESEN A, KOWEL S T. Use of Fabry-Perot devices forthe characterization of polymeric electro-optic fims[J]. J. Appl. Phys.,1991,69(6):3676-3686.
    [12]NORWOOD R A, KUZYK M G, KEOSIAN R A. Electra-optic tensor ratiodetermination of side-chain copolymers with electro-optic interferometry[J].J.Appl. Phys.,1994,75(4):1869-1874.
    [13]SINGER K D, KUZYK M G, HOLLAND W R, et al. Electro-optic phasemodulation and optical second-harmonic generation in corona-poled polymerfilms[J].Appl. Phys. Lett.,1988,53(19):1800-1802.
    [14]SHIN D M, CHOI K H, KANG D Y, et al. Electro-optic measurement ofLangmuir-Blodgett films layered with N-docosylquinolinium-TCNQ[J].Synthetic Met.,1995,71:2093-2094.
    [15]G TEOWEE, J T SIMPSON, T J ZHAO, et al. Electro-optic properties Sol-Gelderived PZT and PLZT thin films[J]. Microelectron. Eng.,1995,29:327-330.
    [16]M GAIDI, A AMASSIAN, M CHAKER, et al. Pulsed laser deposition of PLZTfilms: structural and optical characterization[J]. Appl. Surf. Sci.,2004,226:347-354.
    [17]NAGIB N N. Polarization metrology: advanced treatment of the Senarmontcompensator arrangement for calibrating phase plates[J]. Metrologia,2001,38:253-257.
    [18]FISCHER D W, OHMER M C, SCHUNEMANN P G, et al. Direct measurementof ZnGeP2birefringence from0.66to12.2μm using polarized lightinterference[J]. J. Appl. Phys.,1995,77(11):5942-5945.
    [19]AKELAITIS A J P, OLBRICHT B C, SULLIVAN P A, et al. Synthesis andelectro-optic properties of amino-phenyl-thienyl donor chromophores[J]. Opt.Mater.,2008,30:1504-1513.
    [20]ENAMI Y, DEROSE C T, MATHINE D, et al. Hybrid polymer/sol-gel waveguidemodulators with exceptionally large electro-optic coefficients[J]. Nat Photonics,2007,1:180-185.
    [21]NAGATSUMA T, SHIBATA T, SANO E, et al. Subpicosecond sampling using anoncontact electro-optic probe[J]. J. Appl. Phys.,1989,66:4001-4009.
    [22]MANTEGAZZA F, CAGGIONI M, JIMENEZ M L, et al. Anomalousfield-induced particle orientation in dilute mixtures of charged rod-like andspherical colloids[J]. Nat. Phys.2005,1(2):103–106.
    [23]DROZDOWSKI H. Structural analysis of liquid1,4-dimethylbenzene at293K[J].J. Mol. Srtuct.,2006,783(3):204–209.
    [24]DROZDOWSKI H. Structural X-ray study of dichloroalkanes[J]. J. Mol. Liq. vol.2005,122:32–37.
    [1]谢毓章.液晶物理学[M].北京:科学出版社,1998.
    [2]才勇.液晶材料的配比和胆甾相液晶显示的研究[D],吉林:中科院长春光学精密机械和物理研究所,2000.
    [3] QIN A L, ZHANG Y L, WANG Y H. Electro-optical properties ofpolymer-dispersed liquid crystal prepared by controlled graft living radicalpolymerization[J]. Journal of Applied Polymer Science,2012,124:2200-2208.
    [4] KALKAR A K, KUNTE V V, DESHPANDE A A. Electro-optic studies onpolymer-dispersed liquid crystal composite films. I. Composites of PVB-E7[J].Journal of Applied Polymer Science,1999,74:3485-3491.
    [5] KIM M S, WON H K, SONG S H, et al. Electro-optic characteristics of polymerdispersed liquid crystal cell with transparent state initially[J]. Polymer-Korea,2004,28:298-304.
    [6] FAN Y H, LIN Y H, REN H W, et al. Fast-response and scattering-free polymernetwork liquid crystals for infrared light modulators[J]. Applied Physics Letters,2004,84:1233-1235.
    [7] FUNGA Y K, YANGA D K, YINGA S, et al. Polymer networks formed in liquidcrystals[J]. Liquid Crystals,1995,19(6):797-801.
    [8] KIKUCHI H, YOKOTA M, HISAKADO Y, et al. Polymer-stabilized liquidcrystal blue phases[J]. Nature Materials,2002,1:64-68.
    [9] COLES H J, PIVNENKO M N. Liquid crystal 'blue phases' with a widetemperature range[J]. Nature,2005,436:997-1000.
    [10]HISAKADO Y, KIKUCHI H, NAGAMURA T, et al. Large electro-optic Kerreffect in polymer-stabilized liquid-crystalline blue phase[J]. Advance Materials,2005,17(1):96-98.
    [11]HASEBA Y, KIKUCHI H, NAGAMURA T, et al. Large electro-optic Kerr effectin nanostructured chiral liquid-crystal composites over a wide temperaturerange[J]. Advanced Materials,2005,17:2311-2315.
    [12]YANG Y C, YANG D K. Electro-optic Kerr effect in polymer-stabilized isotropicliquid crystals[J]. Applied Physics Letters,2011,98:023502.\
    [13]李善君.高分子光化学原理及应用[M].上海:复旦大学出版社,2003.
    [14]HIRD M. Fluorinated liquid crystals-properties and applications[J]. ChemicalSociety Reviews,2007,36:2070-2095.
    [15]BIAN Z Y, LI K X, HUANG W, et al. Characteristics of selective reflection ofchiral nematic liquid crystalline gels with a nonuniform pitch distribution[J].Applied Physics Letters,2007,91:201908.
    [16]王建达.基板上预先形成之聚合物稳定反射式双稳态胆固醇液晶显示之研究
    [D].台湾:昆山电子科技大学电子研究所,2003.
    [17]DOANE J W, VAZ N A, WU B G, et al. Field controlled light scattering fromnematic microdroplets[J]. Appl. Phys. Lett.1986,48(4):27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700