用户名: 密码: 验证码:
基于OFDM的水声通信关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
OFDM技术是当今水声通信研究的热点技术,本文首先对OFDM基础技术进行了介绍,然后针对OFDM关键技术进行理论研究和相关实验。并在OFDM关键技术中提出了自己的理论方法,也给出了仿真及海试验证结果。本文所做的主要贡献如下:
     针对宽带水声通信遇到的多普勒效应问题,提出了一种利用多音频信号估计多普勒因子的新方法。根据水声信道的稀疏特性,提出了一种新的估计精度更高的稀疏信道估计方法。该方法通过在系统中插入少数导频,利用阶数递归的正交匹配追踪算法重构信道的非零系数,避免了直接对矩阵求逆,降低了计算复杂度,有利于工程实现。分析了水声信道遇到的问题,提出了采用OFDM技术的通信系统,并设计了相应的发射信号形式。对上述理论进行了仿真研究、海试验证。
     水声通信试验研究。针对OFDM系统的关键技术和整体性能,分别进行了水池试验和海上试验。数据处理结果充分验证了本文所提出的基于多音频信号的多普勒估计算法和阶数递归的正交匹配追踪算法的有效性和稳定性。试验结果表明,该系统能以较低发射声源级和误比特率,在浅海水域实现通信距离为3.7kmm、有效数据传输速率为187.5bps的数据传输。
     结合上述验证过的OFDM通信算法在论文的最后对当前水声通信研究的热点UUV互通通信进行了系统设计和通信方案设计,给出了详细的系统设计和理论推导过程,并开创性的采用PC104总线板卡,对大家研究UUV互通通信提供了可行性的参考方法。
OFDM technology is the hot technology of underwater acoustic communication today. First introduced the OFDM-based technology,then do some theoretical and experimental about it. And put forward my own theoretical for OFDM key technology, approach also gives the results of the simulation and sea trial certificate. The main contribution of this paper made are as follows:
     On account of severe doppler effect existing in the wide band UWAC, a robust method for estimating the doppler shift by means of multi-tones signal is put forward; according to the sparsity property of the underwater acoustic channel impulse response, a novel channel estimating approach is given. An order recursive orthogonal matching pursuit algorithm is used to reconstruct the non-zero coefficients of the channel by inserting a small number of pilots in the system in the approach, to avoid the direct matrix inversion and reduce the computatial and engineering complexity. Analysis of the problems encountered in underwater acoustic channel communication system using OFDM technology, and design the corresponding forms of the transmitted signal. And then do simulation studiesand sea trial certificate about above theory.
     Study of UWAC experements. An pool trial and a sea experiment for key technologies and system performance of the OFDM system was organized respectively. The processing results of experimental data were proved that the validity and robust of the proposed Doppler estimation algorithm based on multi-tones signals and the OR-OMP algorithm. The results show that a effective information rate of187.5bps for the OFDM system was achieved with fairly lower transmited source level and BER performance.
     Combining the authentication OFDM communication algorithm, giving my own system design and communication design for underwater acoustic communication research focus, the UUV interworking communication, in the last. And groundbreaking use PC104bus board,and that will provide the feasibility reference for everyone who want to do UUV communication.
引文
[1]STOJANOVIC M. Acoustic (underwater) Communications[M].PROAKIS J G. Wiley Series in Telecommunications. Cambridge; John Wiley & Sons Inc.:1-35
    [2]J.R.Vaccaro.The Past,Present,and the Future of Underwater Acoustic Signal Processing.lEEE Signal Processing Magazine,1988,15(4):21-51
    [3]GARROOD D. Applications of the MFSK Acoustic Communications System 16-18 Sept. 1981[C]. Northwest Seattle, WA, USA 1981:67-71.
    [4]SCUSSEL K F, RICE J A, MERRIAM S. A new MFSK acoustic modem for operation in adverse underwater channels[C]。 Oceans'97 Mts, Ieee Conference Proceedings,06 Oct 1997-09 Oct 1997, Halifax, NS.IEEE,1997,Vols 1 and 2:247-254.
    [5]CATIPOVIC J, BAGGEROER A B, VONDERHEYDT K, et al. Design and Performance Analysis of a Digital Acoustic Telemetry System for the Short-Range Underwater Channel [J]. Ieee Journal
    [6]张玉良.高速数字水声通信系统的研究.声学与电子工程,2002,(4):6-12
    [7]A.Kaya,S.Yauchi.An Acoustic Communication System for Subsea Robot.Oceans 1989 Proceedings,1989,3:765-770
    [8]S.Coatelan,A.Glavieux.Design and Test of a Multicarrier Transmission System on the Shallow Water Acoustic Channel.Oceans 1994 Proceedings,1994,3:472-477
    [9]K.W.Lam,F.R.Ormondroyd.A Novel Broadband COFDM Modulation Scheme for Robust Communication Over the Underwater Acoustic Channel.IEEE Military Communications Confrerence Proceedings,1988,1:128-133
    [10]樊昌信,曹丽娜,通信原理(第6版).北京:国防工业出版社,2009:251-257.
    [11]王文博,郑侃,宽带无线通信OFDM技术.北京:人民邮电出版社,2003:7-8,46-52
    [12]朱彤,桑恩方.基于正交频分复用的高速水声通信技术[J].哈尔滨工程大学学报,2005,26(1):71-74.
    [13]王明华.高速水声通信中OFDM的关键技术与应用研究[B].哈尔滨:哈尔滨工程大学水声工程学院,2007.
    [14]申晓红,黄建国,周倩等.OFDM水声通信基带传输及试验研究[J].西北工业大学学报,2008,26(3):271-275.
    [15]蔡惠智,刘云涛,蔡慧等.第八讲水声通信及其研究进展[J].物理,2006,35(12):1038-1043.
    [16]邓红超.基于MIMO-OFDM的高速水声通信技术研究[J].通信技术,2009,42(11):37-39.
    [17]殷敬伟,水声通信原理及信号处理技术.北京:国防工业出版社,2011:113-114
    [18]惠俊英.水下信道。国防工业出版社,1992:13-14
    [19]A.D.Waite实用声纳工程(第三版)。北京:电子工业出版社,2004.9.
    [20]许天增,许鹭芬.水声数字通信。海军出版社,2010:4-5
    [21]汪裕民OFDM关键技术与应用[M].北京:机械工业出版社,2006:80-83.
    [22]袁兆凯,隋天宇,李宇等.一种水声OFDM的抗多径同步算法。应用声学,第30卷第1期。
    [23]刘云涛,蔡慧智,邓红超等.一种正交频分复用系统抗水下时变多径信道的频率偏移估计方法.声学学报.2009年,34(6):521-526.
    [24]Moose P H.A technique for orthogonal frequency division multiplexing frequency offset correction.IEEE Transactions on Communications,1994;42(10):1908-1914
    [25]SHARIF B S, NEASHAM J, HINTON O R, et al. Doppler compensation for underwater acoustic communications[J].Oceans'99 Mts.Ieee:Riding the Crest into the 21st Century, Vols 1-3, 1999:216-221.
    [26]Belegundu A D,Chandrupatla T R.Optimization Concepts and Applications in Engineering [M].2nd ed.Nec York:Cambrige University Press,2011
    [27]Tureli U,Liu H,Zoltowski M D.A high efficiency carrier estimator for OFDM communications[C].Proceedings of the Thirty-First Asilomar Conference on Signals, Systems & Computers. Pacific Grove, CA, USA:IEEE,1998:505-509.
    [28]ERUP L,GARDNER F M,HARRIS R A.Interpolation in Digital Modems.2. Implementation and Performance[J].Ieee Transactions on Communications,1993,41(6):998-1008.
    [29]DONOHO D L.Compreesed sensing[J].IEEE Trans on Inf Theory,2006,52(4):1289-1306.
    [30]BARANIUK R G.Compreesive sensing[J].IEEE Signal Processing Magazine, 2007,24(4):118-120,124.
    [31]石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及研究进展.电子学报,第5期,2009年5月.
    [32]张贤达.矩阵分析与应用[M].1北京:清华大学出版社,2004.
    [33]何雪云,宋荣方,周克琴.基于压缩感知的OFDM系统稀疏信道估计新方法研究。南京邮电大学学报,第30卷,第二期,2010年4月.
    [34]贾艳云,赵航芳.压缩传感-稀疏信号的采样与重构.声学与电子工程,2010年第4期.
    [35]朱行涛,刘郁林,徐舜,杨磊.一种基于匹配追踪的OFDM稀疏信道估计算法.微波学报,第24卷第2期,2008年4月.
    [36]Beek V D, Edfors J O Sandell et al. On channel estimation in OFDM Systems[C]. IEEE 45 th Vehicular Technology Conference,1995,25 (2):815,819.
    [37]Weichang Li, and James C. Preisig。Estimation of Rapidly Time-Varying Sparse Channels, IEEE JOURNAL OF OCEANIC ENGINEERING, VOL.32, NO.4, OCTOBER 2007.
    [38]TROPP J A,GILBERT A C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans on Information Theory,2007,53(12):4655-4666.
    [39]STOJANOVIC M. Retrofocusing techniques for high rate acoustic communications[J].Journal of the Acoustical Society of America,2005,117(3):1173-1185.
    [40]GELLER B, CAPELLANO V, JOURDAIN G. Equalizer for Real Time High Rate Transmission in Underwater Communications[C].1995 International Conference on Acoustics, Speech, and Signal Processing-Conference Proceedings,09 May 1995-12 May 1995, Detroit, MI.IEEE,1995,Vol.5:3179-3182.
    [41]STOJANOVIC M. Recent advances in high-speed underwater acoustic communications[J].Ieee Journal of Oceanic Engineering,1996,21(2):125-136.
    [42]LI W C, PREISIG J C. Estimation and equalization of rapidly varying sparse acoustic communication channels,2006:1302-1307.
    [43]COTTER S F, RAO B D. Sparse channel estimation via matching pursuit with application to equalization[J].Ieee Transactions on Communications,2002,50(3):374-377.
    [44]陈强,张林根.美国军用UUV现状及发展趋势分析.舰船科学技术,2010年7月,第32卷第7期.
    [45]王建斌,王志敏.UUV发展、应用及关键技术.信息与电子工程,2007年12月,第5卷第6期.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700