沙坑演变对桥下河床冲刷影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,大量河沙被开采用于建筑工业等领域,在河床上造成了大量的沙坑。沙坑引起水流条件的改变进而导致的河床演变致使许多桥梁毁坏,预测评估沙坑演变对桥下冲刷的影响对于桥梁的安全使用有着重要的意义。本文根据床沙卷吸率的概念及理论,结合一维水流方程和Exner河床变形方程,建立了模拟沙坑演变的一维泥沙数学模型,并通过实测资料对其进行了验证,结果符合良好。利用模型研究了采沙河流中水流的变化及河床演变的规律,并修改模型相关条件模拟计算了桥渡压缩冲刷,然后结合已得到的沙坑演变和压缩冲刷的特点模拟研究了近距离沙坑演变对于桥下冲刷的不利影响。结果表明:
     (1)沙坑导致了水流、泥沙以及河床相互之间的关系失去平衡。具体表现为由于水力梯度的增大,导致沙坑上游河段的溯源冲刷;沙坑起到蓄沙池的作用而发生淤积;沙坑下游河段由于含沙量的减少而发生冲刷。
     (2)沙坑上游段溯源冲刷的强度随着离沙坑上缘口距离的增大而减小;沙坑随着前端的逐渐淤积会向下游迁移;当沙坑迁移到沙坑下缘口时,沙坑下游河床变形趋势由冲刷转为淤积。
     (3)沙坑河床演变的强度会不断降低,随着沙坑的淤平,河床最终会重新达到平衡状态,但此时已造成了河床的下切及水位的下降。
     (4)不同水流泥沙条件、不同沙坑几何边界条件下的沙坑演变之间有着明显的差异。大体表现为上下游河段的河床冲刷以及沙坑内的河床淤积的强度随着水流流量、沙坑尺度的增大而增大。
     (5)多个沙坑同时存在时,河床变形比单个沙坑的情形下更加剧烈。位于沙坑之间的河床变形最为剧烈,会逐渐形成上下沙坑群之间的串连。
     (6)桥渡压缩冲刷跟压缩影响范围边界、压缩比等条件相关。不同影响范围边界对桥下河床变形影响较大,另外桥下河床冲刷程度跟压缩比密切相关,压缩比越小,压缩的程度就越大,冲刷越强烈。
     (7)桥梁下游的近距离沙坑对于桥下冲刷的影响主要体现为沙坑引起的上游河段溯源冲刷导致的河床下切,桥梁上游的近距离沙坑对于桥下冲刷的影响主要体现为沙坑向下游的迁移。两种工况下的影响程度都跟沙坑与桥之间的距离、沙坑尺度等相关。距离越近、尺度越大,不利影响的程度就越大。
In recent years, a large amount of sand in rivers is excavated for the industrial purpose, therefore a dredged hole or holes are formed on the river bed. The hole usually evolves due to the flow dynamic role, which may do great damage to the bridges near the dredged site. As a result, it is significant to predict and assess the effect of the dredged hole on the scour under bridge to bridge safety. In presented paper, A one-dimensional flow dynamic model, coupled with the Exner equation, is adopted to describe the variation of the flow characteristics and the dredged hole evolution in riverbed. The model is verified by comparing with measured data and it is shown that the results are in good agreement. Modify the relevant conditions so as that the model is capable of simulating compression scour caused by the bridge piers. Combine with the characteristics of the above two aspects to research the adverse effects on the scour under bridge of evolution of the dredge hole. The following conclusions can be obtained.
     (1)The hole results in the temporary loss of the equilibrium among the flow, sediment and riverbed. And the erosion occurs in the upper reaches of the hole due to the increase of hydraulic gradient, deposition occurs in the hole and scour occurs due to the decrease in sediment concentration in the lower reaches of the hole. (2)Gradual decrease in the depth of upstream erosion is along with the increase in the distance from upstream of the hole until the depth of upstream scour becomes negligibly small at a certain location upstream from the hole. With the gradual silting of the hole, the hole is tend to migrate downstream. When the hole migrated to the mouth of the lower edge of the hole, the trend of downstream bed is converted into deposit.
     (3)The dredge hole makes a very substantial influence on the hydraulics and morphodynamics, but the influence is bound to decay and the ultimate state is naturally equilibrium. However, the bed elevation and the water surface elevation inevitably lower when the hole reaches the state of equilibrium.
     (4)The processes with different conditions of water discharge, size of the hole, sediment concentration and time effect are analyzed. It is shown that the variations of scour depth and deposition depth increase with the water discharge, size of the hole and the time.
     (5)When there are many holes in the riverbed, the bed deformation tends to be more intense than that under the condition of single hole. Deformation in bed between holes is the most intense so that the holes connect each other to form a bigger hole.
     (6)The compression scour of the bridge piers is related to the boundary setting of compression and compression ratio. Different boundaries produce different calculated results. As the compression ratio becomes smaller, which means the degree of compression is greater, the erosion is tend to be more intense.
     (7) If the dredge hole is located at downstream of bridge, the influence of a dredged hole evolution in riverbed on the scour under bridge is mainly caused by river incision caused by upstream erosion; If the dredge hole is located at upstream of bridge, the influence of a dredged hole evolution in riverbed on the scour under bridge is mainly caused by the migration downstream of the hole. The influences of the two conditions are both related to the distance between the hole and the bridge and scale of the hole. The degree of adverse effects becomes greater as the distance becomes smaller or the scale becomes greater.
引文
[1]G. Mathias Kondolf. Hungry water:Effects of dams and gravel mining on river channels[J].Environment Management,1997,21(4):533-551.
    [2]毛野,张志军.初析长江河道采沙的利弊得失[J].河海大学学报,2001,29(6):68-72.
    [3]赖永辉,谈广鸣,曹志先.河道采沙对河流河道演变及人类生产活动影响研究述评[J].泥沙研究,2008,(6):74-80.
    [4]赖永辉.河道采沙影响评价指标体系的构建[J].水力水电科技进展,2009,29(3):29-32.
    [5]李健,杨文俊.对国内外采沙研究的思考与总结[J].人民长江,2007,38(11):196-198
    [6]袁林,季成康.长江下游沙料开采对河道演变的影响[J].人民长江,1997,28(7):33-35.
    [7]张玲丽,谭政江,李昆.赣江中-下游河段采沙对河床的影响[J].水电与新能源,2010,91(5):63-65.
    [8]周作付,罗宪林,罗章仁,杨清书.近年珠江三角洲网河区局部河段洪水位异常壅高主因分析[J].热带地理,2001,21(4):319-322.
    [9]J.V. Bonta. Runoff-energy factors for MUSLE sediment-yield model for surface mines[J].International Journal of Sediment Research,2000,15(2):162-181.
    [10]任杰,曾学智,贾良文.东江下游河段溯源侵蚀特征与机理[J].水科学进展,2010,21(1):84-88.
    [11]季荣耀,陆永军,左利钦.东江下游博罗河段人类活动影响下的河床演变[J].泥沙研究,2010,28(5):48-54.
    [12]毛野.初论采沙对河床的影响及控制[J].河海大学学报,2000,28(4):92-96.
    [13]王刚,茜平一,邹勇.靠近堤脚采沙对堤防稳定影响分析[J].中国农村水力水电,2004,(7):68-72.
    [14]王刚,茜平一,邹勇.河道采沙对堤防安全影响分析[J].人民长江,2004,35(2):27-28.
    [15]Monammad Akram Gill. Hydrodynamics of mining pits in erodible bed under steady flow [J].Journal of Hydraulic Engineering,1994,120(11):1337-1348.
    [16]毛野,黄才安.采沙对河床变形影响的试验研究[J].水利学报,2004,(5):64-69.
    [17]毛野,黄才按,陈建华,周济人.长江镇江段河道采沙的影响极其控制利用的试验研究[J].泥沙研究,2004,(3):41-45.
    [18]Hong-Yuan Lee. Migration of rectangular mining pit composed of uniform sediments[J].Journal of Hydraulic Engineering,1993,119(1):64-79.
    [19]S. Ali Akbar Saheli NEYSHABOURI. Experimental and field study on mining-pit migration [J].International Journal of sediment research,2002,17(4):323-331.
    [20]毛劲乔.顺直河道采沙坑水流的三维数值模拟[J].水动力学研究进展,2003,18(5):660-666.
    [21]毛劲乔.河道复杂采沙坑附近流场的数值模拟[J].水科学进展,2004,15(1):6-11.
    [22]Zhixian Cao. Numerical modeling of alluvial rivers subject to interactive sediment mining and feeding [J].Advances in Water Resources,2004,(27):533-546.
    [23]李健,杨文俊.不同条件下矩形沙坑影响的数值模拟对比研究[J].泥沙研究,2009,(6): 74-80.
    [24]Dong Chen. Sensitivity Analysis of nonequilibrium adaptation parameters for modeling mining-pit migration[J]. Journal of Hydraulic Engineering,2010,136(10):806-811.
    [25]赖永辉,谈广鸣,曹志先.珠江采沙河段水沙数学模型研究[J].水动力学研究与进展,2007,22(2):168-174.
    [26]赖永辉,谈广鸣,曾慧俊.采沙河流二维水沙耦合数学模型[J].武汉大学学报(工学版),2008,41(1):9-12.
    [27]周华君.嘉陵江何家碛采沙方案平面二维数学模型[J].重庆交通学院学报,2000,19(4):71-76.
    [28]范勇,卢金友,徐海涛.武汉河段河道平面二维泥沙模型的研究[J].石河子大学学报(自然科学版),2009,27(2):248-251.
    [29]刘俊勇,徐峰俊.东江剑潭枢纽上下河段“溯源变形”分析[J].人民珠江,2008,(5):13-16.
    [30]韩龙喜,计红.河道采沙对珠江三角洲水情及水环境影响分析[J].水科学进展,2005,16(5):685-690.
    [31]Weiming Wu, Sam S. Y. Wang. Simulation of morphological evolution near sediment mining pit using a 1-D mixed-regime flow and sediment transport model. [J].World Environmental and Resources congress, ASCE,2008,1-10.
    [32]齐梅兰.采沙河床桥墩冲刷研究[J].水利学报,2005,36(7):835-839.
    [33]齐梅兰,孟国清.河道采沙对大桥基础安全影响研究[J].水动力学研究与进展,2005,20(6):750-754.
    [34]TB10017-99.铁路工程水文勘测设计规范[S].
    [35]JTG C30-2002公路工程水文勘测设计规范[S].
    [36]JTJ 062—91.公路桥位勘测设计规范[S].
    [37]阚译.桥渡冲刷[M].北京:中国铁道出版社,2004.
    [38]赵霈.浅析桥梁一般冲刷计算[J].黑龙江交通科技,2008,(169):68-69.
    [39]陆浩,高冬光.桥梁水力学[M].北京:人民交通出版社,1991.
    [40]丁联臻.泥沙数学模型发展概述.长江三峡工程泥沙与航运关键技术研究专题研究报告集[C].武汉:武汉工业大学出版社,1993,9.
    [41]许协庆,朱鹏程.河床变形问题的特征线解[J].水力学报,1964,5.
    [42]窦国仁.潮汐水流中的悬沙运动及冲淤计算[J].水利学报,1963,4.
    [43]韩其为,何明民.水库淤积与河床演变的(一维)数学模型[J].泥沙研究.1987(3):14-29.
    [44]马先华.桥渡一般冲刷一维数值模拟计算[D].
    [45]谢鉴衡.河流模拟[M].水利水电出版社,1990.
    [46]Yantao Cui, Gray Parker, Chris Paola. Numerical simulation of aggradation and downstream fining [J].Journal of Hydraulic Research,1996,34(2),185-204.
    [47]吴瑶.大坝下游桥渡一般冲刷数值模拟研究[D].
    [48]吴持恭.水力学[M].高等教育出版社,2003.
    [49]钱宁,万兆惠.泥沙运动力学[M].科学出版社,2003.
    [50]舒安平.水流挟沙力公式的验证与评述[J].人民黄河,1993,(1),7-9.
    [51]Marcelo Garcia, Gray Parker. Entrainment of bed sediment into suspension [J].Journal of Hydraulic Engineering,1991,117(4),414-435.
    [52]彭国伦Fortran 95程序设计[M].中国电力出版社,2008.
    [53]巨江.溯源冲刷的计算方法及其应用[J].泥沙研究,1990,2:30-39.
    [54]彭润泽,常德礼.推移质三角洲溯源冲刷计算公式[J].泥沙研究,1981,1:14-28.
    [55]彭润泽,张振秋.水库溯源冲刷的控制利用[J].水利学报,1985,1:10-21.
    [56]陈树群,陈联光.溯源冲刷试验观测分析[J].水十保持研究,1999,6(3):120-129.
    [57]Kelly J. Kaatz, Wesley P. Fellow. Analysis of alternatives for computing backwater at bridges. [J].Journal of Hydraulic Engineering,1997,123(9),784-792.
    [58]Galip Seckin, Recep Yurtal. Contraction and expansion losses through bridge constrictions. [J].Journal of Hydraulic Engineering,1998,124(5),546-549.
    [59]John Hunt, Gray W. Brunner. Flow transitions in bridge backwater analysis. [J].Journal of Hydraulic Engineering,1999,125(9),981-983.
    [60]U.S. Army Corps of Engineers Hydrologic Engineering Center(HEC). HEC-RAS, River Analysis System Hydraulic Reference Manual [R]. Davis, CA:Institute for Water Resources Hydrologic Engineering Center,20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700