多孔金属间化合物/陶瓷载体材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车尾气净化器载体和微粒捕集器过滤体(DPF)材料主要为堇青石和金属。堇青石载体的脆性大,强度低,使用寿命低。金属载体的强度高,但耐高温性差,且制备工艺复杂,催化剂涂层附着力差。无论是堇青石载体还是金属载体,都难以满足日益严苛的汽车尾气排放法规对催化剂载体的性能要求。Ni-Al、Fe-Al等金属间化合物材料具有强度高,耐高温性好,导电、导热率高等优异性能,是理想的汽车尾气净化器载体和微粒捕集器过滤体材料。本文率先提出采用Ni-Al等元素的自蔓延高温合成反应(SHS)工艺,在原位合成NiAl及其与陶瓷的复合材料的同时,获得所需要的多孔体,将材料的合成与孔洞的制取合二为一。该制备方法具有工艺简单,产品性能可控,成本低廉等特点,可获得性能系列化的多孔材料,以满足多种机动车型及不同使用环境对催化剂载体和DPF的要求,这对推广多孔NiAl基金属间化合物及其复合材料的工业化应用,促进其它体系金属间化合物多孔材料的开发等,具有重要意义。
     本文研究了Ni-Al金属间化合物多孔材料的反应合成工艺,分析了反应合成过程,物相及组织结构,孔隙形成机理以及性能。首先制备了Ni-Al金属间化合物多孔材料,详细论述了这种新型多孔材料的制备过程和影响参数;在此基础上,将反应合成工艺扩展至Ni+Al+B2O3+TiO2体系,通过原位反应获得了多孔NiAl/TiB2+Al2O3复合材料,以原位形成的TiB2+Al2O3陶瓷相,强化NiAl基体,并进一步提高其耐高温性。分别制备了两类复合孔型结构的多孔材料,一是大孔加小孔加微孔、小孔加微孔的蜂窝状结构,二是直通孔加小孔加微孔的壁流式结构。通过多种分析检测技术,研究了Ni-Al多孔材料的孔结构性能,其中包括多孔材料的孔隙率、孔径和压缩强度等三个重要性能参数,探讨了粉末配比、造孔剂含量等参数对多孔Ni-Al金属间化合物材料的孔结构性能的影响规律。同时,为降低多孔材料的制备成本,简化合成工艺,探索了等离子原位反应制备TiB2+Al2O3/FeAl复合材料的工艺,并分析其组织特征。
     研究结果表明:Ni-Al的SHS反应可按照预期设计进行,获得产物的典型物相为NiAl、Ni3Al、TiB2和Al2O3。NiAl相组织形态单一,为粗大的枝晶;Ni3Al相则为针片状形态;TiB2相颗粒细小,大部分尺寸小于5 m,呈规则的正方六面体或者六棱柱体,以10~20μm的团簇状镶嵌在块状Al2O3上,或分布在NiAl基体中;Al2O3相形态不规则,部分与NiAl基体混杂在一起,部分与TiB2簇团相伴生长。
     反应合成多孔材料的成孔机制包括物理机制和反应成孔机制两类。反应成孔机制可归结为Kirkendall效应,孔洞的形成源于Al元素的偏扩散,其形成的孔洞包括孔径与Al颗粒粒径相当的小孔和孔径十分细小的微孔。无外加造孔剂时,多孔材料孔隙率达到50%,孔洞为通孔,孔径尺寸为30~250 m,呈三维交错连通的网格状,孔道曲折、孔壁粗糙,具有大的比表面积,孔洞的壁面上还有相互连通的、孔径仅1.0~3.0 m的微孔,这些微孔穿通小孔的壁面,使反应合成的多孔材料的孔隙连通性更好,比表面积更大。添加尿素等造孔剂,获得了大孔材料,孔隙率高达85%,孔径范围0.2~3.0mm。在反应物粉末中加入有机粘结剂,挤出成型后,利用等离子引发原位反应,制备了具有直通孔结构的多孔NiAl材料和NiAl/TiB2+Al2O3复合材料,直通孔的壁面上同样具有微孔,孔径为0.5~2.0 m,这对满足柴油车DPF过滤体的需要尤为重要。并且反应合成的多孔材料均表现出良好的原坯形状相似性,制备工艺简单,有利于材料的批量化生产,加之具有独特的复合型孔洞结构,在过滤、环境催化等领域具有广泛的应用前景。
The current vehicle exhaust purifiers carrier and diesel particulate filter (DPF) substrate materials are mainly made from cordierite and metal materials. Cordierite carriers show high brittleness, low strength, and short life, and the metal carriers show high strength, but poor high temperature resistance and complicated fabricating process, poor adhesion of catalyst coating. Not only cordierite carrier but also metal carrier is difficult to meet the increasingly stricter vehicle exhaust emission regulation requiring for catalyst carrier performance. Ni-Al, Fe-Al intermetallic compounds possess high strength, high temperature resistance, good electrical conductivity and excellent thermal conductivity property; porous material made from above intermetallic compounds will be an ideal vehicle exhaust purifier carrier and diesel particulate filter (DPF) substrate materials. Originally the dissertation suggests that NiAl intermetallic compound and its composites be prepared by in-situ synthesis with self-propagating high temperature synthesis (SHS) technology, and the expected porous materials were produced simultaneously. The method is characterized with simple process, adjustable product properties and low cost etc.,therefore porous intermetallic compound materials with series of properties can be produced to meet the requirements for catalyst carriers and DPF for different vehicle type at varied utilizing environment. It has great significance for the promotion of porous NiAl intermetallic compounds and their industrial application,and for the enhancement of the research and development of other porous intermetallic compounds systems.
     The dissertation studied the reaction synthesis technology of porous NiAl intermetallic compounds, the process of reaction synthesis, phase and structure, pore formation mechanism and properties. Firstly porous NiAl intermetallic compound prepared by reaction synthesis technology using Ni-Al powders, the preparation process and influence parameters of the new type of inorganic porous materials were discussed in detail. On the basis, the reaction synthesis process was extended to the Ni+Al+B2O3+TiO2 system, and porous NiAl/TiB2+ Al2O3 composite materials were obtained through in-situ reaction, NiAl matrix was strengthened by the ceramic phases formed by in-situ reaction, and its temperature resistance was further improved. Two kinds of porous materials with compounded pore structure were prepared, the first type is honeycomb structure with two morphologies. One is macro-pore, small pore and micro-pore, the other is small pore and micro-pore. The second type is wall-flow structure of through-hole, small pore and micro-pore. Through a variety of analytical techniques, pore structure properties of porous NiAl intermetallic compound materials such as three important parameters of porosity, pore size and compressive strength were studied; influence rules of pore structure properties of porous NiAl intermetallic compounds by the ratio of powder and pore-forming agent were discussed. At the same time, synthesis process was simplified to reduce costs of porous materials. The process and structure properties of TiB2+Al2O3/FeAl composite materials produced by plasma in-situ reaction were explored.
     The result shows the SHS of Ni+Al reaction can be carried out in accordance with anticipated design, and the typical phases of obtained products are NiAl, Ni3Al, TiB2 and Al2O3. The morphology of NiAl phase structure is single coarse dendrite, and the Ni3Al is needle-plate shape; TiB2 particles are fine, mostly the size is less 5.0 m. TiB2 phase characterized with regular hexahedron or hexahedral cylinder laid in Al2O3 bulk in the clusters of 10~20μm, or distributed in the NiAl matrix. The morphology of Al2O3 is irregular, partly mixed with the NiAl matrix, partly accompanied with TiB2 clusters.
     The pore-forming mechanism of reaction synthesized porous materials comprises physical mechanism and reaction pore-forming mechanism. Reaction pore-forming mechanism is attributed to the Kirkendall effect, the formation of pores derive from partial diffusion of Al elements, So the small pores equivalent to the Al particles in size and micro-pores were formed, and the porosity reaches about 50% without pore-forming agent. The pore is through-pore, and pore size is between 30~250 m. The porous materials show connected three-dimensional network grid, twisted pore channel, rough pore wall and large specific surface area. There are micro-pores connected each other in the wall with pore size of only 1.0~3.0 m. These micro-pores penetrate through the wall, so that the connectivity of reaction synthesized porous materials becomes better, and the permeability and the specific surface area further increase. The Macroporous materials between 0.2~3.0mm were obtained by adding pore-forming agents such as urea, and the porosity reaches 85%. The porous NiAl and NiAl/TiB2+Al2O3 composites with straight through-pore were produced by plasma igniting in-situ reaction with reactant powders added with organic binder after extrusion molding. Similarly there are small pores and micro-pores on the wall of straight through-pore, with pore size of 0.5~3.0 m.This is extremely important to meet the requirements of DPF. And reactive synthesized porous materials have shown a good similarity to the shape of green samples. The preparation process is simple, easily leading to mass production, coupled with a unique compounded pore structure, so a wide range of applications can be found in the field of filters, environmental catalysis, and so on.
引文
[1] Martyn V. Twigg. Progress and future challenges in controlling automotive exhaust gas emissions[J]. Applied Catalysis B: Environmental, 2007, 70(1-4):2-15
    [2]何洪,戴洪兴,李佩珩,等. Ce0.6Zr0.35Y0.05O2和Pr0.6Zr0.35Y0.05O2催化剂表面上CO氧化和18O-16O交换反应的研究[J].中国稀土学报, 2004, 22(4):547-550
    [3] Weng Duan. Improvement of Gold to Reducibility of La-Ce-Mn Catalyst under Lean Combustion[J]. Journal of Rare Earths, 2003, 21(02):194-196
    [4]肖益鸿,蔡国辉,詹瑛瑛,等.汽车尾气催化净化技术发展动向[J].中国有色金属学报, 2004, 14(S1):347-353
    [5] Arakava K., Matsuda S., Tanba Y. Apparatus for purification of exhaust gas from internal combustion engine[P]. JP, 10-263368. 1998, 20(6):10-17
    [6] Okabe S., Kavabe Y., Matsuo S., et al. Manufacturing method of metal catalyst support for exhaust gas treatment[P]. JP, 07-31887. 1995, 10(3):59-63
    [7]王亚军,曾庆轩,冯长根.汽车尾气净化催化剂载体[J].工业催化, 1999, 30(6):3-7
    [8] C. S. Chang, A. Pandey, B. Jha. Aluninum Clad Ferritic Stainless Steel Foil for Metallic Catalytic Converter Substrate Application[A]. SAE Transactions[C], 1996, 33(5): 237-244
    [9]陈颖,聂祚仁,周美玲,等.汽车尾气净化器用金属载体研究进展[J],材料导报, 1999, 13(2):22-24
    [10] X. Badiche, S. Forest, T. Guibert, et al. Mechanical properties and non-homogeneous deformation of open-cell nicked foams:application of the mechanics of cellular solids and porous materials[J]. Materials Science and Engineering. 2000, A289(1-2):276-288
    [11]杨素媛.过滤净化用多孔金属材料的开发应用与进展[J].中国稀土学报, 2003, 21(S1):204-208
    [12] J. Banhart. Manufacture, characterization and application of cellular metal and metal foams[J]. Progress in Materials Science, 2001, 46(6):559-632
    [13] Park C., Nutt S. R. Effect of process parameters on steel foam synthesis[J]. Materials science and engineering A. 2001, 297(1-2):62-68
    [14] M. F. Pidria, F. Parussa, E. M. Borla. Mapping of diesel soot regeneration behaviour in catalyzed silicon carbide filters[J]. Applied Catalysis B:Environmental, 2007, 70(1-4):241-246
    [15]翁端,黄荣光,王学中,等,柴油车排气微粒捕集装置[P].中国专利,200310121764.8, 2004-12-15
    [16] D. Fino, P. Fino, G. Saracco, et al. Innovative means for the catalytic regeneration of particularte traps for diesel exhaust cleaning[J]. Chemical Engineering Science, 2003, 58(3-6):951-958
    [17] Montanaro L. Durability of ceramic filters in the presence of some diesel soot oxidation additives[J]. Ceramics International, 1999, 25(5):437-445
    [18]魏雄武,杜传进.柴油机微粒捕集器关键技术发展现状与分析[J].柴油机设计与制造, 2005, 14(4):4-7
    [19]龚金科,赖天贵,刘孟祥,等.柴油机微粒捕集器过滤材料与再生方法分析与研究[J].内燃机, 2004, 30(3):1-4
    [20] M. T. Dario, A. Bachiorrini. Interaction of some pollutant oxides on durability of silicon carbide as a material for diesel vehicle filters[J]. Journal of Material Science, 1998, 33(1):139-142
    [21] M. T. Dario, A. Bachiorrini. Interaction of mullite with some polluting oxides indiesel vehicle filters[J]. Ceram Inter, 1999, 25(6):511-516
    [22] M. Ambrogio, G. Saracco, V. Specchia. Combining filtration and catalytic combustion in particulate traps for diesel exhaust treatment[J]. Chemical Engineering Science, 2001, 56(4):1613-1621
    [23] L. Montanaro. Durability of ceramic filters in the presence of some diesel soot oxidation additives[J]. Ceramics International, 1999, 25(5):437-445
    [24] S. Ban, T. Ihara, S. Okamoto. Development of porous metal for diesel particulate filters[A], SAE paper[C], 950739, 1995.
    [25]资新运,邵玉平,李新,等.采用低温等离子体技术净化柴油机排气微粒[J].小型内燃机与摩托车, 2005, 34(5):9-11
    [26] Toshiaki. Nonthemal plasma regeneration of diesel particulate filter[A]. SAE[C], 2003-01-1182
    [27]刘树信,霍冀川,李炜罡.多孔材料合成制备进展[J].化工新型材料, 2004, 32(4):13-17
    [28]赵东元,朱海峰,金碧辉.多孔材料[J].中国基础科学, 2005, 40(3):19-20
    [29] C. Q. Hong, X. H. Zhang, J. C. Han. Fabrication and mechanical properties of porous TiB2 ceramic [J]. Journal of Material Science, 2006, 41(15):4790-4794
    [30] D. F. Heaney, J. D. Gurosik, C. Binet. Isotropic forming of prous structuresvia metal injection molding[J]. Journal of Materials Science, 2005, 40(4):973-981
    [31] Q. L. Liu, G. Subhash, X. L. Gao. A Parametric Study on Crushability of Open-Cell Structural Polymeric Foams[J]. Journal of Porous Materials 2005, 12(3):233-248
    [32] S. A. E. Boyer, M. Baba, J. M. Nedelec. Grolier Polymer Microstructures:modification and characterization by fluid sorption[J]. International Journal of Thermophysics, 2008, 29(6):1907-1920
    [33] G. Subhash, Q. Liu. Crushability maps for structural polymeric foams in uniaxial loading under rigid confinement[J]. Society for Experimental Mechanics, 2004, 44(3): 284-294
    [34]侯来广,曾令可,王慧,等.陶瓷废料制备的吸音材料吸音性能影响因素的分析[J].陶瓷学报, 2006, 27(1):6-10
    [35]宋婧,曾令可,税安泽,等.复合蓄热材料的研制与应用[J].硅酸盐通报, 2007, 26(1):173-198
    [36] E. Ibrahim, Li Shao, Saffa B. Riffat. Performance of porous ceramic evaporators for building cooling application[J]. Energy and Buildings, 2003, 35(9):941-949
    [37]鞠银燕,宋士华,陈晓峰.多孔陶瓷的制备、应用及其研究进展[J].硅酸盐通报, 2007, 26(5):969-1035
    [38] J. Banhart, Manufacture, characteristic and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001, 46(6):559-632
    [39] U. Ramamurty, A. Paul. Variability in mechanical properties of a metal foam[J]. Acta Materialia, 2004, 52(4):869-876
    [40] D. P. Papadopoulos, I. Ch. Konstantinidis, N. Papanastasiou, et a1. Mechanical properties of Al metal foams[J]. Materials Letters, 2004, 58(21):2574-2578
    [41] W. Azzi, W. L. Roberts, A. Rabiei. A study on pressure drop and heat transfer in open cell metal foams for jet engine applications[J]. Materials and Design, 2007, 28(2):569-574
    [42] Csilla K., Frantisek C., Zsuzsarma R., et a1. Acoustic emission measurements on metal foams[J]. Journal of Alloys and Compounds, 2004, 378(1-2):145-150
    [43] C. Hai, H. Watanabe, T. Shirai, et al. Modifying the surface of electrically conductive porous alumina[J]. Materials Letters, 2009, 63(15):1320-1322
    [44] X. Wang, J.-M. Ruan, Q.-Y. Chen. Effects of surfactants on the microstructure of porous ceramic scaffolds fabricated by foaming for bone tissue engineering[J]. Materials Research Bulletin, 2009, 44(6):1275-1279
    [45] P. Küsgens, M. Rose, I. Senkovska, et al. Characterization of metal-organicframeworks by water adsorption[J]. Microporous and Mesoporous Materials, 2009, 120(3):325-330
    [46] G. Gonzalez, M. E. Gomes, G. Vitale, et al. Effect of Al content onphase transitions of zeolite MEL[J]. Microporous and Mesoporous Materials, 2009, 121(1-3):26-33
    [47] A. Kr. Sharma Modeling fluid and heat transport in the reactive, porous bed of downdraft (biomass) gasifier[J]. International Journal of Heat and Fluid Flow, 2007, 28(6):1518-1530
    [48] M. Koyama, A.Suzuki, R. Sahnoun, et al. Development of porous structure simulator for multi-scale simulation of irregular porous catalysts[J]. Applied Surface Science, 2008, 254(23):7774-7776
    [49] P. X. Jiang, Z. P. Ren. Numerical investigation of forced convection heat transfer in porous media using thermal non-equilibrium model[J]. International Journal of Heat and Fluid Flow, 2001, 22(1):102-110
    [50] B. S. Ju, T. L. Fan. Experimental study and mathematical model of nanoparticle transport in porous media[J]. Powder Technology, 2009, 192(2):195-202
    [51] J. H. She, T. Ohji. Porous mullite ceramics with high strength[J]. Journal of Materials Science Letters, 2002, 21(6):1833-1834
    [52]江培秋,李素珍.高孔隙多孔陶瓷材料的制备工艺[J].现代技术陶瓷, 2003, (02):37-41
    [53]罗钊明,王慧,刘平安,等.多孔陶瓷材料的制备及性能研究[J].陶瓷, 2006, (03):14-17
    [54]江垚, Ti-Al金属间化合物多孔材料的研究[D].湖南:中南大学, 2008
    [55] M. S. A. Heikkinen, N. H. Harley. Experimental investigation of sintered porous metal filters[J]. Journal of Aerosol Science, 2000, 31(6):721-738
    [56] V. V. Panichkina, V. V. Skorokhod, N. P. Pavlenko. Porous structure of sintered tungsien[J]. Soviet Powder Metallurgy and Metal Ceramics, 1997, 16(12):950-951
    [57] A. G. Kostornov, Y. N. Podrezov, Y. G. Bezymyannyi, et al. Sintered metals and alloys stainless-steel porous-layered and framework fiber-powder composites[J]. Powder Metallurgy and Metal Ceramics, 2006, 45(1-2):35-39
    [58] H. T. Wang, X. Q. Liu, G. Y. Meng. Porousα-Al2O3 ceramics prepared by gelcasting[J]. Materials Research Bulletin, 1997, 32(12):1705-1712
    [59] H. T. Wang, X. Q. Liu, F. L. Chen, et al. Kinetics and mechanism of a sintering process for macroporous alumina ceramics by extrusion[J]. Journal of the American CeramicSociety, 1998, 81(3):781-784
    [60] Y. L. V, M. Li, H. Yang, et al. Porous Hydroxyapatite Bioceramics Prepared by Polymeric Sponge Impregnation Process[J]. Key Engineering Materials, 2007, 336-338(04):1612-1614
    [61] .Rambo C. R, Sousa E. De, A. P. N. De Oliveira, et al. Processing of cellular glass ceramics[J]. Journal of the American Ceramic Society, 2006, 89(11):3373-3378
    [62] Minor-Pérez. E, R. M.-S., J. Mendez-Vivar, et al. Preparation and characterization of multicomponent porous materials prepared by the solgel process[J]. Journal of Porous Materials, 2006, 13(1):13-19
    [63]崔峰.多孔网状Si3N4陶瓷增强铝基复合材料的制备[D].济南:山东大学硕士学位论文, 2005
    [64] Qian J. M., Wang J. P., Qiao G. J., et al. Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing[J]. Journal of the European Ceramic Society, 2004, 24(10-11):3251-3259
    [65] Tomita T., Kawasaki S., Okada K. A novel Preparation Method for Foamed Silica Ceramics by Sol-Gel reaction and Mechanical Foaming[J]. Journal of Porous Materials, 2004, 11(2):107-115
    [66] Y. Saito, T. Takei, S. Hayashi, et al. Effects of amorphous and crystalline SiO2 additives on gamma A12O3 to alpha A12O3 Phase transitions[J]. Journal of the American Ceramic Society, 1998, 81(8):2197-2200
    [67]邵怀启,钟顺和.挤出成型法制备莫来石-硅藻土陶瓷膜管的研究[J].硅酸盐通报, 2004, 23(4):25-28
    [68] D. Q. Wang, W.W. Xue, X. J. Meng, et al. Cell structure and compressive behavior of an aluminum foam[J]. Journal of materials science, 2005, 40(4):3475-3480
    [69] Ridgeway J. A.. Cellarized metal and method of producing the same[P]. United States Patent, 3297431, 1967-01-10
    [70] Akiyama S., Imagawa K., Kitahara A., et al. Foamed metal and method for producing the same[P]. United States Patent, 4712277, 1987-12-15
    [71]赵增典,张勇,李杰.泡沫金属的研究与发展[J].轻合金加工技术. 1998, 26(11):1-4
    [72] Banhart J. Manufacture, characterisation and application of cellular metals and metal foams[J]. Progress in Materials Science. 2001, 46(6):559-632
    [73]李开华,罗江山,唐永建,等.泡沫镍制备中脉冲电沉积镍研究[J].稀有金属材料与工程, 2008, 37(8):1451-1555
    [74]王圣威,金宗哲,黄丽容.多孔陶瓷材料的制备及应用研究进展[J].硅酸盐通报, 2006, 25(4):124-129
    [75]张华,胡娟,周万城,等.堇青石质蜂窝陶瓷的制备[J].硅酸盐学报, 2004, 32(1):24-28
    [76]刘智信,李东风.多孔金属在催化中的应用[J].金属功能材料, 2004, 11(2):35-37
    [77]张健,汤慧萍,奚正平,等.高温气体净化用金属多孔材料的发展现状[J].稀有金属材料与工程, 2006, 35(S2):438-441
    [78] E. P. Briggs, A. R. Walpole, P. R. Wilshaw, et al. Formation of highly adherent nanoporous alumina on Ti-based substrates: A novel boneimplant coating. Journal of Material Science: Materials in Medicine, 2004, 15(9):1021-1029
    [79]姜淑文,齐民.生物医用多孔金属材料的研究进展[J].材料科学与工程, 2002, 20(4):597-600
    [80]宝鸡有色金属研究所.粉末冶金多孔材料(下册)[M].北京:冶金工业出版社, 1979, 1-32
    [81]罗民华,曾令可.多孔陶瓷的表征与性能测试技术(上)[J].佛山陶瓷, 2004, 1(84): 5-9
    [82]周春晖,李庆伟,葛忠华,等.纳米孔硅铝层柱蒙脱石复合材料的制备和性能研究[J].复合材料学报, 2004, 21(1):17-22
    [83] GeorgeR. C., Li Z. X. NMR Principles&Applications[M]. Texas:Gulf Publishing Company, 1999
    [84] Feigin L A, Severgun D I. Structure analysis by small-angle X-ray and neutron scattering[M]. New York:Plenum Press, 1987
    [85]刘培生.多孔材料引论[M].北京:清华大学出版社, 2004, 9:315
    [86] Montillet A., Comiti J., Legrand J. Determination of structural parameters of metallic foams from permeametry measurements[J]. Journal of Materials Science, 1992, 27(16):4460-4464
    [87] S. X. Mao, N. A. McMinn, N. Q. Wu. Processing and mechanical behavior of TiAl/NiAl intermetallic composites produced by cryogenic mechanical alloying[J]. Mater Sci Eng A, 2003, 363(1-2):275-289
    [88] C. L. Yeh, C. C. Yeh. Preparation of CoAl intermetallic compound by combustion synthesis in self-propagating mode[J]. Journal of Alloy and Compounds, 2005,388(10):241-249
    [89] Haraguchi T., Kogachi M. Point defect behavior in B2-type intermetallic compounds[J]. Materials Science Engineering A, 2002, 331(10):402-407
    [90]山口正治,马越佑.编.丁树深.译.金属间化合物[M].北京:科学出版社, 1991
    [91] Miracle D. B. The physical and mechanical properties of NiAl[J]. Acta Metal Mater, 1993, 41(3):649-684
    [92]孙岩,刘瑞岩,张俊善,等. NiAl基金属间化合物的研究进展[J].材料导报, 2003, 17(7):10-13
    [93]李虎田,郭建亭,叶恒强. NiAl及金属间化合物结构材料改善室温塑韧性及制备工艺的研究进展[J].稀有金属材料与工程, 2006, 35(7):1162-1166
    [94]郭建亭,崔传勇,李谷松,等.定向凝固NiAl合金的微观组织和高温力学性能Ⅰ.微观组织和韧脆转变温度[J].金属学报, 2000, 36(11):1139-1143
    [95]郭建亭.金属间化合物NiAl的研究进展[J].中南大学学报(自然科学版), 2007, 38(6):1013-1027
    [96]徐春梅,郭建亭. NiAl微晶涂层对两种NiAl基共晶合金高温氧化性能的影响[J].金属学报, 2002, 38(7):673-678
    [97]杨松岚,王福会.微晶化对β-NiAl金属间化合物1000℃空气中氧化行为的影响[J].金属学报, 2000, 36(5):511-516
    [98] L. Chen, Y. F. Han, C. H. Tao. The microstructure and compressive properties in NiAl(Co) matrix composite[J]. Acta Metallurgica Sinica, 1996, 330(7):653-657
    [99] Yeh C. L., S. Su H., H. Chang Y. Effects of TiC addition on combustion synthesis of NiAl in SHS mode[J]. Journal of Alloys and Compounds, 2005, 398(1-2):85-93
    [100] Merzhanov A. G. History and recent developments in SHS[J]. Ceramics International, 1995, 21(5):371-379
    [101] H. C. YI, J. J. MOORE. SHS synthesized Ni-Ti based shape memory alloys for both low and high-temperature applications[J]. Journal of Materials Science Letters, 1989, 8(10):1182-1184
    [102] Silvia G., Filippo M., Umberto Anselmi-Tamburini, et al. SHS (Self-sustained high-temperature synthesis) of intermetallic compounds: effect of process parameters by computer simulation[J]. Intermetallics, 2003, 11(11-12):1355-1359
    [103] K. G. Shkadinsldi, V. V. Chernetsova, V. I. Yukhvid. Mathematical Simulation of Combustion of Three-Component SHS Systems[J]. Journal of Engineering Physicsand Thermophysics, 1993, 65(4):994-998
    [104] S. Gennari, U. A. Tamburini, F. Maglia, et al. A new approach to the modeling of SHS reactions: Combustion synthesis of transition metal aluminides[J]. Acta Materialia, 2006, 54(9):2343-2351
    [105] LEE J. H., SEO D. H., WON C. W., et al. Combustion characteristics of WO3/Zn reaction system in SHS process[J]. Journal of Materials Science, 2001, 36(10): 5311-5314
    [106]郭建亭,邢占平.一种内生碳化钛弥散强化镍铝基合金[P].中国发明专利:96115292. 3
    [107] C. L. Yeh, R. F. Li. Formation of TiB2-Al2O3 and NbB2-Al2O3 composites by combustion synthesis involving thermite reactions[J]. Chemical Engineering. 2009, 147(5):405-411
    [108] D. Vallauria, V. A. Shcherbakov, A. V. Khitev, F. A. Deorsola. Study of structure formation in TiC-TiB2-MexOy ceramics fabricated by SHS and densification[J]. Acta Materialia. 2008, 56(6):1380-1389
    [109] U. Demircan, B. Derin, O. Yu-cel. Effect of HCl concentration on TiB2 separation from a self-propagating high-temperature synthesis (SHS) product[J]. Materials Research Bulletin. 2007, 42(7):312-318
    [110] H. Zhu, H. Z. Wang, L. Q. Ge. Wear properties of the composites fabricated by exothermic dispersion reaction synthesis in an Al-TiO2-B2O3 system[J]. Wear, 2008, 264(12):967-972
    [111] S. K. Mishra, P. K. P. Rupa, S. K. Das, et al. Effect of titanium diluent on the fabrication of Al2O3-ZrB2 composite by SHS dynamic compaction[J]. Composites Science and Technology, 2007, 67(10):1734-1739
    [112] C. L. Yeh, R. F. Li. Formation of TiB2-Al2O3 and NbB2-Al2O3 composites by combustion synthesis involving thermite reactions[J]. Chemical Engineering Journal, 147(7):405-411
    [113] T. T. Ai. Microstructures and mechanical properties of in-situ Al2O3/TiAl composites by exothermic dispersion method[J]. Acta Metallurgica Sinica, 2008, 21(6):437-443
    [114] Lebrat J P., Varma A., Miller A E. Combustion Synthesis of Ni3Al and Ni3Al matrix Composite[J]. Matall. Tran A, 1992, 23(5):69-76
    [115] F. B. Yeh. The effects of plasma characteristics on the melting time at the front surface of a film on a substrate: An exact solution[J]. International Journal of Heat and MassTransfer, 2006, 49(1-2):297-306
    [116] H. Chen, H. Q. Li. Microstructure and wear resistance of Fe based coatings formed by plasma jet surface metallurgy[J]. Materials Letters, 2006, 60(09):1311-1314
    [117] H. Chen, H. Q. Li, Y. Z. Sun, et al. Microstructure and properties of coatings with rare earth formed by DC-plasma jet surface metallurgy[J]. Surface and Coatings Technology, 2006, 200(7):4741-4745
    [118]崔洪芝,王勇.镁合金表面等离子改性束熔凝处理的组织与性能[J].金属热处理, 2007, 32(6):72-74
    [119] P. M. Kaniloa, V. I. Kazantsevb, N. I. Asyukc. et al. Microwave plasma combustion of coal[J]. Fuel, 2003, 82(2):187-193
    [120]张孝勇.等离子燃烧器点火特性的实验研究与数值模拟[D].北京:华北电力大学博士学位论文, 2007
    [121]姚文达,李硕,郭秀峰.电站锅炉微油点火技术现状与发展[J].华电技术, 2008, 30(1):14-19
    [122]邢毅,麻洪秋,况春江. Fe3Al金属间化合物多孔材料的研究[J].粉末冶金技术, 2005, 23(4):263-267
    [123] N. Kanetake, M. Kobashi. Innovative processing of porous and cellular materials by chemical reaction[J]. Scripta Materialia, 2006, 54(4):521-525
    [124]朱胜利,杨贤金,胡飞,等.氩气保护烧结多孔TiNi合金孔隙特征的研究[J].材料热处理学报, 2003, 24(4):51-54
    [125] S. H. Yanga, W. Y. Kimb, M. S. Kima. Fabrication of unidirectional porous TiAl-Mn intermetallic compounds by reactive sintering using extruded powder mixtures[J]. Intermetallics. 2003, 11(9):849-855
    [126] C. Lu. Pressure effect on the structural transition of NiAl[J]. Physics letters A, 2004, 32(8):452-458
    [127]贺跃辉,江垚,林小芹.钛、铝元素粉末反应合成制备钛铝金属间化合物过滤膜的方法[P].中国专利, 200410003039,
    [128]崔洪芝. Ni-Al金属间化合物材料及其制备工艺[P].中国专利, CN200410046492.4
    [129] P. W. Gulavey. Synthesis of porous Ni-Ti intermetalics compound by in situ reaction[P]. Russian Patent No. 2060927
    [130] Fraas. Lewis M. Method of manufacturing iron aluminide by thermomechanical processing of elemental powders[P]. U. S. Pat. No. 6033623, March 7, 2000
    [131] Claussen, Nils. Production of an aluminide filter and apparatus[P]. U. S. Pat. No.6025065, February 15, 2000
    [132] Kong, Peter C. Methods of fabricating cermet materials and methods of utilizing same[P]. U. S. Pat. No. 7022647, Apr. 4, 2006
    [133] Peter C, Kong. Cermet materials, selfcleaning cermet filter, apparatus and systems employing same, U. S. Pat. No. 6918941 Jul. 19, 2005
    [134]施明恒,樊荟.多孔介质导热的分形模型[J].热科学与技术, 2002, 19(1):28-31
    [135]高洪吾,刘士魁,赵彦波.加热氧化处理对TiH2释氢行为的影响[J].中国有色金属学报, 2005, 15(3):364-367
    [136] J. Banhart. Manufacture, characterization and application of cellular metals andmetal foams[J]. Progress in Materials Science, 2001, 46(10):559-632
    [137] Y. Y. Zhao, D. X. Sun. A novel sintering-dissolution process for manufacturing Al foams[J]. Scr. Mater, 2001, 44(01):105-110
    [138]李平.尿素造粒出塔温度分析与控制[J].大氮肥, 2003, 26(5):327-329
    [139]李强,陈祥,李言祥.汽车尾气净化器载体及涂层的研究进展[J].表面技术, 2001, 30(4):23-27
    [140] J. S. Li, Z. Y. Cai, H. S. Guo, et al. Characteristics of porous Al2O3-TiB2 ceramics fabricated by the combustion synthesis[J]. Journal of Alloys and Compounds, 2009(in press)
    [141] Wang W.M., Fu Z.Y., Wang H., et al. Chemistry reaction processes during combustion synthesis of B2O3-TiO2-Mg system[J]. Journal of Materials Processing Technology 2002, 128(10):162-168
    [142] M. A. Meyers, E. A. Olevsky, J. et al. Combustion synthesis/densification of an Al2O3-TiB2 composite[J]. Materials Science and Engineering, 2001, A311(02):83-99
    [143] Ma Z. Y., Tjong S. C. Creep behavior of insitu Al2O3 and TiB2 particulates mixture-reinforced aluminum composites[J]. Materials Science and Engineering A, 1998, 256(11):120-128
    [145] Haibo Feng, Yu Zhou, Dechang Jia, et al. Growth mechanism of in situ TiB2 whiskers in spark plasma sintered TiB/Ti metal matrix composites[J]. Crystal Growth and Design, 2006, 6(7):1626-1630
    [146] R. V. Krishnarao, J. Subrahmanyam. Studies on the formation of TiB2 through carbothermal reduction of TiO2 and B2O3[J]. Materials Science and Engineering A, 2003, 362 (10):145-151
    [147] M. X. Guo, M. P. Wang, K. Shen, et al. Synthesis of nano TiB2 particles in copper matrix by in situ reaction of double-beam melts[J]. Journal of Alloys and Compounds, 2008, 460(1-2):585-589
    [148] D. Vallauria, I. C. Atas Adrian, A. Chrysanthou. TiC-TiB2 composites: a review of phase relationships, processing and properties[J]. Journal of the European Ceramic Society, 2008, 28(12):1697-1713
    [149]陈国良,林均品.有序金属间化合物结构材料[M].北京:冶金工业出版社, 1999.
    [150]黄虎军,贺跃辉,江垚,等. Ti-Al系金属间化合物多孔材料的制备和性能[J].材料研究学报, 2007, 21(4):337-341
    [151]高麟,贺跃辉,江垚,等. TiAl金属间化合物微滤膜的制备与性能[J].粉末冶金材料科学与工程, 2005, 10(4):216-219
    [152]张丰收,贺跃辉,江垚,等.压制压力对多孔TiAl合金孔结构及过滤性能的影响[J].粉末冶金材料科学与工程, 2006, 11(4):214-218
    [153] H. X. Zhu, R. Abbaschian. Reactive processing of nickel-aluminide intermetallic compounds[J]. Journal of Materials Science, 2003, 38(4):3861-3870
    [154] K. Morsi. Review:reaction synthesis processing of Ni-Al intermetallic materials[J]. Mater. Sci. Eng. A, 2001, 299(1-2):1-15
    [155] P. Zhu, J. C. M. Li, C. T. Liu. Reaction mechanism of combustion synthesis of NiAl[J]. Mater. Sci. Eng.A. 2002, A (329-331):57-68
    [156]王华彬,韩杰才,张幸红,等. Ni-Al粉连续加热过程中的反应机理[J].金属学报, 1998, 34(9):992-998
    [157]王为民,傅正义,袁润章. NiAl/TiB2复合材料的自蔓延燃烧合成[J].金属学报, 1994, 30(10):B446-B480
    [158]王德尊,刘宗荣,姚忠凯,等. TiO2/Al烧结反应生成的Al2O3/TixAly复合材料研究[J].材料科学进展, 1993, 7(5):457-460
    [159]张廷安,豆志河.自蔓延冶金法制备TiB2微粉的生长机理研究,无机材料学报, 2006, 21(3):583-590
    [160]梁英教,车荫昌,刘晓霞,等.无机物热力学数据手册[M].沈阳:东北大学出版社, 1992
    [161]王兴庆.反应烧结制取铁铝系金属间化合物的研究[D].长沙:中南大学博士论文, 2002
    [162] Biswas A., Roy S, K. Comparison between the microstructural evolutions of twomodes of SHS of NiAl: key to a common reaction mechanism[J]. Acta Mater. 2004, 52(2):257-270
    [163] F. Seitz. On the porosity observed in the Kirkendall effect[J]. Acta Metallurgica, 1993, 1(3):355-369
    [164] Y. He, Y. Jiang, N. Xu, et al. Fabrication of Ti-Al Micro/Nanometer-sized Porous Alloys through the Kirkendall Effect[J]. Advanced Materials, 2007, 19(16):2102-2106
    [165]黄伯云主编.粉末冶金原理[M].北京:冶金出版社, 1981:373-400
    [166] A. E. Simone, L. J. Gibson. Aluminum foams produced by liquid-state processss[J]. Acta Mater, 1998, 46(9):3109-3123
    [167] E. Andrews, W. Sanders, L. J. Gibson. Compressive and tensile behavior of aluminum foams[J]. Materials. Science. And Engineering: A, 1999, 270(2):113-124
    [168] K. Y. G. McCuleough, N. A. Fleck, M. F. Ashby. Unixial stress-strain behavior of aluminum alloy fomas[J]. Acta Materialia, 1999, 47(8):2323-2330
    [169]韩福生.泡沫铝的制备及性能研究[D].合肥:中国科学院固体物理研究所博士论文, 1997
    [170]郝刚领.镁基多孔材料的制备及其性能研究[D].合肥:中国科学院固体物理研究所博士论文, 2007
    [171] C. Nishimura, C. T. Liu. Reactive sintering of Ni3Al under compression[J]. Acta Metall. Mater. 1993, 41(1):113-120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700