低渗油藏储层裂缝的参数反分析优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低渗油藏地应力场和储层裂缝的分布特征,对低渗油藏的油气运移、注采井网部署与调整、钻井管柱优化设计等都具有重要影响。但长期以来人们对石介质固有属性的认识存在一定的模糊性和局限性,对油藏地应力及储层裂缝的研究尚处于探索阶段。本文重点针对岩石力学参数、油藏地应力及储层裂缝预测分析研究中的热点和难点问题,在借鉴前人大量研究成果的基础上,利用现代数学、力学、计算机等知识通过理论推演、数值模拟、油田实例分析及配套软件开发等途径,提出适于低渗透油气储层的油藏应力场及储层裂缝分布规律的预测分析技术。首先,基于岩石声学特性和力学特性之间的关系推导了确定力学参数的模型方法,参照岩心测试数据结合最优化反分析技术利用油田现场大量的常规测井信息计算岩石力学参数,研究了储层岩石参数的随机性和模糊性,预测分析了储层岩石弹性模量及泊松比的概率分布类型,并计算得出其统计特征值。其次,推导分析了以关键井处地应力的大小和方位为约束条件,利用多井多目标约束的最优化技术确定储层岩石地应力分布规律的模型方法。实例计算表明约束井处地应力大小及方位误差皆能满足实际工程要求,并获取了研究区域储层平面内三向主应力、孔隙压力及破裂压力的分布规律,回归拟合了江苏油田三向地应力随深度变化的关系曲线。再次,根据储层岩石所受的复杂多轴应力环境,研究分析了储层岩石地应力状态函数和基于多强度参数的破坏曲面方程,建立了储层裂缝预测分析的多参数判据模型,有效弥补了常规岩石破裂准则中参数过于单一、无法考虑储层岩石非均质性和各向异性等缺陷。同时,为了考虑岩石材料原始微缺陷等对储层裂缝的影响,文中将位错理论引入到储层裂缝预测中,提出了基于位错模型的储层裂缝预测的新方法,为储层裂缝的分析预测提供了一种可行而有效的方法。在此基础上,开展了油气储层岩石强度参数的概率模型分析,提出了利用Monte Carlo法随机有限元模拟技术预测分析储层岩石裂缝发育情况的模型方法。江苏油田W油区实例分析结果表明,研究成果较好地分析预测了裂缝发育区域,并通过裂缝发育指数与裂缝密度间的拟合关系,预测分析了研究区域油藏储层裂缝密度分布规律。最后,设计开发了“地应力及裂缝预测分析系统(RSFA)”软件,为论文的理论研究成果较全面、方便地应用于油田生产实际提供了一个有效途径,初步实现了论文理论方法向工程实际应用的转化。
The distribution characteristics of stress fields and reservoir fractures of the low permeability reservoir play an important role in the hydrocarbon migration, well patterns arrangement and adjustment, optimization design of drilling strings and such relevant fields. However, the rocks complicated formations and properties cause large ambiguity and a lot of limitations to the recognition of the rocks inherent attribute, and as a result the research of the reservoir stresses and fractures is still at the exploratory stage.
     This dissertation mainly focused on the hot issues and difficult questions in the study of rocks property parameters, reservoir stress distributions and fracture characteristics, learn from the predecessors research results, and make use of modern mathematics, mechanics, and computer knowledge to propose an actual analysis and prediction technique to the stress field and reservoir fracture distribution suitable for low-permeability oil and gas reservoirs, by means of theoretical deduction, numerical simulation, case study, corresponding software development and so on.
     First of all, established an effective model for the acquisition of rocks parameters based on the relationship between rocks acoustic characteristics and mechanical properties, calculated the rocks property parameters in the light of core test data and optimization back analysis technique utilizing large number of conventional logging information, studied the rocks stochastic and fuzzy attribute, and obtained its statistical eigenvalues of rocks elastic modulus and Poisson's ratio.
     Secondly, derived mathematical and FEM models for the reservoir stress analysis and prediction, set the magnitudes and azimuths of some key wells in Jiangsu Oilfield as the constraints, made use of multi-objective optimization techniques to obtain the distribution regulations of principal stresses, pore pressures and fracture stresses. Fit the related curves of the principal stresses versus the depths of Jiangsu Oilfield, whose results indicated that the accuracy can meet the engineering requirement.
     Thirdly, carried out a research on the reservoir rock stress state functions and the failure surface equations expressed by multi-strength parameters, put forward a multi-parameter model for the analysis and prediction of reservoir fractures, which can make up effectively for many defects of conventional criteria. At the same time, in order to consider the influence of rocks original defects, the dislocation theory was introduced to the reservoir fractures research, and a novel model based on dislocation theory was presented, which provided a feasible and effective method for reservoir fractures prediction. Furthermore, a stochastic finite element analysis using the Monte Carlo method was introduced into our research to study the effect of the probabilistic rocks parameters to the reservoir fractures. All our case study results show that the models in this dissertation can give out a better prediction of the fractures, and reflect the distribution of the fractures’density.
     Finally, a corresponding software named "Reservoir Stress and Fracture Analysis system (RSFA)" was designed, which provided an effective way for the theoretical research results applying to the actual oil production comprehensively and conveniently, and make a simple implementation of the transformation from the theoretical approach to the practical application of engineering.
引文
[1]刘泽凯,陈耀林,唐汝众.地应力技术在油田开发中的应用[J].油气采收率技术,1991,1(1):48-56
    [2]王法轩,刘长松,张强德.地层应力测量技术及其在油田开发中的应用[J].断块油气田,1997,4(2):41-45
    [3]马寅生.地应力在油气地质研究中的作用、意义和研究现状[J].地质力学学报,1997,3(2):41-46
    [4]李志明,张金珠.地应力与油气勘探开发[M].北京:石油工业出版社,1997
    [5]曾联波,肖淑蓉,罗安湘.陕甘宁盆地中部靖安地区现今应力场三维有限元数值模拟及其在油田开发中的意义[J].地质力学学报,1998,4(3):58-63
    [6]王喜双,宋惠珍,刘洁.塔里木盆地构造应力场的数值模拟及其对油气聚集的意义[J].地震地质,1999,21(3):268-273
    [7]王喜双,李晋超,王绍民,等.塔里木盆地构造应力场与油气聚集[J].石油学报,1997;18(1):23-28
    [8]陶良军,冯兴武,黄青松,等.宝浪油田地应力和裂缝特征研究与应用[J].钻采工艺,2000,24(2):25-27
    [9]徐开礼,朱志澄.构造地质学[M].北京:地质出版社,1990
    [10]李志明,张金珠.地应力与油气田勘探开发[M].北京:石油工业出版社,1997
    [11] Teufel L.W. Determination of In-Situ Stress from Anelastic Strain Recovery Measurements of Oriented Core[A]. SPE 11649, Proc. SPE Symposium on Low Permeability Reservoirs[C], Denver, CO., 1983a, March: 421-430
    [12]陈景涛,冯夏庭.高地应力下岩石的真三轴试验研究[J].岩石力学与工程学报, 2006, 25(8):1537-1543
    [13]赵良孝.椭圆形井眼垮塌的原因和应用[J].测井技术,1985,03:31-37
    [14]高合明,刘建东,沈露禾.深部地应力测试技术及其在钻井工程中的应用[J].岩石力学与工程学报,2000,19(增):1124-1127
    [15] Aadnoil Chenevert. Stability of Highly Inclined Borehole [A]. SPE/IADC Drilling Conf.[C],New Orleans, SPE/IADC 16052,1987
    [16]王鸿勋.水力压裂原理[M].北京:石油工业出版社,1988
    [17]尤明庆.水压致裂法测量地应力方法的研究[J].岩土工程学报,2005,27(3):350-353
    [18]赵庆.应用压裂资料计算地应力的一种方法[J].河南石油,2005,19(1):43-45
    [19]刘允芳.水力压裂法三维地应力测量[J].岩石力学与工程学报,1991,10(3):246-256
    [20] Kuhlman R. D. Field tests of downhole extensometer used to obtain in-situ stress data[J]. SPE25905, 1993:625-634
    [21]张筠,林绍文.利用测井进行地层弹性特征及应力场分析[J].测井技术,2001,25(6):467-472
    [22]马建海,孙建孟.用测井资料计算地层应力[J].测井技术,2002,26(4):347-351
    [23]康义逵.应用测井资料计算储层地应力的方法[J].试采技术,2002,23(2):16-18
    [24]余雄鹰,王越之,李自俊.声波法计算水平主地应力值[J].石油学报,1996,17(3):59-62
    [25]殷有泉,陈虎,蒋阗,等.储层应力场的数值模拟[J].地质力学学报,1999,5(1):50-59
    [26]苏生瑞,朱合华.断裂端部应力场的离散元模拟分析[J].岩石力学与工程学报,2002, 21(增),2110-2114
    [27]高玮,郑颖人.岩土力学反分析及其集成智能研究[J].岩土力学,2001;22(1):114-116
    [28]易达,徐明毅,陈胜宏,等.人工神经网络在岩体初始应力场反演中的应用[J].岩土力学,2004, 22(6):114-116
    [29] Mohanmmd S. Ameen. Fracture and in-situ stress characterization of hydrocarbon reservoirs [M]. Geological Society, London, Special Publications, 2003(209)
    [30]王敏,赵跃华.宝浪苏木构造带储集层特殊地质特征探讨[J].成都理工学院学报,2002, 29(1):31-36
    [31] Nelson R. A. Geologic analysis of naturally fractured reservoirs [M]. Texas: Gulf Publishing Company, 1985 : 8-26
    [32] Serra O. Fundamentals of Well-Log Interpretation Developments in Petroleum science [M]. France: Elsevier Scientific Company,1986
    [33]谭廷栋.测井评估裂缝性油藏储量新方法[J].低渗透油气田,1997,2(4):1-4
    [34] Chen J., Song X. M., Yao F. C., et al. Application of Seismic Inversion and Special Processing Techniques to Fracture Distribution Prediction [A]. In:1999SPE Asia Pacific Oil and Gas Conference and Exhibition[C], Jakarta, Indonesia:20-22
    [35]陈波,田崇鲁.储层构造裂缝数值模拟技术的应用实例[J].石油学报,1998,19(4):50-54
    [36]李德同,文世鹏.储层构造裂缝的定量描述和预测方法[J].石油大学学报(自然科学版),1996,20(4):6-10
    [37]曾锦光,罗元华,陈太源.应用构造面主曲率研究油气藏裂缝问题[J].力学学报, 1982,14(2):202-206
    [38] Price N. J. Fault and joint development in brittle and semi-brittle rock [M]. London: Pergamon Press, 1966
    [39]宋惠珍.脆性岩储层裂缝定量预测的尝试[J].地质力学学报,1999,5(1):76-84
    [40] Carpinteri A., Lacidogna G., Pugno N. Scaling of energy dissipation in crushing and fragmentation: a fractal and statistica1 analysis based on partic1e size distribution [J]. Internationa1 Journal of Fracture. 2004,129:131-139
    [41] Sadrai S. Influence of impact ve1ocity on fragmentation and the energy effciency of comminution [J]. International Journal of Impact Engineering. 2006, 33(1):723-734
    [42] Garcia M., Gouth F., Gosselin O. Fast and efficient modeling and conditioning of naturally fractured reservoir models using static and dynamic data[A]. In:SPE Europec/EAGE conference and exhibition[C], Paper107525, London: 2007, June: 11-14
    [43] Duzgun, H. S. B., Yacemen, M.S., Korpuz, C.A. A methodology for reliability-based design of rock slopes[J]. Rock Mech. and Rock Eng. 2003,36(2)
    [44] Cambou B. Application of first-order uncertainty analysis in the finite element method in linear elasticity [A]. In: Proc of 2nd Int Conf on Applications of Statistics and Structural Engineering[C]. Aachen,1975:67-87
    [45] Dendrou B. A., Houstis E. N. An inference finite element method for field application [J]. Applied Mathematical Modeling. Guildford. England,1978:49-55
    [46] Baecher G. B., Ingra T. S. Stochastic FEM in settlement predictions [J], Journal of Geotech Eng., 1981,107(2):449-463.
    [47] Handa K., Anderson K. Application of finite element methods in statistical analysis of structures [A]. In: Proc 3rd Int Conf on Struct Safety and Reliability[C],Trondheim, Norway, Hune:1981,409-417
    [48] Hisada T., Nakagirl S. Stochastic finite element method developed for struct Safety and Reliability [A]. In: Proc. 3rd Int. Conf. on Struct. Safety and Reliability[C],Trondheim, Norway:1981,395-408
    [49] Nakagirl S., Hisada T. Stochastic finite element method applied to structural analysis with uncertain parameters [A]. In: Proc Int Conf on FEM[C].Australia:1982,206-211
    [50] Hisada T., Nakagirl S. Role of the stochastic finite element method in struct. Safety and Reliability [A].In: Proc. 4rd Int. Conf. on Struct. Safety and Reliability[C]. Kobe, Japan:1985,213-219
    [51] Shinozuka M., Deodatis G. Response variability of stochastic finite element systems [J]. Journal of Eng. Mech., 1988,114(3):499-519.
    [52] Yamazaki F., Shinozuka M., Dasgupta G. Neumann expansion for Stochastic finite element analysis[J], Journal of Eng Mech., ASCE, 1988,11(8):1335-1354
    [53] Kiureghian A. D., Ke J. Stochastic finite element method in structural Reliability [J].Probabilistic Eng. Mech., 1988,3(2):83-91.
    [54]吴世伟,李同春.重力坝最大可能失效模式初探[J].水利学报,1990,4:36-44
    [55]李同春,吴世伟.基于三维SFEM的拱坝可靠度分析[A] .工程结构可靠性全国第二届学术交流会议论文集[C].重庆,1989:114-125
    [56]吴世伟.结构可靠度分析[M].北京:交通出版社,1988
    [57]武清玺,吴世伟,吕泰仁.基于有限元法的重力坝可靠度分析[J].水利学报,1990,1: 39-41
    [58]吴世伟.拱坝的失效模式与可靠度[J].河海大学学报,1992,20(2): 88-96
    [59] Liu N., Wang Y., Wu S. W. Reliability analysis of gravity dam with weak layers[A].In: Proc of Int Sym on Application of Computer Methods in Rock Mechanics and Engineering[C]. Xi’an, P.R. China, 1993:1265-1270
    [60]陈虬,刘先斌.随机有限元法及其应用[M].成都:西南交大出版社,1993
    [61]秦权.随机有限元及其进展[I]:随机场的离散和反应矩的计算[J].工程力学,1994,11(4): 1-10
    [62]秦权.随机有限元及其进展[II]:可靠度随机有限元和随机有限元的应用[J].工程力学,1995,12(1): 1-9
    [63]刘宁,吕泰仁.随机有限元及其工程应用[J].力学进展,1995,25(1):114-126
    [64]姚耀武,申超.非线性随机有限元法及其在可靠度分析中的应用[J].岩土工程学报,1996,18(2): 37-46
    [65]张圣坤.不确定性问题的有限元方法及应用[J].固体力学学报,1987,8(3):277-281
    [66]张汝清,高行山.随机变量的变分原理及有限元法[J].应用数学和力学,1992,13(5): 383-388
    [67]龚晓南,钱纯.非线性随机过程的有限元分析[J].计算结构力学及其应用,1994,11(1): 9-18
    [68]张晓春,杨挺青,缪协兴.摄动随机有限元法在顺层岩质边坡可靠性分析中的应用[J].岩土工程学报,1999,21(1): 71-76.
    [69]徐卫亚,谈小龙,蒋中明.节理岩体边坡模糊稳定性分析方法研究[J].岩石力学与工程学报,2007,26(6):1232-1236
    [70]刘世君,蒋中明,徐卫亚等.岩体非线性随机反分析优化算法的研究[J].三峡大学学报(自然科学版).2002,24(3):202-205
    [71]徐卫亚,刘世君.岩石力学参数的非线性随机反分析[J ].岩土力学,2001(4) :432-4351
    [72]杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1996
    [73]李杰,范文亮.钢筋混凝土框架结构体系可靠度分析[J].土木工程学报,2008;41(11):7-12
    [74]刘小渝,王俊杰.框架可靠度计算的新方法[J].重庆交通大学学报(自然科学版), 2007,26(4):14-17
    [75]邓建,边利,彭怀生.一种新的蒙特卡罗随机有限元方法[J].中南大学学报(自然科学版),2006,37(5):997-1001
    [76]傅旭东,赵善锐.用蒙特卡罗方法计算岩土工程的可靠度指标[J].西南交通大学学报,1996,31 (2):164-168
    [77]孙树林,朱杰.节理化岩质边坡的关键块体可靠度分析[J].岩石力学与工程学报,2007, 26(1):131-136
    [78]王正国,田小宝.边坡可靠性的蒙特卡洛分析[J].攀枝花科技与信息,1999,24(1):29-34
    [79]何满潮,苏永华,景海河.块状岩体的稳定可靠性分析模型及其应用[J].岩石力学与工程学报,2002,21(3):343-348
    [80]乔红威,吕震宙.非平稳随机激励下随机结构的动力可靠性分析[J].固体力学学报,2008, 29(1):36-39
    [81]胡太彬,陈建军,高伟等.平稳随机激励下随机桁架结构动力可靠性分析[J].力学学报,2004 , 36(2):241-246
    [82]姜峰,徐勇,王朝波.基于网格自适应的钢筋混凝土随机有限元分析[J].建筑科学与工程学报,2007,24(1):69-73
    [83]安明玉,王洪英,魏东,等.大庆油田深层岩石力学特性参数的试验研究[J].石油钻探技术,2002,30(1):13-15
    [84]尤明庆,华安增.岩石试样的三轴斜围压试验[J].岩石力学与工程学报,1998,17(1):24-29
    [85]张加桢,马瑞,杨旭东.三轴岩石试验机计算机控制的设计[J].机械科学与技术,1991,38 (2):69-73
    [86]余贤斌,周昌达.几个矿山矿岩力学试验数据的分析[J].云南冶金,1990,6:12-16
    [87] Hawkes I., Mellor M. Uniaxial testing in rock mechanics laboratories [J]. Engineering Geology. 1970, 4(3):177-285
    [88] Hudson, J.A. Engineering Rock Mechanics[M]. England: Redwood Publishing Company, 1997
    [89]林英松,葛洪魁,王顺昌.岩石动静力学参数的试验研究[J].岩石力学与工程学报,1998, 17(2):216-222
    [90]雍世和,洪有密.测井资料综合解释与数字处理[M].北京:石油工业出版社,1982
    [91] Tutuncu A. N.,Sharma M. M. Relating static and ultrasonic laboratory measurement to acoustic log measurement in tight gas sands[J]. SPE24689,1993,299-311
    [92]李金柱,李双林.岩石力学参数的计算与应用[J].测井技术,2003,27(增):15-18
    [93] Hast N. The Measurement of Rock Pressure in Mines [J]. Sveriges Geologiska Under Socking,Sec. C. ,1958
    [94] Bernaix J. New laboratory methods of studying the mechanical properties of rocks [J]. Int. J. Rock Mech. Min. Sci., 1969, 16:43-90
    [95] Everling G. Comments upon the definition of shear strength [J]. Int. J. Rock Mech. Mining Sc. 1964, 1:145-154
    [96]朱浮声,薛琳.粘弹性围岩力学参数反分析的一种数值法[J].岩石力学与工程学报,1997, 16(5):478-482
    [97]黄宏伟.岩土工程中位移量测的随机逆反分析[J].岩土工程学报,1995,17(3):36-41
    [98] Baecher G. B., Lanney N. A., Einstein, H. H. Statistical description of rock properties and sampling [A], Proceedings of the 18th U.S. Symposium on Rock Mechanics[C]. 1977, 5C:1-8
    [99]王如路,陈乃明,刘宝琛.用随机过程原理确定岩体力学参数[J].矿冶工程,1994,14(4):16-19
    [100]严春风,徐健.岩体强度准则概率模型及其应用[M].重庆:重庆大学出版社,1999
    [101]黄修云,魏莉萍.隧道岩石力学参数的随机-模糊统计分析[J].北方交通大学学报,1999,23(1): 38 -41
    [102]李胡生.岩石力学参数概率分布的随机-模糊估计方法[J].固体力学学报,1993,14(4): 347-351
    [103]熊文林,李胡生.岩石样本力学参数值的随机-模糊处理方法[J].岩土工程学报,1992,14(6): 101 -108
    [104]宫凤强,李夕兵,邓建.基于最佳数值逼近法的岩土参数概率模型推断[J].湖南科技大学学报(自然科学版),2005,20(4):47-55
    [105]宫凤强,李夕兵,邓建.小样本岩土参数概率分布的正态信息扩散法推断[J].岩石力学与工程学报,2006,25(12):2559-2564
    [106]李小勇,白晓红,谢康和.岩土参数概率分布统计意义上的优化分析[J].岩土工程技术,2000,3: 130-133
    [107]王新洲.基于信息扩散原理的估计理论、方法及其抗差性[J].武汉测绘科技大学学报,1999,24 (3):240-244
    [108]王仁.地球构造应力场的反演[A],王仁文集[C].北京:北京大学出版社,1999,282-289
    [109]吴国平,王润富.地下工程反分析的研究[J].河海大学学报,2000;28(1):76-80
    [110]王登刚,刘迎曦,李守巨,等.巷道围岩初始应力场和弹性模量的区间反演方法[M].岩石力学与工程学报,2002,21(3):305-308
    [111]黄光远,刘维倩.反问题与计算力学[J].计算结构力学及其应用,1993,10(3):21-25
    [112]姜弘道,陈国荣.岩土工程中的反分析方法[J],工程力学,1998,15(增):46-49
    [113]杨志法,王思敬,冯紫良,等.岩土工程反分析原理及应用[M].北京:地震出版社,2002
    [114]独知行,欧吉坤,韩保民.优化反演方法及数值反演试验研究[J].大地测量与地球动力学,2002, 22(4):39-43
    [115]唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社,2000
    [116]闫相祯,杨秀娟,王建军,等.基于多井约束优化方法的低渗油藏应力场反演与裂缝预测技术及应用[A].中国石油学会第一届油气田开发技术大会论文集[C].北京:石油工业出版社,2006
    [117]Klimentos T., Ghosh A., Sagar R., et al. Cased-Hole Sonic Technique for Stress Determination and Optimization of Oriented Hydraulic Fracturing Operations[J]. SPE113573,2008,1-12
    [118]刘高波,冯文光,陶晓红,等.常规测井资料与FMI相结合计算地应力[J].物探化探计算技术, 2007 ,29(3):200-204
    [119]张毅,闫相祯,颜庆智.三维分层地应力模型与井眼岩石破裂准则[J].西安石油学院学报(自然科学版),2000,15(4):42-48
    [120]陈广坡,王天琦,刘应如,等.中国南海某盆地A凹陷灰岩潜山有效裂缝预测[J].石油勘探与开发, 2008,35(3): 313-317
    [121]刘宏,蔡正旗,谭秀成,等.川东高陡构造薄层碳酸盐岩裂缝性储集层预测[J].石油勘探与开发, 2008,35(4): 431-436
    [122]周新桂,张林炎,范昆.油气盆地低渗透储层裂缝预测研究现状及进展[J].地质评论,2006, 52(6):777-782
    [123]孙永河,万军,付晓飞,等.贝尔凹陷断裂演化特征及其对潜山裂缝的控制[J].石油勘探与开发, 2007,34(3): 316-322
    [124]蔡正旗,张荣义,郑超,等.碳酸盐岩裂缝-孔隙型储集层综合预测方法研究[J].石油勘探与开发, 2005,32(3):65-68
    [125]徐志英.岩石力学[M].北京:水利电力出版社,1986
    [126]尤明庆.岩石的强度准则及中间主应力的影响[J].焦作工学院学报(自然科学版),2001, 20(6):474-478
    [127]Yu M. H. Advances in strength theories of materials under the complex stress state in the 20th Century[J] . Appl. Mech. Rev. , 2002,55(3):169-218
    [128]胡小荣,俞茂宏.岩土类介质强度准则新探[J].岩石力学与工程学报,2004,23(18):3037-3043
    [129]吴玉山,林卓英.论岩石应力-应变全过程[A].中国青年学者岩土工程、力学及其应用讨论会议论文集[C].北京:科学出版社,1994:41-49
    [130]Yu M. H., Zan W. Y., Zhao J., et cl. A unified strength criterion for rock material[J]. International Journal of Rock Mechanics & Mining Sciences, 2002,39: 975-989
    [131]俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998
    [132]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994
    [133]陈慧发(美),萨里普A.F.土木工程材料的本构方程(第一卷,弹性与建模)[M].余天庆,王勋文译.武汉:华中科技大学出版社,2001
    [134]皮萨林得T. C.,列别捷夫.复杂应力状态下的材料变形与强度[M].江明行译.北京:科学出版社,1983
    [135]Willam K., Warnke E. Constitutive models for the triaxial behavior of concrete[A], in: International Association of Bridge and Structural Engineering Seminar on“Concrete Structures Subjected to Triaxial Stresses”[C], vol. 19, International Association of Bridge and Structural Engineering (IABSE), Bergamo, Italy, 1975: 1-30
    [136]Yang M. J., He Y. N. Analysis of properties of broken rock[J]. J. China Univ. Min. Technol. 2001, 30: 9-13
    [137]Kulatilake P. H. S. W., Park J., Malama B. A new rockmass failure criterion for biaxial loading conditions [J]. Geotechnol Geol Eng. ,2006,24 :871-888
    [138]He M.C., Xie H. P. , Peng S. P.,et al. Study on rock mechanics in deep mining engineering[J]. Chin. J. Rock Mech. Eng. 2005,24 : 2803-2813
    [139]黄书岭,冯夏庭,张传庆.脆性岩石广义多轴应变能强度准则及试验验证[J].岩石力学与工程学报,2008,27(1):124-133
    [140]王东,陈建康,王启智. Monte Carlo随机有限元结构可靠度分析新方法[J].四川大学学报(工程科学版),2008,40(3): 20-24
    [141]尤明庆.统一强度理论的试验数据拟合及评价[J].岩石力学与工程学报,2008,27(11): 2193 -2204
    [142]Wiebols G.. A., Cook N. G. W. An energy criterion for the strength of rock in polyaxial compression[J]. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. , 1968,5(6):529-549
    [143]Hudson J. A., Harrison J. P. Engineering rock mechanics: an introduction to the principles[M].Oxford:Pergamon Press,1997
    [144]Colmenares L. B., Zoback M. D. A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks[J]. Int. J. Rock Mech. Min. Sci., 2002, 39(6):695-729
    [145]闫长斌,徐国元.对Hoek-Brown公式的改进及其工程应用[J].岩石力学与工程学报,2005, 24(22):4030-4035
    [146]杨顺华.晶体位错理论基础[M].北京:科学出版社,1988
    [147]孙玉周.裂纹尖端的位错密度及其应用[J].中原工学院学报,2003,14(4):69-71
    [148]于建军,苏枋,胡景龙,等.应用光弹性法和位错法求解应力强度因子[J].新疆教育学院院报, 2005,21(2):122-125
    [149]Lakshmanan V. and Li J. C. M. Edge dislocations emitted along inclined planes from a mode I crack[J]. Mater. Sci. Eng., 1988,104A:95-104
    [150]张俊彦,张平,郭小刚,等.高分子材料中的位错应力场及位错能量[J].高分子材料科学与工程, 2002,18(1):30-32
    [151]Qian C. F. Dislocation and dislocation dipole emissions from a crack tip in one slip system [J]. Acta Metall Sinica, 2004,35: 546-550
    [152]Fleck N. Brittle fracture due to an array of microcracks [A], Proceedings of Royal Society of LondonSeries A [C], 1991,432:55-76
    [153]覃曼青,张俊乾,葛杨.层状复合材料中离散位错的力学行为分析[J].上海大学学报(自然科学版), 2007,13(2): 197-202
    [154]Deshpande V.S., Needleman A., Van der Giessen E. Discrete dislocation modeling of fatigue crack propagation [J]. Acta Mat, 2002,50:831-46
    [155]Taylor G. I. The mechanism of plastic deformation of crystals[]A, Proceedings of the Royal Society of London[C], 1934, A,145: 362-404
    [156]Krajcinovic D.,Silva M. A. G.. Statistical Aspects of the Continuous Damage Theory [J]. International Journal of Solids Structures, 1982, 18(7): 551-562
    [157]Chen Q. Z. , Chu W. Y., Hsiao C.M. In situ TEM observations of nucleation and bluntness of nanocracks in thin crystals of 310 stainless steel[J]. Acta Metall Mater,1995,43: 4371-4376
    [158]钱才富,乔利杰,褚武扬.钝裂纹发射位错后的应力分布及有效应力强度因子[J].中国科学E辑, 2000,30(6):497-504
    [159]高克玮,陈奇志,褚武扬,等.纳米级解理微裂纹的形核和扩展[J].中国科学A辑,1994,24(9) : 993 -1 000
    [160]李密丹,张天成,吕宏,等.氢促进位错发射、运动导致脆性裂纹形核[J].中国科学,E辑,1997, 27(6) :481-487
    [161]宿彦京,五燕斌,褚武扬.吸附促进位错发射、运动导致脆性裂纹形核[J].中国科学E辑,1997,27(5) : 397-403
    [162]张行.高等弹性理论[M].北京:北京航空航天大学出版社,1994
    [163]洪起超.工程断裂力学基础[M].上海:上海交通大学出版社,1987
    [164]Lanaro F.J. A random field model for surface roughness and aperture of rock fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2000(37): 1195-1210
    [165]伏尔柯夫CП.强度统计理论[M].吴学蔺译.北京:科学出版社,1965
    [166]许崇海,孙德明,赵彤,等.陶瓷材料可靠性分析中的统计断裂强度理论I-经典统计断裂强度理论[J].中国陶瓷,2000,36(5):34-36
    [167]许崇海,王毅,程强,等.陶瓷材料可靠性分析中的统计断裂强度理论II-其它统计断裂强度理论[J].材料科学与工程,2001,19(4):151-153
    [168]光耀华.岩石力学参数概率统计的几个问题[J].红水河,1995,14(1):37-41
    [169]张玉卓.岩石模糊强度理论及其应用[J].煤炭学报,1994,19(5):450-455
    [170]宋建波,张倬元,于远忠,等.岩体经验强度准则及其在地质工程中的应用[M].北京:地质出版社,2002
    [171]Lienkamp M., Exner H. E. Prediction of the strength distribution for unidirectional fiber reinforced composites[J]. Acta Mater, 1996, 44: 44-46
    [172]祁双月,崔桂梅.某些岩土参数的对数正态分布特征[J].水文地质工程地质,2000,14(1):42-44
    [173]刘昭清,雷震宇,陈虬.基于模糊随机有限元的结构广义可靠性分析[J].工程力学. 2003(增):1648 -1653
    [174]Goda K., Leigh P.S. Reliability approach to the tensile strength of unidirectional CFRP composite by Monte Carlo simulation in a shearlag model[J]. Compos Sci Technol 1994, 50:457-68
    [175]尹增谦,管景峰,张晓宏.蒙特卡洛方法及应用[J].物理与工程,2002,12(3):45-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700