大型悬挑钢结构施工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的高速发展,高层建筑设计正日益向综合型多用途发展,为满足各类高层建筑的功能要求和城市美观的要求,高层建筑结构体型也进一步复杂化,其特点是向着高度更高、体型更复杂、功能综合性更强的方向发展。建筑多功能的使用要求引起了结构体型和结构形式的多样化,如带转换层结构、连体结构、竖向收进和悬挑结构、带加强层结构、平而不规则结构等,这几种结构形式的组合就是近年来使用比较多的几种结构形式。这些新颖的建筑结构形式给人耳口一新的视觉冲击感的同时也给建筑结构施工制造了很多难题。
     本文以施工力学分析为手段,以深圳证券交易所营运中心为研究对象,对超高层大型悬挑结构抬升裙楼施工过程中的关键技术问题进行了研究,并得到如下结论:
     (1)针对施工过程中可能存在的各种力学问题和技术难点,确定了裙楼的总体施工方案,通过对施工过程进行数值模拟,对施工方案进行了优化。通过研究表明,将原定施工方案中的部分施工步骤合并施工对结构基本没有影响,要采用的实际的施工方案是安全可行的,并且在一定程度上缩短了工期,节约了施工成本。
     (2)提出了裙楼安装过程中的一些关键技术,并对其作了分析研究:i)对超大钢结构节点高空原位拼焊变形进行了分析,研究了节点高空拼焊时焊缝变形对其精确定位的影响,确定了节点高空拼接时的焊接方案。采取“中下至上,先焊接竖向焊缝,后对称焊接横向焊缝”的原则对于节点高空拼装时的位移控制是有利的;ii)分析了塔楼持续安装对未卸载裙楼的影响,当不考虑塔楼的压缩沉降时,得到的安装起拱值偏大,即若裙楼按一定的安装起拱值进行施工,在安装完成、胎架尚未卸载之时,得到的实际起拱值,会比设计起拱值偏大。
     (3)提出了支撑胎架卸载过程中的一些关键技术,并对其作了分析研究:i)为了使卸载用的砂箱满足卸载需要,进行了砂箱试验,试验研究结果表明可以采用砂箱作为卸载工具。通过进行满载和过载试验模拟裙楼卸载工况,可以确定合理的砂箱技术参数。ii)对裙楼卸载时裙楼楼板混凝土的可能开裂情况进行了分析,如果裙楼卸载之前浇筑混凝土,在卸载过程中,裙楼端部的混凝土会开裂,在胎架卸载之后,再浇筑抬升裙楼的楼板混凝土效果更好。
     (4)工程监测结果与理论分析的对比研究。围绕坐标与内力分布的最终设计目标,对钢结构吊装过程中不同阶段各控制截而的应力和位移进行了监测,并将监测结果与数值模拟的结果进行了对比分析。在监测中,应力监测结果受各方面因素影响比较大,并不一定能真实反映结构的应力水平,因此,施工过程中结构应力的可控性比较低;位移监测的影响因素较少,监测结果的精度比较高,并且与计算结果十分吻合,说明结构变形的可控性比较高。
Along with our country's high-speed economic development, high-rise building design is increasingly to comprehensive multi-purpose development in order to satisfy the functional requirements of high-rise buildings and urban beautiful requirements. High-rise building structure also is further complicated, its characteristic is higher, more complex shape, more comprehensive of function. Multi-functional requirements caused multi-functional structure size and structure form, such as belt conversion layers structure, joint structure, Incorporated into the vertical and Cantilever Structure, Enhancement layer structure, plane irregular structure etc. Combination of these types of structure is used more in recent years. These new forms of building structures Give us a fresh sense of visual impact, at the same time it also makes a lot of problems to the architectural structure construction.
     This paper takes the construction mechanical analysis as means, Shenzhen Stock Exchange Operations Center as the research object, the key technical problems during the construction process of the large cantilevered structure-uplift podium have been studied, and the following conclusions are obtained:
     (1)According to a variety of mechanical problems and technical difficulties existing in the construction process,determine the general construction scheme of the podium, through simulated the construction process, optimize the construction program. The research showed that it had no effect on the structure to consolidate part of the construction steps of theory construction scheme, the actual construction scheme to be used is safe and feasible, and to some extent, shorten the construction period, save construction costs.
     (2) Put forward some key technologys during the installation process of the podium, and make some analysis and studies, i) It analyzes welding deformation of the large steel joint during its in-situ upper air installingprocedure and study the impact of welding deformation of precise location when splicing the joint at high altitude and determine the welding scheme. to adopt a "bottom-up, first welding vertical weld, then symmetrically welding horizontal weld" principle when assembling the node at high altitude is beneficial for displacement control; ii) Analyse the impact of towers construction on the podium when not unloading, when the compressing settlement is not considered,the camber value maybe slightly larger---if the prodiums are constructed with certain camber value,at the time when the construction is done and the assembly jig is not unloaded yet,the real camber value may be larger than design value.
     (3) Put forward some key technologys during the unloading process of the supporting jig, and make some analysis and studies:i) In order to meet the needs of unloading,sandbox test are carried out, the experimental results show that the sandbox can be used as the unloading tool. To simulate unloading conditions of the podium, fullload and overload testing are carryed out, and the technical parameters of the reasonable sandbox are determined; ii) Analyse the cracking problem of the podium concrete floor the when unloading. If concrete is poured before the prodiums are unloaded,concrete on the top of the prodiums may crack in the unloading.it will be better if the pouring of floor concrete which uplifts the promiums are done after the unload of the assembly jig.
     (4)The study of contrast the project monitoring results and the theoretical analysis. Around ultimate design goal of the coordinate and the internal force distribution, of the stress and displacement of control section in different stages during the lifting process of the steel structure were monitored, and were compared with the numerical simulation results. In the monitoring, the stress monitoring results are influenced by factors from aspects,and maybe unable to reflect the real sterss level of the structure,so the controllability of stress in the constructing is relatively low;but the displacement monitoring are influenced by less factors,so that it gets higher precision and matches the calculation perfectly,which means the controllability of structure deformation is relatively high.
引文
[1]徐培福.复杂高层建筑结构设计[M].北京:中国建筑工业出版社,2005:3-8.
    [2]曹志远.土木工程分析的施工力学与时变力学基础[J].土木工程学报,2001,34(3):41-46.
    [3]彭明祥,刘军进,王翠坤CCTV主楼施工过程结构关键点位的变形监测技术[J].建筑科学,2006,25(11):91-94.
    [4]郭彦林.国家体育场钢结构屋盖落架过程模拟分析[J].施工技术,2006,35(12):36-40.
    [5]陈国栋,郭彦林.广州市新体育馆屋盖吊装及拆模过程动态分析[J].建筑结构,2002,32(1):12-16.
    [6]杨兴富,高建,焦常科.世博中国国家馆钢结构施工过程模拟分析[J].施工技术,2009,38(8):41-44.
    [7]叶芳芳,余志武,袁俊杰.重庆大剧院大悬挑结构卸载分析[J].建筑科学与工程学报,2009,26(3):122-126.
    [8]王辉,刘曙,吕黄兵,蒋官业.武汉火车站大跨度枝状支撑空间曲面钢结构卸载分析[J].施工技术,2010,36(7):4-6.
    [9]曹志远.近代重大工程分析中的关键力学问题研究[M].上海:上海交通大学出版社,1997
    [10]刘学武.大型复杂钢结构施工力学分析及其应用研究[D].北京:清华大学,2009:4-7.
    [11]郭彦林,刘学武.大型复杂钢结构施工力学问题及分析方法[J].工业建筑,2007,37(9):1-8.
    [12]曹志远.土木工程分析的施工力学与时变力学基础[J].土木工程学报,2001,34(3):41-45.
    [13]王光远.论时变结构力学[J].土木工程学报,2000,33(6):105-108.
    [14]曹志远.复杂结构分析的超级元法[J].力学与实践,1992,14(4):12-14.
    [15]张其林,罗晓群,高振锋,李子旭.大跨钢结构施工过程的数位跟踪和图形模拟[J].同济大学学报,2004,32(10):1295-1299.
    [16]Xi-1. Liu, Wai-Fah Chen and Bowman M. D. Construction Load Analysis for Concrete Structures[J]. Journal of Structure Engineering,1985,111(5):1019-1036.
    [17]胡振东,曹志远.时变元法及其应用[J].固体力学学报,2002,23(1):104-108.
    [18]林欢.矩阵递推法在高层框架施工模拟计算中的应用[J].建筑结构,1989(01):29-32.
    [19]张建华,张毅刚,王振清.大跨度空间结构施工过程力学行为的研究[J].重庆建筑大学学报,2008,30(4):105-108.
    [20]高树栋,李久林,邱德隆.国家体育场(鸟巢)工程钢结构吊装技术[J].建筑技术,2007,38(7):488-495.
    [21]蒋金生,叶可明.上海新国际博览中心钢桁架结构的施工及临时支撑拆除的卸载过程分析[J].建筑结构学报,2006,27(5):118-122.
    [22]伍小平,高振锋,李子旭.国家大剧院钢壳体施工全过程模拟分析[J].建筑结构学报,2005,26(5):40-45.
    [23]伍小平,高振锋,李子旭.国家大剧院钢壳体安装中卸载方案分析[J].建筑施工,2005,27(6):6-8.
    [24]郭彦林,刘学武,赵瑛,等.国家体育场钢结构安装方案研究[J].施工技术,2006,35(12):23-27.
    [25]郭彦林,崔晓强.大跨度复杂钢结构施下过程中的若干—技术问题及探讨[J].工业建筑,2004,34(12):1-5.
    [26]张其林,罗晓群,高振锋,等.大跨钢结构施工过程的数伯跟踪和图形模拟[J].同济大学学报:自然科学版,2004,32(10):1295-1299.
    [27]鲍厂鉴.沈阳博览中心钢结构施工技术[J].施工技术,2001,30(3):28-30.
    [28]侯兆欣.新加坡MEGA会展中心大跨度钢结构施工技术[J].施上技术,2000,29(8):15-17.
    [29]张辉,周红波,高源.大型钢筋混凝土建筑结构事故案例统计分析[J].建筑技术,2010,41(7):656-658.
    [30]申跃奎,丁洁民,苏明周.高层建筑结构施工力学研究概论[C].中国建筑学会建筑结构分会第九届混凝土结构基本理论和工程应用学术会议,2006.
    [31]丛术平,梁书亭.多层框架结构施工力学分析[J].特种结构,2006,23(4):105-108.
    [32]张慎伟,张其林,罗晓峰,等.大型复杂钢结构施工过程计算理论与应用[J].同济大学学报,2009,37(4):445-448.
    [33]郭彦林,刘学武.钢结构施工力学状态非线性分析方法[J].工程力学,2008,25(10):19-24.
    [34]Nielsen. K. Load on Reinforced Concrete Floor Slabs and Their Deformation during Construction. Bulletin NO.15. Final Report. Swedish Cement and Concrete Research Institute of Technology. Stockholm.1952.
    [35]Grundy. P and Kabaila. A. Construction Loads on Slabs with Shored Formwork in Multistory Buildings[J]. ACI Journal,1963,60(12):1729-1738.
    [36]Agarwal. R. K and Gardner. N. J. Form and Shore Requirements fore Multistory Buildings[J]. ACI Journal,1974,71(11):559-569.
    [37]张建民,肖汝诚.千米级斜拉桥施工过程中主梁的线形控制[J].同济大学学报,2004,32(12):1567-1572.
    [38]钱若军,杨联萍.张力结构的分析设计施工[M].南京:东南大学出版社,2003:5-9.
    [39]唐建民,沈祖炎.圆形平而轴对称索穹顶结构施工过程跟踪计算[J].土木工程学报,1998,31(5):24-32.
    [40]沈祖炎,张立新.基于非线性有限元的索穹顶施工模拟分析[J].计算机力学学报,2002,19(4):466-471.
    [41]董石麟,邓华.预应力网架结构的简捷计算法及施工张拉全过程分析[J].建筑结构学报,2001,22(2):18-22.
    [42]李惠明.高层建筑施工过程中的安全分析[D].北京:清华大学,1992:1-4.
    [43]W. F. Chen. Concrete Building Analysis for Safe Construction[M]. Boca Rston Ann Arbor Boston London, CRC Press,1991.
    [44]钟万锶,吴连元.考虑建造过程及材料蠕变的结构分析[J].计算结构力学及其应用,1984,1(4):17-23.
    [45]丁龙章.高层框架在恒载作用下施工模拟计算[J].建筑结构,1985(5):5-12.
    [46]王润富,Robert L Yuan高层建筑的垂直变形分析[J].建筑结构学报,1990,11(3):23-27.
    [47]汪建民.超高层建筑竖向变形的简略估算[J].建筑结构学报,1992,13(4):61-66.
    [48]傅学怡.高层建筑结构垂直荷载下的施工模拟计算[J].深圳大学学报,1992,9(2):23-29.
    [49]李瑞礼,曹志远.高层建筑施工力学分析[J].计算力学学报,1999,16(2):157-161.
    [50]曹志远.时变力学及工程应用[J].力学与实践,1999,5(21):1-4.
    [51]曹志远,李瑞礼.施工力学与时变结构体系的数值分析[J].计算力学学报,1997(4):32-36.
    [52]王光远.论时变结构力学[J].土木工程学报,2000,33(6):105-108.
    [53]刘学武,郭彦林.钢结构施工变形预调值及分析方法[J].工业建筑,2007,37(9):9-15.
    [54]郭彦林,刘学武,刘禄宇,等CCTV新台址主楼钢结构施工变形预调值计算的分阶段综合迭代法[J].工业建筑,2007,37(9):16-21.
    [55]郭彦林,刘学武,赵瑛,等.国家体育场钢结构安装方案研究[J].施工技术,2006,35(12):23-27.
    [56]邬喆华,楼文娟,许国平,等.多高层建筑结构考虑施工过程的内力分析[J].科技通报,2004,20(4):324-328.
    [57]喻永声.考虑建造过程的多重子结构分析矩阵位移法[J].计算结构力学及其应用,1990,7(3):36-44.
    [58]曹志远.复杂结构分析的超级元法[J].力学与实践,1992,14(4):12-14.
    [59]李瑞礼,曹志远.高层建筑结构施工力学分析[J].计算力学学报,1999,16(2):157-161.
    [601张其林,罗晓群,高振锋,李子旭.大跨钢结构施工过程的数值跟踪和图形模拟[J].同济大学学报,2004,32(10):1295-1299.
    [61]崔晓强,郭彦林,叶可明.大跨度钢结构施工过程的结构分析方法研究[J].工程力学,2006,23(5):83-88.
    [62]Choi C K, Chung H K, Lee D G, Wilson E L. Simplifiedbuilding analysis with sequential dead loads-CFM[J]. Journal of Structural Engineering, ASCE,1992,118(4): 944-954.
    [63]胡振东,曹志远.时变元法及其应用[J].固体力学学报,2002,23(1):104-108.
    [64]P.J.S.Cruz, etc. Nonlinear time-dependent analysis of segmentally constructed structures [J]. Journal of structural engineering ASCE,1998,124(3):324-352.
    [65]章惠冬ANSYS单元生死技术软件在结构设计及施工中的应用[J].建筑施工,2008,30(9):824-826.
    [66]YANG Yeongbin, KUO Shyhrong. Theory&analysis of nonlinear framed structures [M]. Singapore:Prentice Hall,1994.
    [67]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001:8-13.
    [68]袁梅,鲍鹏宇,付重,等.飞机结构健康监测技术及传感器网络[J].航空制造技术,2008(22):44-48.
    [69]张启伟,袁万城,崔飞.桥梁健康监测与状态评估的研究现状与发展[J].同济大学学报,1999,27(2):11-14.
    [70]李惠.大型桥梁结构智能健康监测系统集成技术研究[J].土木工程学报,2006,39(2):42-44.
    [71]欧进萍,肖仪清,黄虎杰,等.海洋平台结构实时安全监测系统[J].海洋工程,2001,19(2):1-6.
    [72]李爱群,丁幼亮.工程结构损伤预警理论以及应用[M1.北京:科学出版社,2007:11-17.
    [73]高世峰,张俊寒,丁忠岳,等.浙江美术馆钢结构采光顶施工与监测[J].建筑施工,2008,30(3):195-197.
    [74]孙旭光.网壳结构滑移法施工全过程分析及监测[D].杭州:浙江大学硕士论文,2005:4-7.
    [75]夏峰林,高博青,吴慧,等.杭州大剧院钢网壳结构的设计施工与检测[J].建筑施工,2003,25(4):278-281.
    [76]张慎伟.大型钢结构施工过程计算理论与监测技术[D].上海:同济大学博士论文,2007:11-16.
    [77]王祥明,彭明祥,王翠坤,等CCTV主楼双塔间大悬臂施工过程专项监测[J].建筑科学,2009,25(11):82-85.
    [78]张混,戴立先,王磊,等CCTV主楼施工过程关键构件应力监测技术[J].建筑科学,2009,25(11):85-90.
    [79]彭明祥,刘军进,王翠坤,等CCTV主楼施工过程结构关键点位的变形监测技术[J].建筑科学,2009,25(11):91-94.
    [80]张纪刚,张同波.青岛体育中心游泳跳水馆网架结构施工监测与模拟分析[J].施工技术,2009,38(10):30-32.
    [81]蔡巍,王恩宏.广州国际会议展览中心钢结构施工监测[J].广州建筑,2003(1):25-27.
    [82]曾志斌,张玉玲.国家体育场大跨度钢结构卸载时应力监测系统[J].中国铁道科学,2008,29(1):139-143.
    [83]张玉玲,曾志斌,王丽.国家体育场大跨度钢结构温度监测系统研究及其在卸载时的应用[J].施工技术,2008,23(109):51-54.
    [84]Ando Kinya, Ishii Atushi, Design and construction of a double membrane air-supported Structure[J]. Engineering Structure,1999,21(8):786-794.
    [85]D. Vrosowsky, Dryver R.Huston, Peter Fuhr, Wai-Fah Chen. Measuring Formwork Loads During Construction[J]. Concrete International,1994,16 (11):21-25.
    [86]Gruttman F, Sauer R;Wagner W. A geometrical nonlinear eccentric 3D-beam element with arbitrary cross-sections[J]. Computer methods in applied mechanics and engineering,1998,160(2):383-400.
    [87]P.J.S. Cruz etc. Nonlinear time-dependent analysis of segmentally constructed structures[J]. Journal of structural engineering ASCE,1998,124 (3):278-287.
    [88]Antonio R. Marl. Numerical simulation of the segmental construction of three dimensional concrete frames[J]. Engineering structures,2000,22 (6):585-596.
    [89]Criesfield M A. Non-linear finite element analysis of solids and structures[M].New York:John Wiley&Sons,1991.
    [90]K.J.Bathe and H.Ozdemir. Elastic-plastic large deformation static and dynamic analysis[J]. Computer and structures,1976,6:81-92.
    [91]Pao-HsiiWang, Tzu-Yang, Hou-NongZheng. Analysis of Cable-stayed Bridges during Construction by Cantilever Methods[J]. Computers and Structures.2004,82:329-346.
    [92]C.Melbourne, P.Bullman.Load Relieving System, Proc.Int.Conf, on Non-conventional Structures, London,1987(2):1-6.
    [93]T See, R E McConnel. Large displacement elasic buckling of space structures[J]. Journal of Structural Engineering,1986,112(5):1052-1069.
    [94]C Borri, P Spinelli. Buckling and post-buckling behavior of single reticulated shells effected by random imperfection[J]. Computers and Structures,1988,30(5):937-943.
    [95]Yao D C, Chang K C, Lee G C. Damage Diagnosis of steel Frames Using Vibrational SignatureAnalsis[J]. Journal of Engineering Mechanic, ASCE,1997,118(9): 1949-1961.
    [96]Sanayei M, Saletnik M J. Parameter Estination of structure from Static Strain Measurements Ⅰ:Formulation[J]. Journal of Structural Engineering, ASCE,1996,122(5): 555-562.
    [97]Yamada Y. Constitute Modeling of Inelastic Behavior and Numerical Solution of Nonlinear Problems by Finite Element Method[J]. Computers & Structures,1978, 8:533-543.
    [98]Haisler W E, Stricklin J A. Nonlinear Finite Element Analysis Including High-or der Strain Energy Term[J]. AIAA Journal,1970,8:1159-1164.
    [99]H. B. Jayaraman, W. C. Knudson. A curved element for the analysis of cable structures[J]. Computers&Structures,1981,14(3-4):325-333.
    [100]Z.S.Makowski. Space Structure-A review of Development in last Decades. Space Structures IV, London,1993,1:1-8
    [101]Meek J L, Tan H S. Geometrical nonlinear analysis of space frames by an incremental iterative technique[J]. Comput Methods Appl Mech Eng,1984,47(2):261-282.
    [102]Batoz J L, DhattG. Incremental displacement algorithms for nonlinear problems[J]. Int J Numer Methods Eng,1979,14(8):1262-1267.
    [103]Arulyanyan N K. Mathematical model of a dynamically accreted deformable body[J]. Mechanics of Solide,1990,25(6):80-89.
    [104]Cruz P J S, Mari A R, Roca P. Nonlinear Time-Dependent Analysis of Segmentally Constructed Structures[J]. Journal of Structural Engineering, ASCE,1998,124(3): 278-286.
    [105]Topkaya C, Williamson E B. Development of Computational Software for Analysis of Curved Girders under Construction Loads[J]. Computers and Structures,2003,81(21): 2087-2098.
    [106]Naumov G I, Vyacheslav E. Mechanics of Growing Deformable Solids:A Review[J]. Journal of Engineering Mechanics,1994,120(2):207-220.
    [107]Makarand, Hasak. Advanced automation or conventional construction Process[J]. Automation in Construction,1998,7(4):299-314.
    [108]Leanne Hinton, D. Owen. Finite Element Programming[M]. London:Academic Press, 1997.
    [109]Mari A R. Numerical Simulation of the Segmental Construction of Three Dimensional Concrete Frames[J]. Engineering Structures,2000,22(6):585-596
    [110]Farrar C R. Worden K. An Introduction to Structural Health Monitoring[J]. Phil.Trans.R. Soc,2007,365:303-315.
    [111]Petersen J. Ereetion and contructability issues long-span roof[J]. Modem Steel Construction,1994,34(2):18-24.
    [112]ZHANG Q L. A modified nonlinear member element allowing large loading and displacement increments[J]. Communications in Numerical Metbods in Engineering, 1996(12):235-242
    [113]Smith I M, Griffiths D V. Programming the finite element method[M]. New York:John Wiley&Sons,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700