随机时滞微分方程的稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随机时滞微分方程作为一种重要的数学模型,可以把它看作是既考虑了确定性时滞微分方程模型问题又考虑了随机因素,也可以视为既考虑了非确定性随机微分方程模型问题又考虑了时滞因素的影响,所以随机时滞微分方程通常能更真实地模拟科学实际中的问题,也因此被广泛地应用到控制论、神经网络、生物学、金融学、化学反应工程等众多领域。由于随机扰动和时滞通常会导致系统不稳定,因此研究随机时滞微分系统的稳定性是很有必要的。
     简单介绍随机时滞微分方程稳定性研究背景和研究现状,给出了本文中常用的基本概念、基础知识和重要引理。
     首先研究具有变时滞线性中立型随机微分方程的指数p稳定性以及具有混合变时滞线性中立型随机微分方程的渐近p稳定和指数p稳定性问题。通过构造恰当的压缩算子并利用不动点定理,巧妙的应用Cp不等式、Burkholder-Davids-Gundy不等式,Ho¨lder不等式得到了所关注方程的稳定性结果。
     其次研究带有非线性扰动的随机时滞微分系统(包括单时滞微分系统和混合时滞微分系统)的有界输入有界输出(BIBO)在均方意义下的稳定性质。利用Razumikhin方法和比较原理相结合,合理设计出状态反馈控制器的形式,给出了具有非线性扰动的随机时滞微分系统的均方BIBO稳定性条件。利用Lyapunov泛函理论并结合Riccati方程,有效的对控制器进行分解,得到了具有非线性扰动的混合时滞随机微分系统的时滞依赖的均方BIBO稳定性条件。利用不等式技巧和Lyapunov稳定性理论相结合,通过对系数矩阵的分解,对方程进行变形,建立合适的Lyapunov-Krasovskii泛函,以线性矩阵不等式(LMI)的形式给出了具有非线性扰动的时滞随机微分系统的时滞依赖的均方BIBO稳定性条件。
     最后研究具有时滞(混合时滞和离散随机时滞及分布时滞)的离散时间随机神经网络(DSNNs)的稳定性。对具有混合时滞的DSNNs,我们根据时滞分离方法和自由权矩阵相结合,运用Schur补引理,得到保守性较低的时滞依赖的均方渐近稳定性条件。在DSNNs模型中,时滞很多时候是以随机的形式出现的,本文假定时滞为Bernoulli随机变量并考虑其概率分布,将其引入到DSNNs模型的参数矩阵中,通过建立扩充的Lyapunov-Krasovskii泛函,运用不等式分析技巧和自由权矩阵相结合,研究具有离散随机时滞和参数不确定的DSNNs,给出了时滞依赖的鲁棒均方指数稳定性条件。随后研究了具有混合时滞(离散随机时滞和分布时滞)的DSNNs,给出了时滞概率分布依赖的均方渐近稳定性条件。
     对全文进行总结,并指出今后的研究方向。
As an important mathematic model, stochastic delay differential equations is deter-mine delay differential equations with random elements or stochastic differential equa-tions with time delays. That is, stochastic delay differential equations can model realproblems specifically. Therefore, they have been widely applied in many fields of sci-ence, such as automatic control, neural networks, biology, economics, chemical reactionengineering etc. Due to the instability comes from stochastic disturbance and delay ef-fects, It is very necessary to study the stability of stochastic delay differential systems.
     The research backgrounds and research status on stability of stochastic delay differ-ential equations are introduced. It also provides the readers with some basic definitionsand important lemmas that are frequently used in this dissertation.
     Firstly, the exponential p-stability for linear neutral stochastic differential equationswith variable delays, the exponential p-stability and asymptotically p-stability for linearneutral stochastic differential equations with mixed delays are studied respectively. Byconstructing suitable contraction mapping and employing fixed point theory, applying Cpinequality, Burkholder-Davids-Gundy inequality, Holder inequality, some novel stabilitycriteria are derived.
     Secondly, the bounded-input bounded-output(BIBO) stability in mean square forstochastic differential equations with nonlinear perturbation and delays (discrete time de-lays and mixed time delays) is investigated. Using Razumikhin technique and comparisonprinciple to obtain the novel BIBO stabilization criteria in mean square for stochastic de-lay differential systems with nonlinear perturbation, based on this, the design of statefeedback is given by matrix transform. Combine Lyapunov function theory with Ric-cati equations to analyze controller, some delay-dependent stability criteria for stochasticdifferential equations with nonlinear perturbation and mixed delays are obtained. Makegood use of inequality and Lyapunov function theory, some novel delay-dependent BIBOstability criteria in mean square are derived and formulated in the form of linear matrixinequalities (LMIs) by constructing a new class of Lyapunov-Krasovskii functionals andthe descriptor model of the system and the method of decomposition.
     Lastly, the stability of discrete-time stochastic neural networks(DSNNs) with de- lays(mixed time delays and discrete random time delays and distributed time delays)is studied. For DSNNs with mixed time delays, based on delay partitioning idea andfree-weighting matrix approach, applying Schur complement, a less conservative delay-dependent asymptotically stable criterion in the mean square can be developed. InDSNNs, the time delay is assumed to be Bernoulli stochastic vary and always ap-pears in random way. Then the information of the probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferredDSNN model, by constructing a new augmented Lyapunov-Krasovskii functional andintroducing some new analysis techniques, some delay-probability-distribution- depen-dent robust exponential stability criteria in mean square for DSNNS with randomlytime-varying delays and parameter uncertainties are derived, some delay-probability-distribution-dependent asymptotically stability criteria in mean square for DSNNS withdiscrete randomly time delays and distributed time delays are derived.
     We summarize the main results obtained in this dissertation, and point out the futureworks that have been the author’s concerns.
引文
[1] R. Syski. Stochastic differential equations In”Moden non-linear equations”. MCGraw-hill,1967.
    [2] T. Teorell. Kinetics of distribution of substances administered in the body. Arch. Internat.Pharmacodyn. Ther., 1937, 57:205-240.
    [3] H.S. Braham, L.J. Skidmore. Guidance-error analysis of satellite trajectories. J. Aerosp.Sci., 1962, 29:1091-1097.
    [4] J.L. Bogdanoff, F. Kozin. Moments of the output of linear random systems. J. Acoust.Soc.Amer., 1962, 34:1063-1068.
    [5] B. Bassan, E. Cinlar, M. Scarsini. Stochastic comparisons of Ito? processes. Stochastic Pro-cesses and their Applications, 1993, 45:1-11.
    [6] M. Grigoriu. The Ito? and Stratonovich integrals for stochastic differential equations withpoisson white noise. Probabilistic Engineering Mechanics, 1998, 13:175-182.
    [7] J. Villarroel. On solutions to Ito? stochastic differential equations. Journal of Computationaland Applied Mathematics, 2003, 158:225-231.
    [8] C.G. Yuan, J.Z. Zou, X.R. Mao. Stability in distribution of stochastic differential delayequations with Markovian switching. Systems and Control Letters, 2003, 50:195-207.
    [9] J.W. Luo. Comparison principle and stability of Ito? stochastic differential delay equationswith Poisson jump and Markovian switching. Nonlinear Analysis, 2006, 64:253-262.
    [10] Y.G. Niu, D.W.C. Ho. Robust observer design for Ito? stochastic time-delay systems viasliding mode control. Systems and Control Letters, 2006, 55:781-793.
    [11] E. Mamontov, A. Naess. An analytical–numerical method for fast evaluation of probabilitydensities for transient solutions of nonlinear Ito? stochastic differential equations. Interna-tional Journal of Engineering Science, 2009, 47:116-130.
    [12] G.J. Wang, J.D. Cao, M. Xu. Stability analysis for stochastic BAM neural networks withMarkovian jumping parameters. Neurocomputing, 2009, 72:3901-3906.
    [13] C. Vidhya, P. Balasubramaniam. On the stability of the stochastic parabolic Ito? equationwith delay and Markovian jump. Computers and Mathematics with Applications, 2010,60:1959-1963.
    [14] M. Karan, P. Shi, C. Y. Kaya. Transition probability bounds for the stochastic stabilityrobustness of continuous- and discrete-time Markovian jump linear systems. Automatica,2006, 42:2159-2168.
    [15] F.B. Xi. On the stability of jump-diffusions with Markovian switching. Journal of Mathe-matical Analysis and Applications, 2008, 341:588-600.
    [16] P. Zhao. Practical stability, controllability and optimal control of stochastic Markovian jumpsystems with time-delays. Automatica, 2008, 44:3120-3125.
    [17] H.G. Zhang, M. Dong, Y.C. Wang, N. Sun. Stochastic stability analysis of neutral-typeimpulsive neural networks with mixed time-varying delays and Markovian jumping. Neu-rocomputing, 2010, 73:2689-2695.
    [18] P. Balasubramaniam, R. Rakkiyappan, R. Krishnasamy. Stochastic stability of Markovianjumping uncertain stochastic genetic regulatory networks with interval time-varying delays.Mathematical Biosciences, 2010, 226:97-108.
    [19] X.R. Mao. Exponential stability in mean square of neutral stochastic differential functionalequations. Systems and Control Letters, 1995, 26:245-251.
    [20] K. Liu, X.W. Xia. On the exponential stability in mean square of neutral stochastic func-tional differential equations. Systems and Control Letters, 1999, 37:207-215.
    [21] S.Y. Xu, P. Shi, Y.M. Chu, Y. Zou. Robust stochastic stabilization and H∞control of un-certain neutral stochastic time-delay systems. Journal of Mathematical Analysis and Appli-cations, 2006, 314:1-16.
    [22] Q. Luo, X.R. Mao, Y. Shen. New criteria on exponential stability of neutral stochasticdifferential delay equations. Systems and Control Letters, 2006, 55:826-834.
    [23] K. Liu. Uniform stability of autonomous linear stochastic functional differential equationsin infinite dimensions. Stochastic Processes and their Applications, 2005, 115:1131-1165.
    [24] T.A. Burton. Lyapunov functionals, fixed points, and stability by Krasnoselskii’s theorem.Nonlinear Stud., 2001, 9:181-190.
    [25] T.A. Burton, T. Furumochi. Fixed points and problems in stability theory. Dynam. SystemsAppl., 2001, 10:89-116.
    [26] T.A. Burton, T. Furumochi. Asymptotic behavior of solutions of functional differentialequations by fixed point theorems. Dynam. Systems Appl., 2002, 11:499-521.
    [27] T.A. Burton, T. Furumochi. Krasnoselskii’s fixed point theorem and stability. NonlinearAnal., 2002, 49:445-454.
    [28] T.A. Burton. Stability by fixed point theory or Lyapunov theory: A comparison. Fixed PointTheory, 2003, 4:15-32.
    [29] T.A. Burton. Fixed points and stability of a nonconvolution equation. Proc. Amer. Math.Soc., 2004, 132:3679-3687.
    [30] T.A. Burton. Stability and fixed points: Addition of terms. Dynam. Systems Appl., 2004,13:459-478.
    [31] T.A. Burton. Stability by fixed point methods for highly nonlinear delay equations. FixedPoint Theory, 2004, 5:3-20.
    [32] T.A. Burton. Fixed points, stability, and exact linearization. Nonlinear Anal., 2005, 61:857-870.
    [33] T.A. Burton. Fixed points, stability, and harmless perturbations. Fixed Point Theory Appl.,2005, 1:35-46.
    [34] Y.N.Raffoul. Stability in neutral nonlinear differential equations with functional delays us-ing fixed point theory. Mathematical and Computer Modelling, 2004, 40:691-700.
    [35] T.A. Burton, B. Zhang. Fixed points and stability of an integral equation: Nonuniqueness.Appl. Math. Lett., 2004, 17:839-846.
    [36] B. Zhang. Fixed points and stability in differential equations with variable delays. NonlinearAnalysis, 2005, 63:233-242.
    [37] C.H. Jin, J.W. Luo. Stability in functional differential equations estabilished using fixedpoint theory. Nonlinear Analysis, 2008, 68:3307-3315.
    [38] J.W. Luo. Fixed points and stability of neutral stochastic delay differential equations.Math.Anal.Appl, 2007, 334:431-440.
    [39] J.W. Luo. Fixed points and exponential stability of mild solutions of stochastic partialdifferential equations with delays. Journal of Mathematical Analysis and Applications,2008,342:753-760.
    [40] J.W. Luo. Stability of stochastic partial differential equations with infinite delays. Journalof Computational and Applied Mathematics, 2008, 222:364-371.
    [41] J.W. Luo. Fixed points and exponential stability for stochastic Volterra–Levin equations.Journal of Computational and Applied Mathematics, 2010, 234:934-940.
    [42] M. Wu. Fixed points and stability in neutral stochastic differential equations with variabledelays. Fixed Point Theory and Applications, 2008, Article ID 407352, 11 pages.
    [43] M. Bisiacco, E. Fornasini, G. Marchesini. On some connections between BIBO and internalstability of Two-dimensional filters. IEEE Trans. Circuits and Systems, 1985, 32:948-953.
    [44] P.K. Rajan, H.C. Reddy. On the necessary conditions for the BIBO stability of n-D filters.IEEE Trans. Circuits and Systems, 1986, 33: 1143.
    [45] J.L. Aravena. 2-D BIBO stability using 1-D wave model. IEEE Trans. Circuits and Systems-I: fundamental theory and application, 1992, 39: 570-576.
    [46] M.N. Swamy, L.M. Roytaman. General results concerning the BIBO stability of inverse2-D digital filters. IEEE Transactions on Circuits and Systems, 1990, 37:1036-1040.
    [47] L.M. Roytman, V.F. Potievsky. BIBO stability in 3-D digital filters. IEEE Trans. Circuitsand Systems-I: fundamental theory and application, 2003, 50: 1574-1576.
    [48] P. Bauer, E.I. Jury. BIBO-stability of multidimensional (mD) shift-invariant discrete sys-tems. IEEE Trans. Automatic Control, 1991, 36:1057-1061.
    [49] H. Wu, K. Mizukami. Robust stabilization of uncertain linear dynamical systems. Int. J.Systems Sci., 1993, 24:265-276.
    [50] D.Y. Xu, S.M .Zhong, M. Li. BIBO stabilization of large-scale systems. Control Theoryand Applications, 1995, 12:758-763.
    [51]徐道义,钟守铭.多变量反馈系统的BIBO稳定化.电子科技大学学报, 1995, 24:90-96.
    [52]钟守铭,黄元清.具有时滞的非线性系统的BIBO稳定化.电子科技大学学报, 2000,32: 655-657.
    [53]曹科才,钟守铭,刘碧森.时滞系统的鲁棒稳定性与BIBO稳定.电子科技大学学报,2003, 32:787-789.
    [54]钟守铭.具有不确定系数的T-S模糊控制系统的BIBO鲁棒镇定.湖南工业大学学报,2007 , 21:36-40.
    [55] P. Li, S.M. Zhong. Delay-dependent robust BIBO stabilization of uncertain system via LMIapproach. Chaos, Solitons and Fractals, 2009, 40:1021-1028.
    [56] P. Li, S.M. Zhong. BIBO stabilization of time-delayed system with nonlinear perturbation.Applied Mathematics and Computation, 2008, 195:264-269.
    [57] P. Li, S.M. Zhong. BIBO stabilization for system with multiple mixed delays and nonlinearperturbations. Applied Mathematics and Computation, 2008, 196: 207-213.
    [58] P. Li, S.M. Zhong. BIBO stabilization of piecewise switched linear systems with delays andnonlinear perturbations. Applied Mathematics and Computation, 2009, 213:405-410.
    [59] Y.L. Fu, X.X. Liao. BIBO stabilization of stochastic delay systems with uncertainty. IEEETransactions on Automatic Control, 2003, 48:133-138.
    [60] W. Feng, H.X. Wu. Global asymptotic stability analysis for stochastic neutral-type delayedneural networks. 2010 Chinese Control and Decision Conference, 2010: 2658-2662.
    [61] H. Yong, J.D. Cao. Novel criteria for mean square stability of stochastic delayed neuralnetworks Sun. Neural Network World, 2008, 18:245-254.
    [62] W.H. Chen, W.X. Zheng. Robust stability analysis for stochastic neural networks with time-varying delay. IEEE Transactions on Neural Networks, 2010, 21:508-514.
    [63] R. Rakkiyappan, P. Balasubramaniam. Delay-dependent asymptotic stability for stochas-tic delayed recurrent neural networks with time varying delays. Applied Mathematics andComputation, 2008, 198:526-533.
    [64] R.N. Yang, Z.X. Zhang, P. Shi. Exponential stability on stochastic neural networks with dis-crete interval and distributed delays. IEEE Transactions on Neural Networks, 2010, 21:169-175.
    [65] S. Blythe, X.R. Mao, X.X. Liao. Stability of stochastic delay neural networks. Journal ofthe Franklin Institute, 2001, 338:481-495.
    [66] L. Wan, J.H. Sun. Mean square exponential stability of stochastic delayed Hopfield neuralnetworks. Physics Letters A, 2005, 343:306-318.
    [67] Y.H. Sun, J.D. Cao. pth moment exponential stability of stochastic recurrent neural net-works with time-varying delays. Nonlinear Analysis: Real World Applications, 2007,8:1171-1185.
    [68] C.X. Huang, Y.G. He, L.H. Huang, W.J. Zhu. pth moment stability analysis of stochasticrecurrent neural networks with time-varying delays. Information Sciences, 2008, 178:2194-2203.
    [69] P. Balasubramaniam, R. Rakkiyappan. Global asymptotic stability of stochastic recurrentneural networks with multiple discrete delays and unbounded distributed delays. AppliedMathematics and Computation, 2008, 204: 680-686.
    [70] C.X. Huang, Y.G. He, H.N. Wang. Mean square exponential stability of stochastic recurrentneural networks with time-varying delays. Computers and Mathematics with Applications,2008, 56:1773-1778.
    [71] W.W. Su, Y.M. Chen. Global asymptotic stability analysis for neutral stochastic neuralnetworks with time-varying delays. Communications in Nonlinear Science and NumericalSimulation, 2009, 14:1576-1581.
    [72] B.Z. Du, J. Lam. Stability analysis of static recurrent neural networks using delay-partitioning and projection. Neural Networks, 2009, 22:343-347.
    [73] R.N. Yang, H.J Gao, Member IEEE, P. Shi, Senior Member. IEEE, Novel robust stabil-ity criteria for stochastic Hopfield neutal networks with time delays. IEEE transactions onsystems, man, and cybernetics-Part B: Cybernetics, 2009.
    [74] Y.Y. Wu, Y.Q. Wu, Y.G. Chen. Mean square exponential stability of uncertain stochasticneural networks with time-varying delay. Neurocomputing, 2009, 72:2379-2384.
    [75] L. Ma, F.P. Da. Mean-square exponential stability of stochastic Hopfield neural networkswith time-varying discrete and distributed delays. Physics Letters A, 2009, 373:2154-2161.
    [76] P. Balasubramaniam, C. Vidhya. Global asymptotic stability of stochastic BAM neural net-works with distributed delays and reaction–diffusion terms. Journal of Computational andApplied Mathematics, 2010, 234: 3458-3466.
    [77] Y.J. Zhang, S.Y. Xu, Z.P. Zeng. Novel robust stability criteria of discrete-time stochasticrecurrent neural networks with time delay. Neurocomputing, 2009, 72:3343-3351.
    [78] Y.R. Liu, Z.D. Wang, X.H. Liu. Asymptotic stability for neural networks with mixed time-delays: The discrete-time case. Neural Networks, 2009, 22:67-74.
    [79] Z.D. Wang, Y.R. Liu, X.H. Liu, Y. Shi. Robust state estimation for discrete-time stochasticneural networks with probabilistic measurement delays. Neurocomputing, 2010, 74:256-264.
    [80] Y.R. Liu, Z.D. Wang, X.H. Liu. Robust stability of discrete-time stochastic neural networkswith time-varying delays. Neurocomputing, 2008, 71:823-833.
    [81] M.Z. Luo, S.M. Zhong, R.J. Wang, W. Kang. Robust stability analysis for discrete-timestochastic neural networks systems with time-varying delays. Applied Mathematics andComputation, 2009, 209:305-313.
    [82] Z.G. Wu, H.Y. Su, J. Chua, W.N. Zhou. Improved result on stability analysis of discretestochastic neural networks with time delay. Physics Letters A, 2009, 373:1546-1552.
    [83] Y. Ou,H.Yang Liu,Y.L. Si,Z.G. Feng. Stability analysis of discrete-time stochasticneural networks with time-varying delays. Neurocomputing, 2010, 73:740-748.
    [84] Y. Ou, P. Shi, H.Y. Liu. A mode-dependent stability criterion for delayed discrete-timestochastic neural networks with Markovian jumping parameters. Neurocomputing, 2010,73:1491–1500.
    [85] Y.J. Zhang, D. Yue, E.G. Tian. Robust delay-distribution-dependent stability of discrete-time stochastic neural networks with time-varying delay. Neurocomputing, 2009, 72:1265-1273.
    [86] Y. Tang, J.A. Fang, M. Xia, D.M. Yu. Delay-distribution-dependent stability of stochasticdiscrete-time neural networks with randomly mixed time-varying delays. Neurocomputing,2009, 72:3830-3838.
    [87] F. Kozin. A survey of stability stochastic systems. Academic, 1969, 5:95-112.
    [88]胡宣达.随机微分方程稳定性理论.南京:南京大学出版社,1990.
    [89] K.Q. Gu. An integral inequality in the stability problem of time-delay systems. IEEE Con-trol Systems Society and Proceedings of IEEE Conference on Decision and Control, IEEEPublisher, Sydney, Australia, 2000:2805-2810.
    [90] H.Y. Li, C.W. Wang, P. Shi, H.J. Gao. New passivity results for uncertain discrete-timestochastic neural networks with mixed time delays. Neurocomputing, 2010, 73:3291-3299.
    [91] Z.D. Wang, H.S. Shu, Y.R. Liu, D.W.C. Ho, X.H. Liu. Robust stability analysis of general-ized neural networks with discrete and distributed time delays. Chaos, Solitons and Fractals,2006, 30:886-896.
    [92] S. Boyd, E. Ghaoui, E. Feron, V. Balakrishnan. linear matrix inequalities in system andcontrol theory. Philadelphia: SIAM, 1994.
    [93] G.D. Prato, J. Zabczyk. Stochastic equations in infinite dimensions. Cambridge UniversityPress, 1992, 194-195.
    [94] J.C. Kuang. Applied inequalities. Shangdong Science and Technology press, Shangdong,2004, 657-658.
    [95]葛显良.应用泛函分析.杭州,浙江大学出版社,1996.
    [96] S.Y. Xu, Y.M. Chu, J.W. Lu. Exponential dynamic output feedback controller design forstochastic neutral systems with distributed delays. Systems, Man and Cybernetics, Part A:Systems and Humans, IEEE Transactions, 2006, 36:540-548.
    [97] B.T. Cui, X.Y. Lou. Robust stability analysis of neutral stochastic neural networks with de-lay: an LMI approach. Control and Automation, IEEE International Conference, 2007:117-122.
    [98] J. Randjelovi, S. Jankovi. On the pth moment exponential stability criteria of neutralstochastic functional differential equations. Journal of Mathematical Analysis and Appli-cations, 2007, 326:266-280.
    [99] L.R. Huang, F.Q. Deng. Razumikhin-type theorems on stability of neutral stochastic func-tional differential equations. Automatic Control, IEEE Transactions, 2008, 53:1718-1723.
    [100] W.H. Chen, W.X. Zheng, Y.J. Shen. Delay-dependent stochastic stability and -control of un-certain neutral stochastic systems with time delay. Automatic Control, IEEE Transactions,2009, 54:1660-1667.
    [101] S.V. Jankovi, J. Randjelovi. Razumikhin-type exponential stability criteria of neutralstochastic functional differential equations. Journal of Mathematical Analysis and Appli-cations, 2009, 355:811-820.
    [102] Y. Ren, N.M Xia. Existence, uniqueness and stability of the solutions to neutral stochasticfunctional differential equations with infinite delay. Applied Mathematics and Computa-tion, 2009, 210:72-79.
    [103] Y. Ren, N.M. Xia. A note on the existence and uniqueness of the solution to neutral stochas-tic functional differential equations with infinite delay. Applied Mathematics and Compu-tation, 2009, 214:457-461.
    [104] F.K. Wu, S.G Hu, C.M. Huang. Robustness of general decay stability of nonlinear neutralstochastic functional differential equations with infinite delay. Systems and Control Letters,2010, 59:95-202.
    [105] H.B. Chen, Y. Zhang, P. Hu. Novel delay-dependent robust stability criteria for neutralstochastic delayed neural networks. Neurocomputing, 2010, 73:2554-2561.
    [106] Y. Chen, W.X. Zheng, A.K. Xue. A new result on stability analysis for stochastic neutralsystems. Automatica, 2010, 46:2100-2104.
    [107] V.B. Kolmanovskii, L.E. Shaikhet. Matrix Riccati equations and stability of stochastic lin-ear systems with nonincreasing delay. Funct. Differ. Equ., 1997, 4:279-293.
    [108] J.G. Lin , P.P. Varaiya. Bounded-Input Bounded-Output stability of nonlinear time-varyingdiscrete control systems. IEEE Trans. Automatic Control AC-1967, 1967, 12:423-427.
    [109] S. Kotsio. A note on BIBO stability of bilinear systems. Journal of the Franklin Institute,1995, 332:755-760.
    [110] T. Bose, M. Chen. BIBO stability of the discrete bilinear system. digital signal processing,1995, 5: 160-166.
    [111] S. Kotsios, O. Feely. A BIBO stability theorem for a two-dimensional feedback discretesystem with discontinuities. Journal of the Franklin Institute, 1998, 335: 533-537.
    [112] J.K. Hale. Theory of functional differential equation, Springer, New York, 1977.
    [113] V. Kolmanovskii, A. Myshkis. Introduction to the theory and applications of functionaldifferential equations. Kluwer Academic, Netherlands, 1999.
    [114] P.B. Watta, K. Wang, M.H. Hassoun. Recurrent neural netsas dynamical Booleansystems with application to associative memory. IEEETrans. Neural Networks, 1997,8:1268–1280.
    [115] A.S. Anagun. A neural network applied to pattern recognition in statistical process control,Computers Industrial Engineering, 1998, 35:185-188.
    [116] D. Ho, J. Lam, J. Xu, H. KaTam. Neural computation for robust approximate poleassign-ment―a survey. Neurocomputing, 1999, 25:191–211.
    [117] P. Suganthan, E. Teoh, D. Mital. Hopfield network with constraint parameter adaptation foroverlapped shape recognition, IEEETrans. Neural Networks, 1999, 10:444–449.
    [118] C.L. Wilson, C.I. Watson, E.G. Paek. Effect of resolution and image quality on combinedoptical and neural network fingerprint matching. Pattern Recognition, 2000, 33:317-331.
    [119] Z. Ding, H. Leung, Z. Zhu. A study of the transiently chaotic neural network for combina-torial optimization. Mathematical and Computer Modelling, 2002, 36:1007-1020.
    [120] F.B.M. Suaha, M. Ahmad, M.N. Taib. Applications of artificial neural network on signalprocessing of optical fibre pH sensor based on bromophenol blue doped with sol–gel film.Sensors and Actuators B: Chemical, 2003, 90:182-188.
    [121] W. Yu. Nonlinear system identification using discrete-time recurrent neural networks withstablele arning algorithms. Information Sciences, 2004, 158:131-147.
    [122] S. Miyoshi, H.F. Yanai, M. Okada. Associative memory by recurrent neural networks withdelay elements. Neural Networks, 2004, 17:55-63.
    [123] K. Tan, H. Tang, Z. Yi. Global exponential stability of discrete-time neural networks forconstrained quadratic optimization. Neurocomputing, 2004, 56:399-406.
    [124] H. Huang, D.W.C. Ho, J. Lam. Stochastic stability analysis of fuzzy Hopfield neuralnet-works with time-varying delays. IEEETrans.CircuitsSyst., 2005, 52:251-255.
    [125] M.J. Seow, V.K. Asari. Recurrent neural network as a linear attractor for pattern association.IEEETrans. Neural Networks, 2006, 17:246-250.
    [126] J. Liang, Z. Wang, X. Liu. State estimation for coupled uncertain stochastic networks withmissing measurement sand time-varying delays:the discrete-time case. IEEE Trans. NeuralNetworks, 2009, 20:781-793.
    [127] J.T. Zhang, Y. Suda, T. Iwasa. Absolutely exponential stability of a class of neural networkswith unbounded delay. Neural Networks, 2004, 17:391-397.
    [128] J.G. Peng, H. Qiao, Z.B. Xu. A new approach to stability of neural networks with time-varying delays. Neural Networks, 2002, 15:95-103.
    [129] H.J. Jiang, Z.D. Teng. Global eponential stability of cellular neural networks with time-varying coefficients and delays. Neural Networks, 2004, 17:1415-1425.
    [130] T.W. Huang, A. Chan, Y. Huang, J.D. Cao. Stability of Cohen–Grossberg neural networkswith time-varying delays. Neural Networks, 2007, 20:868-873.
    [131] K.N. Lu, D.Y. Xu, Z.C. Yang. Global attraction and stability for Cohen–Grossberg neuralnetworks with delays. Neural Networks, 2006, 19:1538-1549.
    [132] H. Huang, D.W.C. Ho, J.D. Cao. Analysis of global exponential stability and periodic so-lutions of neural networks with time-varying delays. Neural Networks, 2005, 18: 161-170.
    [133] D. Yue, Y.J. Zhang, E.G. Tian, C. Peng. Delay-Distribution-Dependent exponential stabilitycriteria for discrete-time recurrent neural networks with stochastic delay. IEEE transactionson neural networks, 2008, 19:1299-1306.
    [134] S.H. Mou, H.J. Gao, J. Lam, W.Y. Qiang. A new criterion of delay-dependent asymptoticstability for Hopfield neural networks with time delay. IEEE Transactions on Neural net-works, 2008, 19:532-535.
    [135] R.N. Yang, H.J. Gao, Member, IEEE, P. Shi, Senior Member. IEEE, novel robust stabilitycriteria for stochastic Hopfield neural networks with time delays. IEEE Transactions onSystems, Man, and Cybernetics-Part B: Cybernetics, 2009, 39:467-474.
    [136] X.Y. Meng, J. Larm, B.Z. Du, H.J. Gao. A delay-partitioning approach to the stabilityanalysis of discrete-time systems. Automatica, 2010, 46:610-614.
    [137] A. Ray. Output feedback control under randomly varying distributed delays. J.GuidanceControl Dyn., 1994, 17:701-711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700