高压下卤族单质及其化合物的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压下分子体系的物理行为一直以来都是物理、化学、材料、地球以及行星科学的一个热点研究课题。分子体系中分子间相互作用较弱,很容易受到压力的影响而缩短分子间的距离,导致晶格的重新排列,引起结构相变;分子间距离的缩小同时会增加相邻电子轨道的重合程度,进而导致电子相变。Wigner提出所有的分子体系在压力作用下一定会塌陷,形成了密堆积结构,并且在足够高的压力下会转变为金属。在实际的分子体系当中,针对不同的分子晶体,分子解离形成的新结构及物理机制、金属化的成因、及超导转变温度随压力的变化都会表现出多样性,并被实验证实。第一种类型是典型的双原子分子晶体H_2, N_2, O_2,和I_2等等,它们在高压下表现出非常复杂的相图。第二种类型是含氢分子体系,如H_2O, NH_3,和HF等等,它们在高压下会发生氢键对称化等新奇的现象。分子晶体MI_4(M=Ge,Sn)是另外一类例子,它们经历了压力导致的非晶,并且变成了金属玻璃。影响分子晶体的各种因素中,分子的形状和分子间的相互作用是比较重要的,因为化学键的各向异性、晶体结构和电子特性主要依赖于形成晶体的分子形状和分子间的相互作用,压力效应也主要是通过影响这些因素而显现出来的。
     近年来,随着理论的完善和计算机的发展,第一性原理计算方法已成为凝聚态物理、量子化学和材料科学中重要的研究手段。金属氢是二十一世纪最为重要的十大物理问题之一,最有可能是室温超导体和优质能源材料。为了获得金属氢,最有效的方法是加压。但是由于氢分子内部键合非常强,至今没有获得金属氢。在这样的背景之下,人们开始研究与氢类似的双原子分子体系,比如卤族元素固体的高压行为,以便获得有助于研究金属氢的规律。在本论文中,我们选择了四种不同的含卤族元素的典型分子晶体,用基于密度泛函理论的第一性原理计算方法研究了它们在高压下的分子解离、金属化及超导电性等一系列物理行为,取得一些创新性的成果。
     (1)非静水压对原子相碘超导电性的影响。实验结果表明碘的原子相具有超导特性,它的第II相(底心正交结构,bco)和第III相(体心四方结构,bct)的超导温度T_c随压力增大逐渐降低,相变到第IV相(面心正交结构,fcc)时,T_c开始升高。这种随压力变化的超导行为和机制一直没能得到很好的解释,在此背景之下,我们利用第一性原理方法研究了碘单原子相在高压下的超导电性。
     计算结果表明在静水压作用下,碘的第II和III相的超导温度T_c与实验值符合的很好,但是第IV相的T_c随压力增大而降低,这与其它理论计算符合,而与实验观测到的变化趋势相反。为了探索实验观测和理论计算差异的原因,并且考虑到实验由于未使用传压介质,可能会产生非静水压效应,所以研究了两种非静水压效应对单原子相的超导电性的影响。通过各向异性压缩fcc结构,得到了两个新的非静水压结构:体心四方(nonhy-bct)和面心正交(nonhy-fco)。发现在第一种非静水压下,nonhy-bct的T_c随压力增大而降低,不符合实验变化趋势,而在第二种非静水压下,nonhy-fco的T_c随压力增大而升高,与实验值符合的很好。进一步的研究表明,nonhy-fco的T_c随压力升高主要归因于费米面处态密度的升高和电声矩阵元的增大。计算结果很好的解释了长期以来一直没有得到很好解释的实验现象,表明非静水压可以产生的一些新奇特性。
     (2)高压下溴原子相的结构和超导电性。通过高压X光衍射,实验上已经获得碘单原子相的相变序列和结构,但是由于受到实验条件的限制,溴原子相的结构到目前为止还不是很清楚。我们通过第一性原理计算成功的模拟了单原子溴的相变序列:体心正交结构(bco,相II,空间群Immm)在126 GPa转变为体心四方结构(bct,相III,空间群I4/mmm),之后在157 GPa转变为面心立方结构(fcc,相IV,空间群Fm-3m),这个面心立方结构在300 GPa时都能稳定存在。我们计算了不同压力下bct结构的能量随晶格常数a的变化情况,发现总能与a的关系曲线呈现双势阱特征,两个能量最低点分别对应bct和fcc结构,用这个双势阱模型成功的解释了bct转变到fcc时晶格常数a突变的原因。另外我们计算了单原子相的超导电性,在100 GPa的超导转变温度为1.46 K与实验上观测到的1.5 K非常吻合。并且发现超导转变温度在第II相、第III相、第IV相每个相区间都随压力的增大而降低,与碘的单原子相的变化相似,进一步的理论计算揭示了超导电性的物理机制,发现第IV相的电声相互作用参数λ随压力增大降低主要是由声子软化的逐渐消退引起的。
     (3)高压下HBr和HCl的氢键对称化和超导电性。氢键是分子内或分子间的一种弱相互作用,它在物理、生物、化学、材料等领域扮演着一个非常重要的角色,是目前人们研究的热门领域之一。氢键对称化是高压下的一个重要现象,实验上观测到HBr和HCl在高压下会发生氢键对称化。另外,因为HBr和HCl含氢元素,在高压下它们还有比较有趣的特性—超导,最近实验和理论上都发现很多富氢体系如SiH_4,GeH_4,SnH_4,YH_3,ScH_3和LaH_3等等在高压下具有较高的超导转变温度。卤族元素氢化物HBr和HCl是最简单的氢键双原子分子晶体,对它们进行研究可以对其它氢键体系提供理论指导。
     我们对HBr和HCl的氢键、结构和超导在高压下的变化进行了系统的研究。计算结果表明HBr和HCl分别在25 GPa和40 GPa发生氢键对称化,并同时发生了结构相变(Cmc2_1→Cmcm),氢键对称化主要是由拉伸对称模式A_1软化导致的。氢键对称化后HBr和HCl的Cmcm相的横声学支分别在160 GPa和250 GPa出现虚频,说明这个结构不再稳定,将会有新的结构出现。我们通过移动原子位置得到一个新相(第V相),这个新相是属于P21/m空间群的单斜结构,仍保持氢键对称化特性。对HBr,这个结构稳定存在134 GPa到196 GPa之间,之后分解为Br_2和H_2。对HCl,第IV相在233 GPa转变到第V相,但一直到400 GPa都未出现分解。进一步研究了这个新相的超导,发现HBr在160 GPa下的超导转变温度为27~34 K,HCl在280 GPa的超导转变温度为9~14 K,并且随压力的增大超导转变温度升高。
     (4)四碘化锡(SnI_4)分子晶体的压致非晶和再结晶。自从Mishima等人发现高密度非晶冰以来,在很多体系中都发现了压力导致的非晶化,如Si,Sn,和P等等。四碘化锡(SnI_4)在高压下也具有非晶态,尽管有大量的实验研究了SnI_4的高压行为,但是压力导致的SnI_4的非晶结构依然存在争议。另外,N. Hamaya等人发现非晶态在更高的压力64 GPa又结晶为新的晶体,但是这个晶体的结构并未确定。
     我们的研究结果显示,晶格常数在25 GPa突然劈裂,体积明显降低,同时,分子内Sn-I的距离突然增大,而分子内和分子间碘和碘的距离突然降低。所有这些信息都表明四面体SnI_4分子晶体发生解离,与实验上观测在25 GPa转变为非晶态符合。另外采用经典分子动力学方法得到了SnI_4的非晶结构,它的XRD谱和对分布函数与实验结果非常符合。在60 GPa,晶格常数又发生突变,说明非晶态再结晶转变为晶体相III(CP-III),与实验发现在61 GPa出现的晶体相吻合。并且首次得到了CP-III的结构,具有P2_1/c空间群,这个结构的XRD谱也与实验结果非常符合。
     (5)三碘化硼(BI_3)的分子解离及其超导电性。实验测量BI_3分子晶体在6.2 GPa分子解离,此时碘原子的排列为面心立方结构,但是由于硼原子质量相对碘太小,所以无法得到硼原子的结构信息。电阻测量表明BI_3在23 GPa金属化,27 GPa的超导转变温度为0.5 K,但是高压下BI3的金属化以及超导电性的机制尚不清楚。
     我们首次得到了三碘化硼高压新相(第II相)的结构,具有P2_1/c空间群,这个结构的XRD与实验结果符合的很好。通过焓曲线发现第I相(P6_3/m)在5.6 GPa转变为第II相(P2_1/c),与实验测量值6.2 GPa非常吻合,并且通过声子和弹性计算证明了新结构的动力学和力学稳定性。我们还计算了BI_3的电子结构,发现第II相在30 GPa由绝缘体转变为金属,这主要是由能带交叠引起的。通过电声相互作用计算了BI3的超导电性,在60 GPa的超导温度为0.5 K。
The effect of high pressure on molecular systems has been a central issue of fundamental physics and chemistry as well as planetary sciences. Cohesion of simple molecular solids occurs through forces of very different strengths: covalent, ionic, van der Waals, and hydrogen bonds. Pressure drives materials to states of higher density and gives rise to competition among those chemical bonds, structural instabilities, and changes in electronic properties. A simple picture suggests that all molecular systems must collapse on compression to form closed-packed structures and go over into metallic states at sufficient high pressures. However, the diversity of a process toward their destruction in real substances has manifested itself in numerous experimental observations. For instance, diatomic molecules crystals H_2, N_2, O_2, and I_2 are widely known to exhibit unexpected phases and complex phase diagram. Another class is hydrogen-containing molecules, such as H_2O, NH_3, and HCl, they turn out to be hydrogen bond symmetrization under high pressure. Metal tetraiodides MI_4 (M=Ge, Sn) are examples of another class. They undergo pressure-induced amorphization and become metallic glasses, which are quite common in materials having tetrahedral coordination. Among various factors affecting on the response of molecular crystals to compression, the shape of a molecule and intermolecular interactions may be of particular importance, because the anisotropy of chemical bonds, crystal structure, and electronic properties strongly depend on the shape of molecules composing a crystal and intermolecular interactions between the individual building blocks.
     Most recently, with the help of improved theory and computational capability, ab initio calculation based on the density functional theory has been used widely in the condensed matter physics, quantum chemistry, and material science. And it has been a common research tools except for theoretical and experimental method. Metal hydrogen is the most important one of top ten physical problems in the 21st century. Most likely it is a room temperature superconductors and good energy materials. Pressure is the most effective method to obtain metal hydrogen. Because the hydrogen molecule internally bonding is very strong, so far, there is no metal hydrogen observed in laboratory. As Ashcroft pointed out, hydrogen is regarded naturally as the first element of the halogen group. Therefor, we detailedly study the pressure induced molecular dissociation, metallization and superconductivity of solid halogens and related halide, which are also valuable for providing insight into the metallic hydrogen.
     (1) Effect of nonhydrostatic pressure on superconductivity of monatomic iodine. The superconductivity of iodine had been successfully discovered with T_c = 1.2 K at 28 GPa. It was reported that the T_c of monatomic iodine decreased with pressure at first but started to increase with pressure for the highest-symmetry phase IV, the face-centered cubic phase. The mechanism of such a superconductivity with pressure is still unclear. So, we have presented an ab initio investigation of the hydrostatic and nonhydrostatic pressure effects on the superconductivity of monatomic iodine.
     It is shown that the T_c of both phase II and phase III under hydrostatic pressures are in agreement with the experimental data, while the T_c of phase IV under hydrostatic pressures decreases with increasing pressure, contrary to the experimental results. In order to explore the origin of difference between experimental and theoretical results, we have studied the effect of non-hydrostatic pressure on the superconductivity of monatomic iodine, and found that the symmetry of phase IV changes from face-centered cubic to face-centered orthorhombic (fco) under anisotropic stresses. Further calculations show that the T_c of this fco structure increases with increasing pressure, in good agreement with the experimental results, which is mainly attributed to the non-hydrostatic pressure-induced enhancement of the electronic density of states at the Fermi level and electron-phonon coupling matrix element .
     (2) Crystal structure and superconducting properties of monatomic bromine under high pressure. The monatomic phase transition sequence of iodine had been observed by X-ray diffraction experiment. A similar scheme of phase transformations can be expected for bromine, but experimental results are much scarcer than those in the iodine case which restricts our understanding of the nature of bromine under high pressure. So, the crystal structure and superconducting properties of monatomic bromine under high pressure have been studied by ab initio calculations.
     We have found the following phase transition sequence with increasing pressure: from body-centered orthorhombic (bco, phase II) to body-centered tetragonal structure (bct, phase III) at 126 GPa, then to face-centered cubic structure (fcc, phase IV) at 157 GPa, which is stable at least up to 300 GPa. The calculated superconducting critical temperature T_c = 1.46 K at 100 GPa is consistent with the experimental value of 1.5 K. In addition, our results of T_c decreases with increasing pressure in all the monatomic phases of bromine, similar to monatomic iodine. Further calculations show that the decrease ofλwith pressure in the phase IV is mainly attributed to the weakening of the“soft”vibrational mode caused by pressure.
     (3) Hydrogen bond symmetrization and superconducting phase of HBr and HCl under high pressure. Hydrogen bonds are quite pervasive in a broad range of fields including physics, chemistry, biology, and materials sciences. Besides, hydrogen bond symmetrization is an important high pressure phenomenon. The pressure-induced hydrogen bond symmetrization in hydrogen halides (HBr, HCl, and DCl) have also been observed by Raman and infrared measurements. In addition, hydrogen in HBr and HCl can lead to other interesting properties under high pressure. Recently, theoretical or experimental studies have reported that these hydrogen compounds such as SiH_4, GeH_4, SnH_4, YH_3, ScH_3 and LaH_3 present a high superconducting critical temperature. HBr and HCl are simple diatomic molecules forming hydrogen bond in condensed state. Therefore, the studies on HBr and HCl can provide theoretical guidance to other hydrogen bonding system.
     Ab initio calculations are performed to probe the hydrogen bonding, structural and superconducting behaviors of HBr and HCl under high pressure. The calculated results show that the hydrogen bond symmetrization (Cmc2_1→Cmcm transition) of HBr and HCl occurs at 25 and 40 GPa, respectively, which can be attributed to the symmetry stretching A_1 mode softening. After hydrogen bond symmetrization, a pressure-induced soft transverse acoustic (TA) phonon mode of Cmcm phase is identified, and a unique metallic phase with monoclinic structure of P2_1/m (4 molecules/cell) for both compounds is revealed by ab initio phonon calculations. This phase preserves the symmetric hydrogen bond and is stable in the pressure range from 134 GPa to 196 GPa for HBr and above 233 GPa for HCl, while HBr is predicted to decompose into Br_2+H_2 above 196 GPa. Perturbative linear-response calculations predict that the phase P2_1/m is a superconductor with T_c of 27~34 K for HBr at 160 GPa and 9~14 K for HCl at 280 GPa.
     (4) Pressure-induced amorphization and recrystal of tin tetraiodide molecular crystal. In recent years, pressure-induced amorphization (PIA) has attracted extensive experimental and theoretical interest such as H_2O, SiO_2, P, etc. Tin tetraiodide SnI_4 molecular crystal is also observed to show amorphous under pressure. Although there have been a variety of experimental studies on SnI_4 under pressure, the structure of PIA forms is still controversial. In addition, the amorphous recrystallizes to a nonmolecular crystalline phase III (CP-III) at 61 GPa, but the crystal structure is not clear. Here we report an ab intio study that reveals the mechanisms controlling PIA in SnI_4, provides important insights pertaining PIA phenomena at large, and gives the structure of CP-III.
     Full geometry optimization show that, at 25 GPa, the lattice constants abrubtly split, volume significantly decreases, and distance of intramolecular Sn-I increase abruptly, while intermolecular and intramolecular I-I decreases suddenly. These indicate the tetrahedral molecular dissociate at 25 GPa, which is in good agreement with the experiment results. In addition, we obtained an amorphous structure through the classical molecular dynamics. The XRD and radial distribution function of this structure is consistent with the experimental resuts. At 60 GPa, the lattice constants changed abrubtly, indicating that the crystal phase (CP-III) occured. We firstly got a structure of CP-III with space group P2_1/c which has 40 atoms in unit cell. The XRD of our calculated structure is consistent with the experiment measure, indicating that our predicted structure is correct.
     (5) Pressure-induced molecular dissociation and superconductivity of boron triiodide. It is reported that BI_3 molecular structure transform to a monatomic phase at 6.2 GPa with the face-centered-cubic lattice of iodine atoms by X-ray diffraction experiment. Since the atomic X-ray scattering power of boron is only 5/53 of that of iodine or less, the boron atoms were not detected. So, the crystal structure of new phase is not clear. The monatomic phase becomes metallic at 23 GPa and exhibits superconductivity above 27 GPa by resistivity measurements.
     We got a new structure of BI_3 with space group P2_1/c which has 4 moleculars in unit cell. The XRD of P2_1/c is in good agreement with the experiment measure, indicating that our predicted structure is correct. The pahse I (P6_3/m) transforms to pahse II (P2_1/c) at 5.6 GPa, which is in well agreement with the experimental results. Moreover, the P2_1/c structure is dynamical and mechenical stability by phonon and elastic calculation. Another phase transition from insulator to metal phase occurs at 30 GPa which is primarily attributed to the band overlap. Perturbative linear-response calculations predict that the phase P2_1/c is a superconductor with T_c of 0.5 K.
引文
[1]张跃,《计算材料学基础》,北京航空航天大学出版社(2009)
    [2]张令通,"计算机在材料模拟计算与设计中的应用",大理学院学报1, 25-28 (2002)
    [3]吴兴惠和项金钟,《现代材料计算与设计教程》,电子工业出版社(2002)
    [4] A. Mujica, A. Rubio, Mu, ntilde, A. oz and R. J. Needs, "High-pressure phases of group-IV, III-V, and II-VI compounds", Reviews of Modern Physics 75, 863 (2003).
    [5] R. J. Hemley and N. W. Ashcroft, "The revealing role of pressure in the condensed matter sciences", Physics Today 51, 26-33 (1998).
    [6] J. A. Xu, H. K. Mao and P. M. Bell, "High-Pressure Ruby and Diamond Fluorescence: Observations at 0.21 to 0.55 Terapascal", Science 232, 1404-1406 (1986).
    [7] R. Chidambaram and S. M. Sharma, "Materials response to high pressures", Bulletin of Materials Science 22, 153-163 (1999).
    [8] W. Grochala, R. Hoffmann, J. Feng and N. W. Ashcroft, "The chemical imagination at work in very tight places", Angewandte Chemie International Edition 46, 3620-3642 (2007).
    [9] A. Dunaeva, D. Antsyshkin and O. Kuskov, "Phase Diagram of H2O: Thermodynamic functions of the phase transitions of high-pressure ices", Solar System Research 44, 202-222 (2010).
    [10] M. Choukroun and O. Grasset, "Thermodynamic model for water and high-pressure ices up to 2.2 GPa and down to the metastable domain", The Journal of Chemical Physics 127, 124506-124511 (2007).
    [11] Y. Akahama, H. Kawamura, auml, D. usermann, M. Hanfland and O. Shimomura, "New High-Pressure Structural Transition of Oxygen at 96 GPa Associated with Metallization in a Molecular Solid", Physical Review Letters 74, 4690 (1995).
    [12] A. S. Balchan and H. G. Drickamer, "Effect of Pressure on the Resistance of Iodine and Selenium", Journal of Chemical Physics 34, 1948-1949 (1961).
    [13] R. Reichlin, K. E. Brister, A. K. McMahan, M. Ross, S. Martin, Y. K. Vohra and A. L. Ruoff, "Evidence for the Insulator-Metal Transition in Xenon from Optical, X-Ray, and Band-Structure Studies to 170 GPa", Physical Review Letters 62, 669 (1989).
    [14] Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. O. Lyakhov, M. Valle and V. Prakapenka, "Transparent dense sodium", Nature 458, 182-185 (2009).
    [15] J. Lv, Y. Wang, L. Zhu and Y. Ma, "Predicted Novel High-Pressure Phases of Lithium", Physical Review Letters 106, 015503 (2011).
    [16] J. Donohue, "The Structure of the Elements", Wiley, New York, chap. 10 (1974).
    [17] D. Schiferl, S. Kinkead, R. C. Hanson and D. A. Pinnick, "Raman spectra and phase diagram of fluorine at pressures up to 6 GPa and temperatures between 10 and 320 K", The Journal of Chemical Physics 87, 3016-3021 (1987).
    [18] G. C. Straty and R. Prydz, "Melting curve and triple-point properties of fluorine", Physics Letters A 31, 301-302 (1970).
    [19] D. A. Young, C. S. Zha, R. Boehler, J. Yen, M. Nicol, A. S. Zinn, D. Schiferl, S. Kinkead, R. C. Hanson and D. A. Pinnick, "Diatomic melting curves to very high pressure", Physical Review B 35, 5353 (1987).
    [20] K. Kobashi and M. L. Klein, "Lattice vibrations of solid alpha-F2", Molecular Physics 41, 679-688 (1980).
    [21] D. Kirin and R. D. Etters, "Calculated static and dynamic properties of solid alpha-F2", The Journal of Chemical Physics 84, 3439-3442 (1986).
    [22] R. D. Etters and D. Kirin, "High-pressure behavior of solid molecular fluorine at low temperatures", The Journal of Chemical Physics 90, 4670-4673 (1986).
    [23] S. S. Batsanov, "Van der Waals Radii of Elements", Inorganic Materials 37, 871-885 (2001).
    [24] R. W. G. Wyckoff, Crystal Structures 2nd ed. (New York, 1963).
    [25] S. J. Tao, "Resonance Annihilation of Positrons in Chlorine and Argon", Physical Review Letters 14, 935 (1965).
    [26] P. G. Johannsen and W. B. Holzapfel, "Effect of pressure on Raman spectra of solid chlorine", Journal of Physics C: Solid State Physics 16, L1177-L1179 (1983).
    [27] H. Fujihisa, Y. Fujii, K. Takemura and O. Shimomura, "Structural aspects of dense solid halogens under high pressure studied by x-ray diffraction—Molecular dissociation and metallization", Journal of Chemical Physics Solids 56, 1439-1444 (1995).
    [28] P. G. Johannsen, C. Wefringhaus and W. B. Holzapfel, "The effect of pressure on FIR spectra of solid chlorine", Journal of Physics C: Solid State Physics 20, L151-L153 (1987).
    [29] R. Bauer, O. Schutt, P. Pavone, W. Windl and D. Strauch, "Static and dynamical properties of solid chlorine", Physical Review B 51, 210 (1995).
    [30] K. Mukose, R. Fukano, H. Matsuo, H. Miyagi and K. Yamaguchi, "First-principles studies of solid molecular halogens under pressure: metallization pressures, Raman-active Ag modes and scaling relations", Solid State Communications 123, 451-456 (2002).
    [31] K. Mukose, R. Fukano, H. Miyagi and K. Yamaguchi, "First-principles studies of solid halogens under pressure: scaling rules for properties among I2, Br2 and Cl2", Journal of Physics: Condensed Matter 14, 10441-10444 (2002).
    [32] B. Vonnegut and B. E. Warren, "The Structure of Crystalline Bromine", Journal of the American Chemical Society 58, 2459-2461 (1936).
    [33] P. G. Johannsen and W. B. Holzapfel, "Effect of pressure on Raman spectra of solid bromine", Journal of Physics C: Solid State Physics 16, 1961-1965 (1983).
    [34] Y. Fujii, K. Hase, Y. Ohishi, H. Fujihisa, N. Hamaya, K. Takemura, O. Shimomura, T. Kikegawa, Y. Amemiya and T. Matsushita, "Evidence for molecular dissociation in bromine near 80 GPa", Physical Review Letters 63, 536 (1989).
    [35] K. Takemura, S. Minomura, O. Shimomura and Y. Fujii, "Observation of Molecular Dissociation of Iodine at High Pressure by X-Ray Diffraction", Physical Review Letters 45, 1881 (1980).
    [36] K. Takemura, S. Minomura, O. Shimomura, Y. Fujii and J. D. Axe, "Structural aspects of solid iodine associated with metallization and molecular dissociation under high pressure", Physical Review B 26, 998 (1982).
    [37] T. Kume, T. Hiraoka, Y. Ohya, S. Sasaki and H. Shimizu, "High Pressure Raman Study of Bromine and Iodine: Soft Phonon in the Incommensurate Phase", Physical Review Letters 94, 065506-065504 (2005).
    [38] A. San-Miguel, H. Libotte, M. Gauthier, G. Aquilanti, S. Pascarelli and J. P. Gaspard, "New Phase Transition of Solid Bromine under High Pressure", Physical Review Letters 99, 015501-015504 (2007).
    [39] K. Amaya, K. Shimizu, M. I. Eremets, T. C. Kobayashi and S. Endo, "Observation of pressure-induced superconductivity in the megabar region", Journal of Physics: Condensed Matter 10, 11179-11190 (1998).
    [40] H. Miyagi, K. Yamaguchi, H. Matsuo and K. Mukose, "First-principles study of solid iodine and bromine under high pressure", Journal of Physics: Condensed Matter 10, 11203-11213 (1998).
    [41] M. S. Miao, V. E. Van Doren and J. L. Martins, "Density-functional studies of high-pressure properties and molecular dissociations of halogen molecular crystals", Physical Review B 68, 094106 (2003).
    [42] D. Duan, Y. Liu, Y. Ma, Z. Liu, T. Cui, B. Liu and G. Zou, "Ab initio studies of solid bromine under high pressure", Physical Review B 76, 104113-104118 (2007).
    [43] D. Duan, X. Meng, F. Tian, C. Chen, L. Wang, Y. Ma, T. Cui, B. Liu, Z. He and G. Zou, "The crystal structure and superconducting properties of monatomic bromine", Journal of Physics: Condensed Matter 22, 015702 (2010).
    [44] H. L. Suchan, S. Wiederhorn and H. G. Drickamer, "Effect of Pressure on the Absorption Edges of Certain Elements", The Journal of Chemical Physics 31, 355-357 (1959).
    [45] A. S. Balchan and H. G. Drickamer, "Effect of Pressure on the Resistance of Iodine and Selenium", The Journal of Chemical Physics 34, 1948-1949 (1961).
    [46] B. M. Riggleman and H. G. Drickamer, "Temperature Coefficient of Resistance of Iodine and Selenium at High Pressure", The Journal of Chemical Physics 37, 446-447 (1962).
    [47] B. M. Riggleman and H. G. Drickamer, "Approach to the Metallic State as Obtained from Optical and Electrical Measurements", The Journal of Chemical Physics 38, 2721-2724 (1963).
    [48] R. W. Lynch and H. G. Drickamer, "Effect of Pressure on the Lattice Parameters of Iodine, Stannic Iodide, and p-Di-iodobenzene", The Journal of Chemical Physics 45, 1020-1026 (1966).
    [49] C. Shimomura, K. Takemura, Y. Fujii, S. Minomura, M. Mori, Y. Noda and Y. Yamada, "Structure analysis of high-pressure metallic state of iodine", Physical Review B 18, 715 (1978).
    [50] Y. Fujii, K. Hase, Y. Ohishi, N. Hamaya and A. Onodera, "Pressure-induced monatomic tetragonal phase of metallic iodine", Solid State Communications 59, 85-89 (1986).
    [51] Y. Fujii, K. Hase, N. Hamaya, Y. Ohishi, A. Onodera, O. Shimomura and K. Takemura, "Pressure-induced face-centered-cubic phase of monatomic metallic iodine", Physical Review Letters 58, 796 (1987).
    [52] R. Reichlin, A. K. McMahan, M. Ross, S. Martin, J. Hu, R. J. Hemley, H. k. Mao and Y. Wu, "Optical, x-ray, and band-structure studies of iodine at pressures of several megabars", Physical Review B 49, 3725 (1994).
    [53] K. Shimizu, N. Tamitani, N. Takeshita, M. Ishizuka, K. Amaya and S. Endo, "Pressure-Induced Superconductivity of Iodine", Journal of the Physical Society of Japan 61, 3853-3855 (1992).
    [54] K. Shimizu, T. Yamauchi, N. Tamitani, N. Takeshita, M. Ishizuka, K. Amaya and S. Endo, "The pressure-induced superconductivity of iodine", Journal of Superconductivity 7, 921-924 (1994).
    [55] M. Pasternak, J. N. Farrell and R. D. Taylor, "Metallization and structural transformation of iodine under pressure: A microscopic view", Physical Review Letters 58, 575 (1987).
    [56] T. Kenichi, S. Kyoko, F. Hiroshi and O. Mitsuko, "Modulated structure of solid iodine during its molecular dissociation under high pressure", Nature 423, 971-974 (2003).
    [57] H. Olijnyk, W. Li and A. Wokaun, "High-pressure studies of solid iodine by Raman spectroscopy", Physical Review B 50, 712 (1994).
    [58] A. Congeduti, P. Postorino, M. Nardone and U. Buontempo, "Raman spectra of a high-pressure iodine single crystal", Physical Review B 65, 014302 (2001).
    [59] Q. Zeng, Z. He, X. San, Y. Ma, F. Tian, T. Cui, B. Liu, G. Zou and H.-k. Mao, "A new phase of solid iodine with different molecular covalent bonds", Proceedings of the National Academy of Sciences 105, 4999-5001 (2008).
    [60] N. Orita, K. Niizeki, K. Shindo and H. Tanaka, "The Band Structure of Solid Iodine under Pressure and the Mechanism of the Pressure-Induced Insulator-to-Metal Transition", Journal of the Physical Society of Japan 61, 4502-4510 (1992).
    [61] K. Yamaguchi and H. Miyagi, "Structural properties of molecular solid iodine under pressure: First-principles study of Raman-active Ag modes and hyperfine parameters", Physical Review B 57, 11141 (1998).
    [62] X. San, L. Wang, Y. Ma, Z. Liu, T. Cui, B. Liu and G. Zou, "Theoretical calculations of phase transitions and optical properties of solid iodine under high pressures", Journal of Physics: Condensed Matter 20, 175225 (2008).
    [63] H. Sakamoto, M. Shirai and N. Suzuki, "Pressure Effects on Electronic Structure and Electron-Lattice Interaction of Cubic Phase of Solid Iodine", Journal of the Physical Society of Japan 64, 3860-3870 (1995).
    [64] H. Sakamoto, T. Oda, M. Shirai and N. Suzuki, "Application of Frozen-Phonon Method to Lattice Dynamics in FCC Solid Iodine", Journal of the Physical Society of Japan 65, 489-495 (1996).
    [65] S. U. Maheswari, H. Nagara, K. Kusakabe and N. Suzuki, "Ab-initio calculations of lattice dynamics and superconductivity in FCC lithium and iodine and BCC tellurium", Journal of the Physical Society of Japan 74, 3227-3235 (2005).
    [66] D. Duan, X. Jin, Y. Ma, T. Cui, B. Liu and G. Zou, "Effect of nonhydrostatic pressure on superconductivity of monatomic iodine: An ab initio study", Physical Review B 79, 064518-064517 (2009).
    [67] M. Johnson, E. Sandor and E. Arzi, "The crystal structure of deuterium fluoride", Acta Crystallographica Section B 31, 1998-2003 (1975).
    [68] J. S. Kittelberger and D. F. Hornig, "Vibrational Spectrum of Crystalline HF and DF", The Journal of Chemical Physics 46, 3099-3108 (1967).
    [69] R. Tubino and G. Zerbi, "Phonon Curves and Frequency Spectrum for Hydrogen-Bonded Systems: Solid HF and DF", The Journal of Chemical Physics 51, 4509-4514 (1969).
    [70] D. A. Pinnick, A. I. Katz and R. C. Hanson, "Pressure effects on Raman scattering from solid HF and DF", Physical Review B 39, 8677 (1989).
    [71] A. Karpfen, "Ab initio studies on hydrogen bonded chains. I. Equilibrium geometry of the infinite, linear chain of hydrogen fluoride molecules", Chemical Physics 47, 401-406 (1980).
    [72] A. Beyer and A. Karpfen, "AB initio studies on hydrogen bonded chains. II. Equilibrium geometry and vibrational spectra of the bent chain of hydrogen fluoride molecules", Chemical Physics 64, 343-357 (1982).
    [73] M. Springborg, "First-principles examination of hydrogen bonds: Polymeric hydrogen fluoride", Physical Review Letters 59, 2287 (1987).
    [74] Z. Latajka and Y. Bouteiller, "Application of density functional methods for the study of hydrogen-bonded systems: The hydrogen fluoride dimer", The Journal of Chemical Physics 101, 9793-9799 (1994).
    [75] S. Hirata and S. Iwata, "Ab Initio Hartree?Fock and Density Functional Studies on the Structures and Vibrations of an Infinite Hydrogen Fluoride Polymer", The Journal of Physical Chemistry A 102, 8426-8436 (1998).
    [76] C. Buth and B. Paulus, "Hydrogen bonding in infinite hydrogen fluoride and hydrogen chloride chains", Physical Review B 74, 045122-045128 (2006).
    [77] L. Zhang, Y. Wang, X. Zhang and Y. Ma, "High-pressure phase transitions of solid HF, HCl, and HBr: An ab initio evolutionary study", Physical Review B 82, 014108 (2010).
    [78] A. Ikram, B. H. Torrie and B. M. Powell, "Structures of solid deuterium bromide and deuterium iodide", Molecular Physics 79, 1037-1049 (1993).
    [79] E. Sándor and R. Farrow, "Crystal structure of solid hydrogen chloride and deuterium chloride", Nature 213, 171-172 (1967).
    [80] P. G. Johannsen, W. Helle and W. B. Holzapfel, "Effect of Pressure on Raman-spectra of Solid HCl and HBr", Journal of Physical C 45, 199-201 (1984).
    [81] E. Katoh, H. Yamawaki, H. Fujihisa, M. Sakashita and K. Aoki, "Raman and infrared study of phase transitions in solid HBr under pressure", Physical Review B 59, 11244 (1999).
    [82] K. Aoki, E. Katoh, H. Yamawaki, M. Sakashita and H. Fujihisa, "Hydrogen-bond symmetrization and molecular dissociation in hydrogen halids", Physica B 265, 83-86 (1999).
    [83] E. Katoh, H. Yamawaki, H. Fujihisa, M. Sakashita and K. Aoki, "Raman study of phase transition and hydrogen bond symmetrization in solid DCl at high pressure", Physical Review B 61, 119 (2000).
    [84] T. Kume, T. Tsuji, S. Sasaki and H. Shimizu, "Phase study on solid hydrogen bromide by high-pressure and low-temperature Raman spectroscopy", Physical Review B 58, 8149 (1998).
    [85] H. Shimizu, M. Kanazawa, T. Kume and S. Sasaki, "High-pressure Brillouin study of solid HBr at pressures up to 7 GPa", The Journal of Chemical Physics 111, 10617-10621 (1999).
    [86] H. Shimizu, K. Kamabuchi, T. Kume and S. Sasaki, "High-pressure elastic properties of the orientationally disordered and hydrogen-bonded phase of solid HCl", Physical Review B 59, 11727-11732 (1999).
    [87] N. S. Gillis, J. C. Raich, L. B. Kanney and A. Bickermann, "k=0 vibrational spectrum for solid orthorhombic HCl", The Journal of Chemical Physics 64, 2501-2505 (1976).
    [88] R. W. Jansen, R. Bertoncini, D. A. Pinnick, A. I. Katz, R. C. Hanson, O. F. Sankey and M. O’Keeffe, "Theoretical aspects of solid hydrogen halides under pressure", Physical Review B 35, 9830 (1987).
    [89] T. Ikeda, M. Sprik, K. Terakura and M. Parrinello, "Pressure Effects on Hydrogen Bonding in the Disordered Phase of Solid HBr", Physical Review Letters 81, 4416 (1998).
    [90] T. Ikeda, M. Sprik, K. Terakura and M. Parrinello, "Pressure-induced structural and chemical changes of solid HBr", The Journal of Chemical Physics 111, 1595 (1999).
    [91] D. Duan, F. Tian, Z. He, X. Meng, L. Wang, C. Chen, X. Zhao, B. Liu and T. Cui, "Hydrogen bond symmetrization and superconducting phase of HBr and HCl under high pressure: An ab initio study", The Journal of Chemical Physics 133, 074509-074507 (2010).
    [92] B. H. T. A. Anderson, W. S. Tse,, "Raman and infrared spectra of crystalline hydrogen iodide and deuterium iodide", Journal of Raman Spectroscopy 8, 213-217 (1979).
    [93] E. Sandor and J. H. Clarke, " Acta Crystallographica Section A 28, S188 (1972).
    [94] J. van Straaten and I. F. Silvera, "Observation of Metal-insulator and Metal-Metal Transitions in Hydrogen Iodide under Pressure", Physical Review Letters 57, 766 (1986).
    [95] J. van Straaten and I. F. Silvera, "Semiempirical equation of state of solid hydrogen iodide", Physical Review B 36, 9301 (1987).
    [96] J. van Straaten and I. F. Silvera, "Vibrational mode frequencies, phase diagram, and optical transmission of solid hydrogen iodide to 25 GPa", Physical Review B 36, 9253 (1987).
    [97] J. van Straaten and I. F. Silvera, "Temperature dependence of resistance of solid hydrogen iodide at high pressure", The Journal of Chemical Physics 88, 478-480 (1988).
    [98] R. G. Dickinson, "The crystal structure of tin tetra-iodide", Journal of the American Chemical Society 45, 958-962 (1923).
    [99] B. M. Riggleman and H. G. Drickamer, "Approach to the Metallic State as Obtained from Optical and Electrical Measurements", The Journal of Chemical Physics 38, 2721-2724 (1963).
    [100] Y. Fujii and et al., "The pressure-induced metallic amorphous state of SnI4 . I. A novel crystal-to-amorphous transition studied by X-ray scattering", Journal of Physics C: Solid State Physics 18, 789 (1985).
    [101] S. Sugai, "The pressure-induced metallic amorphous state of SnI4. II. Lattice vibrations at the crystal-to-amorphous phase transition studied by Raman scattering", Journal of Physics C: Solid State Physics 18, 799-808 (1985).
    [102] M. Pasternak and R. D. Taylor, "Structural and valence properties of the amorphous-metallic high-pressure phase of SnI4", Physical Review B 37, 8130 (1988).
    [103] A. L. Chen, P. Y. Yu and M. P. Pasternak, "Metallization and amorphization of the molecular crystals SnI4 and GeI4 under pressure", Physical Review B 44, 2883 (1991).
    [104] F. Wang and R. Ingalls, " in High Pressure Science and technolog, edited by W. A. Trzeciakowski (World Scientific, Singapore), p. 289 (1996).
    [105] S. K. Nao Takeshita, Katsuya Shimizu, Kiichi Amaya, Nozomu Hamaya and Shoichi Endo, "Pressure-Induced Superconductivity of SnI4", Rev. High Pressure Sci. Technol. 7, 595-597 (1998).
    [106] N. Hamaya, K. Sato, K. Usui-Watanabe, K. Fuchizaki, Y. Fujii and Y. Ohishi, "Amorphization and Molecular Dissociation of SnI4 at High Pressure", Physical Review Letters 79, 4597 (1997).
    [107] A. Ohmura and et al., "Structural analysis of a high-pressure amorphous phase of SnI4", Journal of Physics: Condensed Matter 14, 10553 (2002).
    [108] A. Ohmura, K. Sato, N. Hamaya, M. Isshiki and Y. Ohishi, "Structure of pressure-induced amorphous form of SnI4 at high pressure", Physical Review B 80, 054201-054207 (2009).
    [109] B. Grocholski, S. Speziale and R. Jeanloz, "Equation of state, phase stability, and amorphization of SnI4 at high pressure and temperature", Physical Review B 81, 094101 (2010).
    [110] M. P. Pasternak, R. D. Taylor, M. B. Kruger, R. Jeanloz, J.-P. Itie and A. Polian, "Pressure induced amorphization of GeI4 molecular crystals", Physical Review Letters 72, 2733 (1994).
    [111] M. B. Kruger and C. Meade, "High-pressure structural study of GeI4", Physical Review B 55, 1 (1997).
    [112] V. P. Brand and H. Sackmann, " Acta Crystallogr. 16, 446 (1963).
    [113] W. Williamson and S. A. Lee, "Tin tetrabromide at high pressures: Reversible crystalline-to-amorphous and electronic transitions", Physical Review B 44, 9853 (1991).
    [114] G. R. Hearne, M. P. Pasternak and R. D. Taylor, "Mossbauer studies of pressure-induced amorphization in the molecular crystal SnBr4", Physical Review B 52, 9209 (1995).
    [115] A. Anderson and L. Lettress, "Raman spectra of molecular crystals at high pressures: VII—Boron Triiodide", Journal of Raman Spectroscopy 33, 173-176 (2002).
    [116] S. Onoda and K. Shimizu, "Pressure-Induced Metallization of Molecular Crystal BI3", Journal of the Physical Society of Japan 76 (2007).
    [117] S. Onoda and K. Shimizu, "Metallization and superconductivity of molecular crystal BI 3 under pressure", Journal of Physics: Conference Series 121, 032008 (2008).
    [118] N. Hamaya, M. Ishizuka, S. Onoda, J. Guishan, A. Ohmura and K. Shimizu, "Pressure-induced phase transition, metallization, and superconductivity in boron triiodide", Physical Review B 82, 094506 (2010).
    [119] G. Santiso-Qui?ones and I. Krossing, "Reference Values for the B-X Bond Lengths of BI3 and BBr3", Zeitschrift für anorganische und allgemeine Chemie 634, 704-707 (2008).
    [120] A. Anderson and L. M. Lettress, "Raman spectra of molecular crystals at high pressures: VIII—Boron tribromide", Journal of Raman Spectroscopy 34, 684-687 (2003).
    [121] E. Wigner and H. B. Huntington, "On the Possibility of a Metallic Modification of Hydrogen", The Journal of Chemical Physics 3, 764-770 (1935).
    [122] N. W. Ashcroft, "Metallic Hydrogen: A High-Temperature Superconductor?", Physical Review Letters 21, 1748 (1968).
    [123] B. I. Min, H. J. F. Jansen and A. J. Freeman, "Structural properties, superconductivity, and magnetism of metallic hydrogen", Physical Review B 30, 5076 (1984).
    [124] T. W. Barbee, A. Garcia and M. L. Cohen, "First-principles prediction of high-temperature superconductivity in metallic hydrogen", Nature 340, 369-371 (1989).
    [125] T. Cui, E. Cheng, B. J. Alder and K. B. Whaley, "Rotational ordering in solid deuterium and hydrogen: A path integral Monte Carlo study", Physical Review B 55, 12253-12266 (1997).
    [126] T. Cui, Y. Takada, Q. Cui, Y. Ma and G. Zou, "Structural phase transition at high temperatures in solid molecular hydrogen and deuterium", Physical Review B 64 (2001).
    [127] I. Goncharenko and P. Loubeyre, "Neutron and X-ray diffraction study of the broken symmetry phase transition in solid deuterium", Nature 435, 1206-1209 (2005).
    [128] P. P. Edwards and F. Hensel, "Will solid hydrogen ever be a metal?", Nature 388, 621-622 (1997).
    [129] C. Narayana, H. Luo, J. Orloff and A. L. Ruoff, "Solid hydrogen at 342 GPa: no evidence for an alkali metal", Nature 393, 46-49 (1998).
    [130]李正中著,《固体理论》,第二版,高等教育出版社(2002)
    [131]谢希德和陆栋著,《固体能带理论》,第一版,复旦大学出版社(1998)
    [132]吴代鸣著,《固体物理基础》》,第一版,吉林教育出版社,长春(2003)
    [133]黄昆和韩汝琦著,《固体物理学》,第一版,高等教育出版社(1988)
    [134] W. Kohn and L. Sham, "Self-consistent equations including exchange and correlation effects", Phys. Rev 140, A1133-A1138 (1965).
    [135] M. Born and K. Huang, "Dynamical Theory of Crystal Lattices", (Oxford University Press, 1998 (有中译本,葛惟锟,贾惟义译,江丕桓校,北京大学出版社,1989).).
    [136] P. Giannozzi, S. de Gironcoli, P. Pavone and S. Baroni, "Ab initio calculation of phonon dispersions in semiconductors", Physical Review B 43, 7231 (1991).
    [137] X. Gonze, "First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm", Physical Review B 55, 10337 (1997).
    [138] S. Baroni, S. de Gironcoli, A. Dal Corso and P. Giannozzi, "Phonons and related crystal properties from density-functional perturbation theory", Reviews of Modern Physics 73, 515 (2001).
    [139] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, "Superconductivity at 39 K in magnesium diboride", Nature 410, 63-64 (2001).
    [140] E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel'nik, N. J. Curro, J. D. Thompson and S. M. Stishov, "Superconductivity in diamond ", Nature 428, 542 (2004).
    [141] N. Emery, C. Hérold, M. d’Astuto, V. Garcia, C. Bellin, J. F. Marêché, P. Lagrange and G. Loupias, "Superconductivity of Bulk CaC6", Physical Review Letters 95, 087003 (2005).
    [142]张裕恒著,《超导物理》,中国科学技术大学出版社(1997)
    [143]章立源著,《超导理论》,科学出版社(2003)
    [144] J. Bardeen, L. N. Cooper and J. R. Schrieffer, "Microscopic Theory of Superconductivity", Physical Review 106, 162 (1957).
    [145] J. Bardeen, L. N. Cooper and J. R. Schrieffer, "Theory of Superconductivity", Physical Review 108, 1175 (1957).
    [146] P. Allen and B. Mitrovic, "Theory of superconducting Tc", Solid State Physics 37, 1-92 (1983).
    [147] G. Grimvall, The electron-phonon interaction in metals. (North-Holland Amsterdam, The Netherlands, 1981).
    [148] P. Allen and R. Dynes, "Transition temperature of strong-coupled superconductors reanalyzed", Physical Review B 12, 905-922 (1975).
    [149] C. F. Richardson and N. W. Ashcroft, "High Temperature Superconductivity in Metallic Hydrogen: Electron-Electron Enhancements", Physical Review Letters 78, 118 (1997).
    [150] K. Shimizu, H. Ishikawa, D. Takao, T. Yagi and K. Amaya, "Superconductivity in compressed lithium at 20 K", Nature 419, 597-599 (2002).
    [151] S. Deemyad and J. S. Schilling, "Superconducting Phase Diagram of Li Metal in Nearly Hydrostatic Pressures up to 67 GPa", Physical Review Letters 91, 167001 (2003).
    [152] M. I. Eremets, V. V. Struzhkin, H. k. Mao and R. J. Hemley, "Superconductivity in Boron", Science 293, 272-274 (2001).
    [153] K. Shimizu, K. Suhara, M. Ikumo, M. I. Eremets and K. Amaya, "Superconductivity in oxygen", Nature 393, 767-769 (1998).
    [154] V. V. Struzhkin, R. J. Hemley, H. k. Mao and Y. A. Timofeev, "Superconductivity at 10-17 K in compressed sulphur", Nature 390, 382-384 (1997).
    [155] T. Yabuuchi, T. Matsuoka, Y. Nakamoto and K. Shimizu, "Superconductivity of Ca Exceeding 25 K at Megabar Pressures", Journal of the Physical Society of Japan 75, 083703-083703 (2006).
    [156] A. K. Singh, C. Balasingh, H. k. Mao, R. J. Hemley and J. Shu, "Analysis of lattice strains measured under nonhydrostatic pressure", Journal of Applied Physics 83, 7567-7575 (1998).
    [157] R. T. Downs and A. K. Singh, "Analysis of deviatoric stress from nonhydrostatic pressure on a single crystal in a diamond anvil cell: The case of monoclinic aegirine, NaFeSi2O6", Journal of Chemical Physics Solids 67, 1995-2000 (2006).
    [158] J. Badro, D. M. Teter, R. T. Downs, P. Gillet, R. J. Hemley and J.-L. Barrat, "Theoretical study of a five-coordinated silica polymorph", Physical Review B 56, 5797 (1997).
    [159] Y. Liang, C. R. Miranda and S. Scandolo, "Tuning Oxygen Packing in Silica by Nonhydrostatic Pressure", Physical Review Letters 99, 215504-215504 (2007).
    [160] C. W. Chu, T. F. Smith and W. E. Gardner, "Study of Fermi-Surface Topology Changes in Rhenium and Dilute Re Solid Solutions from Tc Measurements at High Pressure", Physical Review B 1, 214 (1970).
    [161] R. Kondo, S. Kagoshima and M. Maesato, "Crystal structure and electronic band structure of the organic superconductor alpha -(BEDT-TTF)2NH4Hg(SCN)4 under uniaxial strain", Physical Review B 67, 134519 (2003).
    [162] K. Murata, S. Kagoshima, S. Yasuzuka, H. Yoshino and R. Kondo, "High-Pressure Research in Organic Conductors", Journal of the Physical Society of Japan 75, 051015-051015 (2006).
    [163] S. Deemyad, T. Tomita, J. J. Hamlin, B. R. Beckett, J. S. Schilling, D. G. Hinks, J. D. Jorgensen, S. Lee and S. Tajima, "Dependence of the superconducting transition temperature of single and polycrystalline MgB2 on hydrostatic pressure", Physica C: Superconductivity 385, 105-116 (2003).
    [164] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. d. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials", Journal of Physics: Condensed Matter 21, 395502 (2009).
    [165] N. Troullier and J. L. Martins, "Efficient pseudopotentials for plane-wave calculations", Physical Review B 43, 1993 (1991).
    [166] A. M. Rappe, K. M. Rabe, E. Kaxiras and J. D. Joannopoulos, "Optimized pseudopotentials", Physical Review B 41, 1227 (1990).
    [167] K. B. John P. Perdew, "Comparison shopping for a gradient-corrected density functional", International Journal of Quantum Chemistry 57, 309-319 (1996).
    [168] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation", Physical Review B 46, 6671 (1992).
    [169] H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations", Physical Review B 13, 5188 (1976).
    [170] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, "First-principles simulation: ideas, illustrations and the CASTEP code", Journal of Physics: Condensed Matter 14, 2717-2744 (2002).
    [171] T. H. Fischer and J. Almlof, "General methods for geometry and wave function optimization", The Journal of Physical Chemistry 96, 9768-9774 (1992).
    [172] L. Zhang, Y. Niu, Q. Li, T. Cui, Y. Wang, Y. Ma, Z. He and G. Zou, "Ab initio prediction of superconductivity in molecular metallic hydrogen under high pressure", Solid State Communications 141, 610-614 (2007).
    [173] C. F. Richardson and N. W. Ashcroft, "Effective electron-electron interactions and the theory of superconductivity", Physical Review B 55, 15130 (1997).
    [174] Y. Ma, J. S. Tse, T. Cui, D. D. Klug, L. Zhang, Y. Xie, Y. Niu and G. Zou, "First-principles study of electron-phonon coupling in hole- and electron-doped diamonds in the virtual crystal approximation", Physical Review B 72, 014306-014309 (2005).
    [175] Y. Yao and J. S. Tse, "Electron-phonon coupling in the high-pressure hcp phase of xenon: A first-principles study", Physical Review B 75, 134104-134107 (2007).
    [176] D. R. Allan and S. J. Clark, "Impeded Dimer Formation in the High-Pressure Crystal Structure of Formic Acid", Physical Review Letters 82, 3464 (1999).
    [177] S. K. Sikka and S. M. Sharma, "The hydrogen bond under pressure", Phase Transitions 81, 907-934 (2008).
    [178] K. Wang, D. Duan, R. Wang, A. Lin, Q. Cui, B. Liu, T. Cui, B. Zou, X. Zhang, J. Hu, G. Zou and H.-k. Mao, "Stability of Hydrogen-Bonded Supramolecular Architecture under High Pressure Conditions: Pressure-Induced Amorphization in Melamine-Boric Acid Adduct", Langmuir 25, 4787-4791 (2009).
    [179] K. Wang, D. Duan, R. Wang, D. Liu, L. Tang, T. Cui, B. Liu, Q. Cui, J. Liu, B. Zou and G. Zou, "Pressure-Induced Phase Transition in Hydrogen-Bonded Supramolecular Adduct Formed by Cyanuric Acid and Melamine", The Journal of Physical Chemistry B 113, 14719-14724 (2009).
    [180] G. Bao, D. Duan, D. Zhou, X. Jin, B. Liu and T. Cui, "A New High-Pressure Polar Phase of Crystalline Bromoform: A First-Principles Study", The Journal of Physical Chemistry B 114, 13933-13939 (2010).
    [181] G. Bao, D. Duan, F. Tian, L. Wang, B. Liu and T. Cui, "Structural, electronic, and optical properties of crystalline iodoform under high pressure: A first-principles study", The Journal of Chemical Physics 134, 034508-034507 (2011).
    [182] M. Benoit, M. Bernasconi, P. Focher and M. Parrinello, "New High-Pressure Phase of Ice", Physical Review Letters 76, 2934 (1996).
    [183] M. Benoit, A. H. Romero and D. Marx, "Reassigning hydrogen-bond centering in dense ice", Physical Review Letters 89, 145501 (2002).
    [184] R. Caracas, "Dynamical instabilities of ice X", Physical Review Letters 101, 085502 (2008).
    [185] A. F. Goncharov, V. V. Struzhkin, H. K. Mao and R. J. Hemley, "Raman Spectroscopy of Dense H2O and the Transition to Symmetric Hydrogen Bonds", Physical Review Letters 83, 1998 (1999).
    [186] C. J. Pickard and R. J. Needs, "Highly compressed ammonia forms an ionic crystal", Nature Materials 7, 775 (2008).
    [187] M. Gauthier, P. Pruzan, J. C. Chervin and J. M. Besson, "Raman scattering study of ammonia up to 75 GPa: Evidence for bond symmetrization at 60 GPa", Physical Review B 37, 2102 (1988).
    [188] A. F. Goncharov, M. R. Manaa, J. M. Zaug, R. H. Gee, L. E. Fried and W. B. Montgomery, "Polymerization of Formic Acid under High Pressure", Physical Review Letters 94, 065505 (2005).
    [189] J. S. Tse, Y. Yao and K. Tanaka, "Novel Superconductivity in Metallic SnH4 under High Pressure", Physical Review Letters 98, 117004-117004 (2007).
    [190] M. I. Eremets, I. A. Trojan, S. A. Medvedev, J. S. Tse and Y. Yao, "Superconductivity in Hydrogen Dominant Materials: Silane", Science 319, 1506-1509 (2008).
    [191] G. Gao, A. R. Oganov, A. Bergara, M. Martinez-Canales, T. Cui, T. Iitaka, Y. Ma and G. Zou, "Superconducting High Pressure Phase of Germane", Physical Review Letters 101, 107002-107004 (2008).
    [192] D. Y. Kim, R. H. Scheicher and R. Ahuja, "Predicted High-Temperature Superconducting State in the Hydrogen-Dense Transition-Metal Hydride YH3 at 40 K and 17.7 GPa", Physical Review Letters 103, 077002-077004 (2009).
    [193] T. A. Strobel, M. Somayazulu and R. J. Hemley, "Novel Pressure-Induced Interactions in Silane-Hydrogen", Physical Review Letters 103, 065701 (2009).
    [194] G. Gao, A. R. Oganov, P. Li, Z. Li, H. Wang, T. Cui, Y. Ma, A. Bergara, A. O. Lyakhov, T. Iitaka and G. Zou, "High-pressure crystal structures and superconductivity of Stannane (SnH4)", Proceedings of the National Academy of Sciences 107, 1317-1320 (2010).
    [195] D. Y. Kim, R. H. Scheicher, H. K. Mao, T. W. Kang and R. Ahuja, "General trend for pressurized superconducting hydrogen-dense materials", Proceedings of the National Academy of Sciences 107, 2793 (2010).
    [196] K. Aoki, H. Yamawaki, M. Sakashita and H. Fujihisa, "Infrared absorption study of the hydrogen-bond symmetrization in ice to 110 GPa", Physical Review B 54, 15673 (1996).
    [197] G. A. Samara and P. S. Peercy, " in Solid State Physics, edited by H. Ehrenreich, F. Seitz and D. Turnbull vol. 36 (Academic, New York,1981).
    [198] C. J. Pickard and R. J. Needs, "Structure of phase III of solid hydrogen", Nature Physics 3, 473-476 (2007).
    [199] O. Mishima, L. D. Calvert and E. Whalley, "‘Melting ice’I at 77 K and 10 kbar: a new method of making amorphous solids", Nature 310, 393 (1984).
    [200] R. J. Hemley, A. P. Jephcoat, H. K. Mao, L. C. Ming and M. H. Manghnani, "Pressure-induced amorphization of crystalline silica", Nature 334, 52-54 (1988).
    [201] Q. Williams and R. Jeanloz, "Static amorphization of anorthite at 300 K and comparison with diaplectic glass", Nature 338, 413-415 (1989).
    [202] H. Luo and A. L. Ruoff, "X-ray-diffraction study of sulfur to 32 GPa: Amorphization at 25 GPa", Physical Review B 48, 569 (1993).
    [203] O. Mishima, "Relationship between melting and amorphization of ice", Nature 384, 546-549 (1996).
    [204] E. Gregoryanz, A. F. Goncharov, R. J. Hemley and H.-k. Mao, "High-pressure amorphous nitrogen", Physical Review B 64, 052103 (2001).
    [205] O. Mishima, L. D. Calvert and E. Whalley, "An apparently first-order transition between two amorphous phases of ice induced by pressure", Nature 314, 76-78 (1985).
    [206] J. P. Itie, A. Polian, G. Calas, J. Petiau, A. Fontaine and H. Tolentino, "Pressure-induced coordination changes in crystalline and vitreous GeO2", Physical Review Letters 63, 398 (1989).
    [207] C. Meade, R. J. Hemley and H. K. Mao, "High-pressure x-ray diffraction of SiO2 glass", Physical Review Letters 69, 1387 (1992).
    [208] Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, M. Yamakata and K.-i. Funakoshi, "A first-order liquid-liquid phase transition in phosphorus", Nature 403, 170-173 (2000).
    [209] T. Morishita, "Liquid-Liquid Phase Transitions of Phosphorus via Constant-Pressure First-Principles Molecular Dynamics Simulations", Physical Review Letters 87, 105701 (2001).
    [210] C. J. Benmore, R. T. Hart, Q. Mei, D. L. Price, J. Yarger, C. A. Tulk and D. D. Klug, "Intermediate range chemical ordering in amorphous and liquid water, Si, and Ge", Physical Review B 72, 132201 (2005).
    [211] Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu and J. Meng, "Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles", Physical Review B 76, 054115-054115 (2007).
    [212] N. E. Christensen and D. L. Novikov, "Predicted Superconductive Properties of Lithium under Pressure", Physical Review Letters 86, 1861 (2001).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700