稠油水热裂解反应动力学研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济的不断发展,世界各国对石油的需求量愈来愈大,综合考虑常规原油的开采现状和稠油储量,可以预测稠油将在今后的国家能源战略中占据重要地位。
    稠油油藏的一个显著特点是在地层条件下,稠油的粘度高、相对密度大、流动能力差,用常规技术难以经济有效地开发。目前开采稠油的主要方法是注蒸汽热力采油法。热采过程中,高温水与稠油之间发生的水热裂解反应能强化注蒸汽技术,把孔隙介质作为天然化学催化反应器,在井下就地改善稠油质量,不可逆地降低稠油粘度,是一项具有广阔应用前景的稠油开采新技术。目前,针对我国稠油水热裂解所做的动力学研究较少,至今尚未见到相关的报道。
    为此,本文通过理论分析、室内实验和数值计算等方法,深入研究了稠油水热裂解反应及其动力学,为现场采油生产提出合理建议,成功地提高了稠油质量和采收率,取得了较为满意的效果。
    本文的主要研究内容及创新点是:
    (1)分析了注蒸汽热采过程中的稠油水热裂解反应机理
    热作用下的稠油转化是裂解和缩合相平行的顺序反应;杂原子组成的桥键是稠油结构中较薄弱的环节,在注蒸汽热采条件下很容易断裂,生成自由基“碎片”,对稠油水热裂解反应具有重要影响;引入活性基团氢,可以捕获烃自由基和活性碎片,阻滞反应链的增长,实现稠油不可逆降粘;高温水的参与使稠油水热裂解反应按照酸碱催化机理进行;储层矿物和金属离子对稠油水热裂解反应具有催化作用。
    (2)计算了稠油水热裂解模型化合物的平衡组成
    采用噻吩和四氢噻吩作为稠油水热裂解模型化合物,计算热力学平衡组成,分析温度、压力、进料比等反应条件对平衡产物分布的影响。结果表明,当水/四氢噻吩、水/噻吩摩尔进料比分别小于3和4 时,提高水/四氢噻吩和水/噻吩摩尔进料比有利于脱硫和生成更多气体。提高反应温度,降低反应压力有利于生成更多的气体,但不利于脱硫。当水/四氢噻吩、水/噻吩摩尔进料比分别大于3 和4时,进料比、温度和压力对平衡组成的影响较小。
    (3)考察了反应条件对稠油水热裂解反应的影响
    根据室内实验结果,考察有、无储层矿物、有、无催化剂存在时,水热裂解反应条件对稠油性质的影响,包括稠油粘度、分子量、气体产量、烃分布和四组分含量等性质随反应温度和反应时间的变化特征。研究结果表明,稠油粘度和分子量随着反应温度的提高和反应时间的延长而减小,实现了稠油轻质化;储层矿物和催化剂的存在促进了稠油水热裂解反应,提高了稠油改质程度。不同储层矿物对稠油水热裂解反应的催化作用存在差异。
    (4)分析总结了注蒸汽热采条件下储层矿物的转化规律,建立了储层矿物变化的定量计算方法分析总结了注蒸汽热采条件下常见储层矿物的一般变化规律;根据辽河油田热采资料,确定注蒸汽后粘土矿物含量在平面上发生了变化,变化规律与温度密切相关;建立了一种根据注入水、吐出水的化学成分,利用质量作用定律及质量守恒定律,计算储层矿物溶解/沉淀量的定量方法。
    (5)建立了有、无储层矿物存在时的稠油水热裂解反应集总动力学模型分别建立了有、无储层矿物存在时的稠油水热裂解反应动力学模型。对于无储层矿物存在时的稠
With the increase of the global economy, the oil and gas demanding is also increasing. The decrease in the exploitation and production of the conventional oil indicates that the exploration of heavy oil becomes crucial in the nation’s energy strategy.
    The remarkable characteristic of heavy oil reservoir is that the oil has high viscosity, high density and low mobility. This characteristic makes it difficult to produce the heavy oil economically efficient using conventional techniques. The primer production method currently using in the industry is steam injection. The effect steam injection is reinforced by a mechanism called aquathermolysis, which is a reaction happened between steam and heavy oil at high temperature in the subsurface porous media. This mechanism improves the quality of heavy oil in-situ, and decrease the viscosity of the heavy oil permanently. The production of the heavy oil using the mechanism of aquathermolysis reaction is a latest technique and it has a broad future so far. Hardly any paper is published on the study of aquathermolysis of heavy oil mechanism.
    Therefore, the mechanism and kinetics of aquathermolysis reaction are intensely studied in this paper. The study was accomplished using methods of theoretic analysis, laboratory experiment and numerical computation. The study results were applied to heavy oil production in the industry. The production results indicate that the oil recovery was improved and the quality of heavy oil was improved dramatically.
    The Main contents and innovations of this study include the following:
    (1) The mechanism of aquathermolysis reaction during steam injection process
    The transforms of heavy oil during heat-degradation include collateral reactions of cracking and polymerization. In heavy oil’s structure, the bridge-bonds that consisted of heteroatoms are weak; thus these bonds are easily to be broken under steam injection condition. This break of bridge-bonds can stimulate a series of favorable reactions, which is very important in aquathermolysis reaction. The active hydrogen induced by aquathermolysis reaction can capture free structure and hydrocarbon fragment, which helps to prevent the interlinkage of reactant chain. As a result, the viscosity of the heavy oil is irreversibly reduced. The aquathermolysis reaction follows the acid-alkali catalysis route when high temperature steams present. The present of formation mineral and metal ions can also catalyze the reaction.
    (2) Equilibrium compositions of model compounds for the aquathermolysis reaction of heavy oil
    Thiophene and tetrahydrothiophene were used as model compounds for the aquathermolysis reaction of heavy oil. Based on the equilibrium composition calculation, the effects of temperature, pressure and feed ratio on equilibrium were analyzed. The results show that the reaction lacks water when the ratio of water/tetrahydrothiophene is less than 3 and that of water/thiophene is less than 4. In addition, high temperature and low-pressure conditions during aquathermolysis reactions help to produce plenty of gaseous products. However, these conditions are unfavorable in desulfurization of the oil. The results also show that the water is enough for the reaction when the ratio of water/tetrahydrothiophene is more than 3 and that of water/thiophene is more than 4. For these ratios, the equilibrium reaction is affected slightly by the temperature,
    pressure and feed ratio. (3) The effects of reaction conditions on aquathermolysis reaction of heavy oil Base on the results of indoor experiments, the effects of reaction conditions (temperature and time) on the quality of heavy oil are analyzed with and without the presence of the formation mineral and the catalyst. The effect objects include viscosity, molecular weight, gas yield, the distribution of hydrocarbon and four compositions. The results indicate that viscosity and molecular weight of heavy oil decrease with time and the increasing of temperature. Meanwhile, heavy oil is significantly lightened. Besides, the presences of mineral and metal ions catalyze the aquathermolysis reaction and improve the quality of heavy oil; different minerals have different catalysis effects. (4) The transform rule and quantitative calculation of mineral The transform rule of mineral during steam injection is summed up. The contents of mineral change in plane with temperature nearly. A quantitative method of calculating the amount of mineral varieties is developed on the basis of quality action and conversation law using the injected and produced water data. (5) The development of two different lumping kinetic models for the aquathermolysis reaction of heavy oil to the different existent conditions of mineral. Two different lump kinetic models are developed for the aquathermolysis reaction of heavy oil with and without mineral present. When the formation mineral is absent, it is appropriate to employ the four-lump model of gas, C5-C15, C16-C30 and C31+. On the other hand, when the formation mineral is present, it is better to employ the five-lump model of gas, saturate, aromatic, resin and asphaltene. (6) The calculation of parameters in kinetics models using a direct method and the establishment of the model. A direct method was developed by combine the methods of Runge-Kutta, Monte-Carlo and complex method. This method was used to calculate the parameters in kinetic models. The calculation results show that that the presence of the formation mineral and metal ions reduces the active energies in the cracking of heavy compositions. This energy reduction helps to produce more light oil component products aquathermolysis reaction. Moreover, the experimental data and the model prediction are consistent. This suggests that the lump model explains well the reaction mechanism of aquathermolysis of heavy oils at the absence of formation minerals. (7) Practical applications of laboratory research for oil recovery in Liaohe Oil Field. The research results were applied to seven heavy oil wells in different districts of Liaohe oil field from 2003 to 2004. The production history showed that the cumulative oil recovered during the production period increased 2661.8 tons; on average, each well increases oil recovery of 380.3 tons. The ratio of cost to benefit is 1:3.6. It was observed that the viscosities of heavy oils reduced dramatically after recovered. In recovered heavy oil, the amount of saturate and aromatic components increased; meanwhile, the amount of resin and asphaltene components decreased. This indicates that our improvement in aquathermolysis reactions significantly enhances the qualities and reduces the viscosity of heavy oils. Furthermore, the improvement in aquathermolysis reactions reservoir facilitate the recovery of heavy oil reservoir economically more efficient.
引文
1. 顿铁军.中国石油勘探发展趋向及展望-兼论稠油油藏.西安工程学院学报,1998,20(增):3-5
    2. 于连东.世界稠油资源的分布及其开采技术的现状与展望.特种油气藏,2001,8(2):98-103
    3. 关德师,牛嘉玉,郭丽娜等.中国非常规油气地质.北京:石油工业出版社,1995
    4. 张锐.稠油热采技术.北京:石油工业出版社,1994 年4 月
    5. 阳鑫军.稠油开采技术.海洋石油,2003,23(2):55-60
    6. 崔波,石文平,戴树高,李旭云.高粘度稠油开采方法的现状与研究进展.石油化工技术经济,2000,6:5-10
    7. 刘玉江,孙殿雨,曹铮.超稠油油藏开发新工艺研究.石油化工技术经济,2000,16(2):25-27
    8. 张锐,薄启亮,刘尚奇等.稠油开采前沿技术.世界石油工业,1998,5(9):29-35
    9. 王仲茂,王怀彬,胡之力.高新采油技术.北京:石油工业出版社,1998 年9 月
    10. 胡常忠.稠油开采技术.北京:石油工业出版社,1998 年6 月
    11. 吴淑红译,唐养吾校.21 世纪重油和沥青的开采方法.世界石油工业,1998,5(9):42-47
    12. 刘文章.稠油注蒸汽热采工程.北京:石油工业出版社,1997 年7 月
    13. 常毓文,张毅,胡用久.稠油热采技术新进展.北京:石油工业出版社,1997 年12 月
    14. H.K.巴伊巴科夫,A.P.加鲁舍夫.热采法在油田开发中的应用.北京:石油工业出版社,1992 年1月
    15. 牛宝荣.21 世纪重油和沥青的开采方法.国外油田工程,2000,3:1-5
    16. 刘文章.中国稠油热采现状及发展前景.世界石油工业,1998,5(9):36-41
    17. 赵伟.蒸汽驱的工程技术新进展.国外油田工程,2001,1:1-6
    18. 何艳青.蒸汽驱技术进展.世界石油工业,2000,7(7):44-47
    19. K.C.Hong 著,赵炜译.蒸汽驱的工程技术新进展.国外油田工程,2001,1:1-6
    20. Ted Cyr.Steam-assisted gravity drainage heavy oil recovery process.US.Patent6257344B1, July, 10, 2001
    21. Malcolm Greaves, Abdul,el-saghr, Tian Xiang Xia.Capri horizontal well reactor for catalytic upgrading of heavy oil.Preprints, 2000, 45(4): 595-598
    22. Henderson, J.H., Weber, L.Physical upgrading of heavy oils by the application of heat.JCPT, 1965, 4:206-212
    23. 杨俊茹.国外稠油开发技术新进展.中国海上油气,2004:62
    24. 汪国文,孟巍.蒸汽与天然气驱(SAGP).特种油气藏,2000,7(2):48-49
    25. 窦宏恩.稠油热采应用SAGD 技术的探讨.石油科技论坛,2003,8:50-53
    26. Roger Butler 著,张荣斌,陈勇译.日臻完善的SAGD 采油技术.国外油田工程,1999,11:15-17
    27. 关文龙,田利,郑南方.水平裂缝-蒸汽辅助重力泄油物理模拟试验研究.石油大学学报(自然科学版),2003,27(3):50-54
    28. A.K.Singhal,S.K.Das 著.王忠,马玉春编译.SAGD 和VAPEX 方法的油藏筛选.国外油田工程,1998,3:12-16
    29. 胡常忠.稠油开采技术.北京:石油工业出版社,1998.34
    30. 刘玉江,孙殿雨,曹铮.超稠油油藏开发新工艺研究.石油化工技术经济,2000,16(2):25-27
    31. 邵先杰,凌建军,马玉霞,崔连训,杜刚.水平压裂辅助蒸汽驱影响因素分析.特种油气藏,2003,10(6):50-54
    32. Stang H R and Soni Y.The saner ranch pilor fracture-assisted steamflooding,SPE10707
    33. Lau E C and Kisman K E.Attractive control features of the combustion override split-production horizontal well process in heavy oil reservoir.The 45th Annual Technical Meeting of the petroleum Society of CIMIN Calgary, Canada, June, 1994:67-94
    34. 稠油热采技术论文集,北京:石油工业出版社,1993:32-35
    35. 刘尚奇,包连纯,马德胜.辽河油田超稠油油藏开采方式研究.石油勘探与开发,1999,26(4):80-81
    36. Ferguson,M.A.Mamora,D.D.Goite,J.G.Steam-propane injection for production enhancement of heavy morichal oil.SPE69689, 2001, 3:12-14,Venezuela
    37. P.Arora A.R.Kocscek.Mechanistic modeling of solution gas drive in viscous oils.SPE69717,2001, 3:12-14,Venezuela
    38. 徐家业,张正群,吴复雷等.稠油热采添加剂现场蒸汽吞吐试验.西安石油学院学报,1998,18(6):25-27
    39. 尚思贤,赵芳茹,徐多悟等.克拉玛依浅油层稠油油藏化学降粘辅助吞吐技术的应用.石油钻采工艺,2001,23(2):66-68
    40. 杨德远.稠油注蒸汽热采中添加化学剂技术.特种油气藏,1999,6(1):41-46
    41. 张付生.原油降凝降粘剂在石油开采和集输中的应用.精细石油化工,1999,6:28-324
    42. 范维玉.GL 系列特稠油乳化降粘剂及其O/W 型乳状液流变性研究.石油大学学报(自然科学版),1998,22(2):48-50
    43. 杨德远,张奎祥.KW-1 高温驱油助剂应用研究.油气采收率技术,1995,2(2)
    44. 赵庆辉,刘其成,刘志惠.超稠油耐高温乳化降粘剂优选实验研究.特种油气藏,2001,8(3)
    45. 宫兆波,乔琦.CHY 稠油热采添加剂的应用研究.特种油气藏,2002,9(1)
    46. 金配强.在垂直井中进行表面活性剂碱蒸汽驱的试验研究.国外油田工程,2001,17(10)
    47. 宋向华,蒲春生,肖曾利,时宇.稠油热/化学采油技术概述.特种油气藏,2004,11(1):1-4
    48. 王新征.稠油热力——化学法复合采油技术数值模拟研究.石油钻探技术,2004,32(4):60-62
    49. 周凤山,吴瑾光.稠油化学降粘技术研究进展.油田化学,2001,18(3):268-272
    50. 施成耀,梁磊,薛如清.重质原油采油工艺的设想——原油改质热注采.石油勘探与开发,1997,24(1):77-79
    51. 王弥康,林日亿.一种开采深层特超稠油的潜在方法.油气地质与采收率,2001,8(2):67-69
    52. S.Thomas 著,徐雅莉,邸秀莲编译.稠油开采的化学方法.特种油气藏,2003,10(2):94-97
    53. Dennis C.Wegener.Heavy oil viscosity reduction and production.US.Patent,6305472,Oct.23,2001
    54. Vallejos.Process for downhole upgrading of extra heavy crude oil.Usp5891829,1999
    55. V.N.Wenkatesan.Alteration in heavy oil characteristics during thermal recovery.JCPT.1986,2(4):66-71
    56. Gregoli . Upgrading and recovery of heavy oils and natural bitumens by in situ hydrovisbreaking.US.patent, 6016867, 2000, 1, 25
    57. Glen Brons.Upgrading of heavy oil with aqueous base treatments.Preprints, 2001, 46(2):66-68
    58. John Ivory, Mario De Rocco, Norman Paradis.Investigation of the mechanisms involved in the steam-air injection process.JCPT, 1992, 31(2): 41-47
    59. Vallejos.Process for downhole upgrading of extra heavy crude oil.US.Patent 5891829.1999,April 6
    60. Irwin A Wiehe.Partial upgrading of heavy crude oil.Preprints, 2001, 46(2): 60-63
    61. J.G.Weissman.Down-hole catalytic upgrading of heavy crude oil.Energy & Fuels.10(2): 883-889
    62. H.M.Chishti,P.T.Wiliams . Aromatic and hetero-aromatic compositional changes during catalytic hydrotreatment of shale oil.Fuel.1999,78(4): 1085-1815
    63. M.R. Fassihi, K.O.Meyers, K.R. Weisbrod . Thermal alteration of viscous crude oils.SPE14225,22-25,Sept,1985
    64. Richard.P.Dutta, William C. Mc. Caffrey, Murray R.Gray.Thermal cracking of athabasca bitumen: influence of steam on reaction chemistry.Engergy&Fuels.2000, 14(2):671-676
    65. W.R.Shu,K.J.Hartman.Thermal visbreaking of heavy oil during steam recovery processes.SPE Reservoir engineering .Sept, 1996: 472-482
    66. Tine.In-situ conversion of hydrocarbonaceous oil.US.Patent,4448251.May 15,1984
    67. Glen Brons, Michael Siskin.Bitumen chemical changes during aquathermolytic treatments of cold lake tar sands.Fuel, 1994, 73(6): 183-191
    68. J.G. Speight.石油沥青质的热解化学.石油学报(石油加工),1990,6(1):29-35
    69. Gray R.Greaser.J.Raul Ortiz.New thermal recovery technology and technology transfer for successful heavy oil development.SPE69731, 12-14, March 2001,Venezuela
    70. C. Ozgen Karacan, Ender Okandan.Change of physical and thermal decomposition properties of in-situ heavy oil with steam temperature.Petroleum science and technology.1997, 15 (5&6):429-443
    71. Rafael E.Campos,Joes A.Hernandez.In-situ reduction of oil viscosity during steam injection process in EOR.US.Patent,5314615.May 24,1994
    72. J.M.Jacobson, M.R.Gray﹒Structural group changes in thermally recovered bitumen﹒Fuel, 1987(66), June
    73. W.R.Shu, K.J.Hartman.Thermal visbreaking of heavy oil during steam recovery processes.SPE reservoir Engineering, 1986 September: 474-482
    74. W.C.Richardson, M.F.Fonaine, Stewart Haynes.Compositional changes in distilled,Steam-distilled and steamflooded crude oils.SPE24033
    75. R.George s.Ritchis, Rodney s.Roche, William Steedman.Pyrolysis of Athabasca tar sands:analysis of the condensible products from asphaltene.FUEL, 1979, 58(July):523-530
    76. Maria T.Martinez, Ana M.Benito, Maria A.Calljas.Thermal cracking of coal residues:kinetics of asphaltene decomposition.FUEL, 1997, 76(9): 871-876
    77. Ingrid Higuerey, Pedro Pereira, Vladimir Leon.Comparative study of compositional changes between thermal cracking and aquaconversion process.Symposium on crude oil upgrading from reservoir to refinery presented before the Division of petroleum chemistry, Inc. 221st national meeting, Americal chemical society San Diego, CA, April 1-5,2001:64-65
    78. Clark P D,Hyne J B.Studies on the chemical reactions of heavy oils under steam stimulation condition.AOSTRA Journal of Research,1990,29(6):29-39
    79. Kenneth A. Gould.Influence of thermalprocessing on the properties of cold lake asphaltene.Fuel, 1983, 62(2): 370-372
    80. Hyne J B, Greidanus J.W.Aquathermolysis of heavy oil.Proc. 2nd int. Conf.On heavy crude and tar sands.Caracas, Venezuela, 1982
    81. Clark P. D, Hyne J. B.Steam-Oil chemical reactions: mechanisms for the aquathermolysis of heavy oil.AOSTRA Journal of research, 1984 (1): 15-20
    82. O.P.Strausz﹒Bitumen and heavy oil chemistry﹒AOSTRA Technical handbook, in Press
    83. H.H.Chen, J.D.Payzant, Z.Frakman and O.P.Strausz﹒Fifth progress report to AOSTRA, Project #146D﹒Chemical changes taking place in Oil sand bitumen during aquathermolysis conditions﹒1987,July 01-1987,December 31
    84. Monin, J. C. Audlbert.Thermal cracking of heavy-oil/mineral matrix system.SPE reservoir engineering, November, 1988:1243-1250
    85. C.ozgen Karacan and Ender Dkandan.1997
    86. Richard P. Dutta, William C. McCaffrey, and Murray R. Gray.Thermal cracking of Athabasca bitumen: influence of steam on reaction chemistry,2000
    87. 姜嘉陵,施晓乐,房惠春.单家寺热采原油性质的研究.稠油热采技术论文集,北京:石油工业出版社,1993:32-35
    88. 范洪富,刘永建,赵晓非.稠油在水蒸汽作用下组成变化研究.燃料化学学报,2001,29(3):269-272.
    89. 刘永建,钟立国,范洪富,刘喜林.稠油的水热裂解反应及其降粘机理.大庆石油学院学报,2002, 26(3): 95-98.
    90. 刘永建,钟立国,范洪富,赵晓非,胡绍彬.辽河油田超稠油水热裂解采油现场试验.大庆石油学院学报,2002,26(3):99-101
    91. 范洪富,刘永建,赵晓非.井下降粘开采稠油技术研究.石油与天然气化工,2001,30(1):39-40
    92. 刘永建,范洪富,钟立国,刘喜林,孙守国.水热裂解开采稠油新技术初探.大庆石油学院学报,2001,25(3):56-59
    93. J.D.M. Belgrave, R.G. Moore, M.G. Ursenbach﹒Comprehensive kinetic models for the aquathermolysis of heavy oils﹒The Journal of Canadian Petroleum Technic﹒1997, 36(4): 38-44
    94. J.D.M.Belgrave, R.G.Moore and M.G.ursenbach.Gas Evolution from the aquathermolysis of heavy oils.The Canadian Journal of chemical engineering.1994, (72), June: 511-516
    95. Hamid Pahlavan,Islam Rafiqul.Laboratory simulation of geochemical changes heavy curde oils during thermal recovery.Petroleum science & engineering.1995,12:219-231
    96. 希洛夫A E著,徐吉庆译.过渡金属络合物对饱和烃的活化.北京:科学出版社,1988:53-69
    97. O.R.Rivas, R.E.campos, L.G.Borges, Intevep S.A.Experimental evaluation metals salt solutions as additives in steam recovery processes.SPE18076: 1-5
    98. Peter D.Clark, Robert A.Clarke, James B.Hyne, Kevin L.Lesage.Studies on the effect of metal species on oil sands undergoing steam treatments.AOSTRA Journal of Research, 6(1990): 53-64
    99. Glen Brons, Michael Siskin.Bitumen chemical changes during aquathermolytic treatments of cold Lake tar sands.Fuel, 1994, 73(2): 183-190
    100. Glen Brons.Upgrading of heavy oil with aqueous base treatments.Symposium on crude oil upgrading from reservoir to refinery presented before the division of petroleum chemistry, Inc.221st National meeting, American Chemical Society, San Diego, CA, April 1-5,2001:66-68
    101. 范洪富,刘永建,赵晓非.金属盐对辽河稠油水热裂解反应影响研究.燃料化学学报,2001,29(5):430-433.
    102. 范洪富,刘永建,钟立国.油层矿物对蒸汽作用下稠油组成与粘度变化的影响.油田化学,2001,18(4):299-301.
    103. 赵晓非,刘永建,范洪富,钟立国.稠油水热裂解可行性的研究.燃料化学学报,2002,30(4):381-384
    104. Fan Hongfu, Liu Yongjian et at. Studies the synergetic effects of mineral and steam on the composition changes of heavy oils.Energy & Fuels.2001,15(6): 1475-1479
    105. 范洪富,张翼,刘永建.蒸汽开采过程中金属盐对稠油粘度及平均分子量的影响.燃料化学学报,2003,31(5):429-433
    106. Fan hongfu, Liu Yongjian.Down hole catalyst upgrades heavy oil.oil &Gas Journal.2002, March 18
    107. 范洪富,刘永建,杨付林.地下水热催化裂化降粘开采稠油新技术研究.油田化学,2001,18(1):13-16
    108. 范洪富,刘永建,赵晓非,钟立国.国内首例井下水热裂解催化降粘开采稠油现场试验.石油钻采 工艺,2001,23(3):42-44
    109. 郭崇涛.煤化学.北京:化学工业出版社,1992 年,P61-81
    110. 虞继舜.煤化学.北京:冶金工业出版社,2000 年8 月,P120-141
    111. 梁文杰.重质油化学.山东东营:石油大学出版社,2000 年9 月
    112. L.G.Hepler, Chu Hsi 主编,梁文杰等译.AOSTRA 油砂、沥青、重质油技术手册.山东:石油大学出版社,1992 年4 月
    113. 杨光华.稠油研究论文集.山东东营:石油大学出版社,1990 年6 月
    114. 梁文杰.重质油化学.山东:石油大学出版社,2000,9
    115. 梁朝林.高硫原油加工.北京:中国石化出版社,2001 年1 月
    116. 李素梅,张爱云,王铁冠.原油极性组分的吸附与储层润湿性及研究意义.地质科技情报,1998,17(4):65-70
    117. 李红,王培荣,邓胜华,方孝林,柳常青.非烃化合物引起的润湿性的变化.石油勘探与开发,2000,27(5):69-75
    118. J.B.Hyne, AOSTRA Synopsis report No.50﹒Aquathermolyssi :A synopsis of work on the chemical reactions between water and heavy oil sands during simulated steam stimulation﹒1988,April
    119. J.D.Payzant and O.P.Strausz﹒First progress report to AOSTRA,Project #530﹒The role of sulfur in Alberta Heavy Crude Oils, as related to production, upgradin and Oxidation﹒July 01,1986 December 31,1986
    120. Clark, P.D, Hyne, J.B, Tyrer, J.D﹒Chemistry of organosulphur compound type occurring in heavy oil sands 1. High temperature hydrolysis and thermolysis of tetrahydrothiophene in relation to steam stimulation processes﹒FUEL, 1983, 62: 959-962
    121. Clark, P.D, Hyne, J.B, Tyrer, J.D﹒Chemistry of organosulphur compound type occurring in heavy oil sands 2.Influence of pH on the high temperature hydrolysis of tetrahydrothiophene and thiophene﹒FUEL, 1984, 63: 125-128
    122. 汪双清,林壬子.部分辽河稠油油藏中含氧化合物的分布.石油勘探与开发,2000,27(3):36-39
    123. 汪双清,林壬子,梅博文.辽河稠油中非烃化合物类型的初步研究.石油学报,2001,22(1):36-40
    124. 陈传平,梅博文.原油的有机水热解产生低分子量有机酸的研究.地球化学,1997,26(1):85-91
    125. 李素梅,王铁冠,张爱云.地质体中的有机氮化合物及其在油藏地球化学中的应用.地质地球化学,1999,27(1):100-107
    126. 于道永,徐海,阙国和.石油非加氢脱氮技术进展.化工进展,2001,10:32-35
    127. Michael Siskin.Aqueous organic chemistry.Fuel, 1993, 72(5): 1435-1444
    128. Patel.Catalytic process for upgrading of light hydrocarbons by treatment of heavy hydrocarbons with water.US.Patent, 4743357, May 10,1988
    129. Alan R.Kataritzky and Michael Siskin . Aquathermolysis:Reactions of organic compounds with superheated water.Acc.Chem.Res.1996, 29: 399-406
    130. Michael Siskin, Alan R.Katritzky.Reactivity of Organic compounds in hot water:Geochemical and technological implications.Science.1991, (VOL254) October 11:231-236
    131. 闻守斌,刘永建,宋玉旺,李芙蓉,刘路俊.硅钨酸对胜利油田超稠油的催化降黏作用.大庆石油学院学报,2004,28(1):25-27
    132. Clark, P.D, Hyne, J.B, Tyrer, J.D﹒Chemistry of organosulphur compound type occurring in heavy oil sands3. Reaction of thiophene and tetrahydrothiophene with vanadyl and nickel salts﹒FUEL, 1984, 63 :1649-1645
    133. Clark, P.D, Hyne, J.B, Tyrer, J.D﹒Chemistry of organosulphur compound type occurring in heavy oil sands4. The high temperature reation of thiophene and tetrahydrothiophene with aqueous solutions of aluminum and first row transition-metal cations﹒FUEL, 1987, 66 :1353-1357
    134. Clark, P.D, Hyne, J.B, Tyrer, J.D﹒Chemistry of organosulphur compound type occurring in heavy oil sands 5 Reations of thiophene and tetrahydrothiophene with aqueous group VIIIB metal species at high temperature﹒FUEL, 1987, 66 :1699-1702
    135. Carlos V.Downhole Upgrading of extra-heavy crude oil using hydrogen donor and methane under steam injection condition [J] .Preprints, 2000,45(4): 591-594
    136. Cesar Ovalles, Jorge Martinis, Alfredoperez-perez et al.Physical and numerical simulation of an extra-heavy crude oil downhole upgrading process use hydrogen donors under cyclic steam injection conditions.SPE69561, 25-26, March 2001, Argentine
    137. Cesar O.Extra-heavy crude oil downhole upgrading process using hydrogen donor under steam injection conditions [J] .SPE69692, 2001
    138. 李博.辽河油田催化供氢稠油改质的实验.大庆石油学院学报,2004,28(4):24-26
    139. 雷怀彦,师育新,房玄.铝硅酸盐矿物成岩作用对形成过渡带气的影响.沉积学报,1995,13(2):22-33
    140. 李术元、郭绍辉、沈润梅.沥青质催化降解特征及动力学研究.沉积学报,2001,19(1):136-140
    141. 吴高安.反应速率常数方差最小法确定动力学方程参数.武汉化工学院学报,2002,24(2):19-22
    142. 张引沁,刘伟.一级反应速率常数测定数据处理方法选择.平原大学学报,2001,18(2):81-82
    143. 丁福臣、周志军、李兴、王中文、郑胜华.催化裂化五集总动力学模型参数估计方法.炼油设计,2001,31(4):52-55
    144. 罗雄麟、李瑞丽.复杂反应速率常数的实验估计.石油学报(石油化工),1996,12(3):61-66
    145. 刘忠文、张志新、周敬来.复杂反应体系的动力学分析.石油化工高等学校学报,1998,11(3):5-10
    146. 陈宝林.最优化理论与算法.北京:清华大学出版社,1989 年8 月
    147. 邵华开,陈仁华.计算方法.北京:石油工业出版社,1994.
    148. 邓先礼.最优化技术.重庆:重庆大学出版社,1998
    149. 顿铁军.稠油储层碎屑溶解实验及其地质意义.石油实验地质,1996,18(1):106-110
    150. 李旭.热采条件下储集岩的软化及其防治.西安工程学院学报,1999,21(增):37-38
    151. 唐清山,魏桂萍,杜德军.石英溶解对稠油储层的影响.特种油气藏,1996,3(增),28-30
    152. 张枝焕,常象春,曾溅辉.水-岩相互作用研究及其在石油地质中的应用.地质科技情报,1998,17(3):69-74
    153. 马明福,除怀民,杜立冬,祁凯.曙光油田杜212 区块大凌河组稠油储集层岩矿特征及对开采的影响.2003,30(4):95-97
    154. 唐洪明,赵敬松,陈忠,沈明道,柴利文,唐清山.蒸汽驱对储层孔隙结构和矿物组成的影响.西南石油学院学报,2000,22(2):11-14
    155. 李相远,郭平,李向良,曾流芳,赵伟,崔维春.疏松砂岩稠油油藏热采储层伤害研究.油气采收率技术,7(1):57-61
    156. 蒋祖国,王义才,韩润静,黄天雪,危国亮,秦恩鹏.注水中伊/蒙间层矿物对吐哈油田油层伤害的室内研究.新疆石油地质,2000,21(4):304-306
    157. 张荣华,胡书敏,童建昌,姜璐著.开放体系矿物流体反应动力学.北京:科学工出版社,1998年6 月
    158. 郭春清,沈忠民,张林晔,徐大庆,苗德玉,陆现彩.砂岩储层中有机酸对主要矿物的溶蚀作用及机理研究综述.地质地球化学,2003,31(3):53-57
    159. 文冬光,沈照理,钟佐火著.水-岩相互作用的地球化学模拟理论及应用.武汉:中国地质大学出 版社,1998 年12 月
    160. 梅博文主译.储层地球化学.西安:西北大学出版社,1992 年2 月
    161. 刘其成,郭彦臣,刘志惠.辽河油区稠油热采中储层变化实验研究.特种油气藏,1999,6(3):54-58
    162. 于兰兄,杨延东,汪宝华.辽河油区砂岩稠油油藏蒸汽吞吐开采中储层变化的实验研究.特种油气藏,1999,6(1):52-57
    163. 邓三鸿,徐士进,王汝成,刘俊诚,金莹.热采条件下砂岩储层矿物转化的实验研究,2000,6(2):315-321
    164. 杨会贤,于兰兄,李治昌.高升莲花油层热采储层变化研究.稠油热采技术新进展,北京:石油工业出版社.1997 年12 月,25-30
    165. 妙兴,韩怀,闫少武,关群丽.稠油油藏注汽前后物性变化规律研究.西部探矿工程,2004,98(7):68-71
    166. 马明福,徐怀民,杜立冬,祁凯.辽河坳陷曙光油田古近系沙河街组大凌河储层研究.古地理学报,2003,5(2):244-252
    167. 王敬玉,罗治形.注汽热采中粘土矿物成分及含量的变化规律.新疆石油地质,1995,16(1):57-72
    168. 李云峰,钱会.蒸汽吞吐稠油储层矿物溶蚀量和沉淀量的计算.油田化学,1997,14(2):143-147
    169. 李爱国.稠油热采水岩反应数学模型的应用.西安地质学院学报,1997,19(3):54-60
    170. 李云峰,钱会.稠油热采注入水对储层岩石化学破坏作用的研究,1996,13(1):40-43
    171. 钱会,李云峰.辽河曙光油田蒸汽吞吐开采过程中水岩作用的研究,西安工程学院学报,2001,23(1):33-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700