基于水压致裂法的断层防水煤柱合理留设研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国的主要能源之一。但是,随着矿井深度的不断延伸,煤炭资源的开采受水害威胁日趋严重,已经成为影响煤矿安全生产的五大灾害之一。煤矿绝大多数突水发生都与断层有着直接或间接的关系,留设断层防水煤柱是防止构造突水的重要措施。因此,研究断层防水煤柱的合理留设将是一件很有意义的课题。本文通过水压致裂原位测试方法实测了太原东山煤矿煤层的抗拉强度,为断层留设防水煤柱提供了科学依据。主要从以下几个方面做了一些研究:
     (1)比较全面地介绍了断层突水机理,“活化”是回采影响断层突水中断层成为突水通道的必要条件,而不是充分条件,断层面中的裂隙张开并连通是断层突水通道的充分条件。
     (2)总结了水压致裂的理论原理,分析了煤层水力压裂特征,通过实验室试验和工业性试验,‘水压致裂原位测试方法测煤的抗拉强度是可行的。
     (3)研究了太原东山煤矿所处的构造部位,得出断层是该矿井的突水主要通道。采取针对性措施主要有注浆改造、探放水和留设防水煤柱,其中应用较多的是留设防水煤柱方法。
     (4)利用水压致裂原位测试方法分别实测了太原东山煤矿71505工作面、51519工作面和750南皮带运输大巷并获得煤层抗拉的强度参数。
     (5)应用所测煤层抗拉强度0.63MPa,并综合考虑矿山压力、构造应力和水压力对断层防水煤柱影,确定太原东山煤矿防水煤柱尺寸,该参数使得防水煤柱宽度大为缩小,明显增加了煤矿的可开采储量,具有很大的应用前景。
     (6)利用ANSYS程序结构建立了二维数值模拟模型,分别对随着断层上下盘进行工作面的开挖,巷道开采过程引起断层附近应力、应变的活动规律进行模拟,进一步验证了上盘比下盘开挖更容易使断层发生活化其准确性,为今后确定断层防水煤柱有着重要的价值。
     实践证明,水压致裂方法原位测试获得煤层的强度参数符合实际,设备简单,测值直观,具有代表性,适用性强,测试周期短等优点,该方法在矿井水害方面有广阔的发展前景和应用范围,对断层防水煤柱科学留设具有很大的意义。
The coal is one of our country's main energie, however, as the depth of mine is increasing continuall, the water disaster are threatening Coal Resources more seriousl, and the water disaster has became a serious problem which influence coal mine safety production. The most coal mining water inrush have relationship with fault, leaving fault waterproof pillar is the important measure of preventing water-burst. So, the study of leaving fault waterproof pillar is significative. In this paper, the tensile strength of coal seam of Dong Shan coal mine was measured with the method of hydro-fracturing, it provides scientific basis for the leaving fault waterproof pillar. The main endeavor and contributions of the dissertation are as follows:
     (1)、This paper describes mechanism of water-inrush through fault,"activation" is the necessary conditions for fault when it became water inrush channel, but no sufficient condition. Fault crack opening and connected is the sufficient condition for fault when it became water inrush channel.
     (2)、This paper summarizes mechanism of the method of hydro-fracturing and analysis characteristics of the hydraulic fracturing of coal seam, through the laboratory test and, it is reasonable that the tensile strength of coal seam was measured with the method of hydro-fracturing.
     (3)、This paper study tectonic position of Dong Shan coal mine, it is obtained that fault is the main channel of water inrush. Some measures was implemented,such as, Grouting transform technique、surveying water technique and leaving waterproof pilla, and the technique of leaving waterproof pillar has been more applied.
     (4)、The tensile strength of coal seam which in the71505face、the51519face and750conveyance road of Dong Shan coal mine was measured with the method of hydro-fracturing.
     (5)、In this paper, based on comprehensive consideration of the influence of tensile strength of coal seam、ground pressure、tectonic stress and water pressure on waterproof pillar, the dimensions of waterproof pillar was determined. The parameter reduced the width of waterproof pillar, recoverable reserves of coal was increased significantly. It has wide application prospect.
     (6)、Two-dimensional numerical model was established by means of ANSYS, in the process of excavating of hanging wall and footwall of the fault, the stress--strain laws in the fault nearby was simulated, it was further verified that excavating of hanging wall was more to activate the fault than footwall. it has important values for determining the dimensions of waterproof pillar of fault.
     Practice proves that strength parameter of coal layer obtained by methods of normal position of hydro-fracturing conforms to reality, the equipment is simple, measurement data is direct and is typical, so it has strong usability, the measurement period is short, this method has broad development perspective and application scope in aspect of water disaster in coal mine, it has important meanings to scientifically set water-proof pillar of fault.
引文
[1]赵阳升,胡耀青.承压水上采煤理论与技术[M].北京:煤炭工业出版社,2004.
    [2]施龙青.底板突水机理及预测预报[M].徐州:中国矿业大学出版社,2004(6).
    [3]杨善安.采场底板断层突水及其防治方法[J].煤炭学报,1994,19(6):620-625.
    [4]周瑞光,成彬芳,叶贵钧.断层破碎带突水的时效特性研究[J].工程地质学报,2000,8(4):412~415.
    [5]韩爱民,白玉华,孙家齐.断层突水性工程地质评价[J].南京建筑工程学院学报,2002,21~25.
    [6]Yang. Shanan. Prevention and control of water inrush from faults infloorroeks In the workings[J]. International Journal of Rock Mechanics and Mining Seienees & Geomeehanies Abstraets,1995,32(4):193A.
    [7]王经明,董书宁.采矿对断层的扰动及水文地质效应[J].煤炭学报,1997(4):361.
    [8]营志杰.煤层渗透性变化规律在防水煤柱上的应用[J].江苏煤炭,1998,1:31-32.
    [9]白峰青,姜兴阁,蒋勤明.断层防水煤柱设计的可靠度方法[J].辽宁工程技术大学学报,2000,19(4):356~359.
    [10]施龙青,曲有刚,徐望国.采场底板断层突水判别方法[J].矿上压力与顶板管理,2000,2:49-52.
    [11]Shi, L.&Singh, R. N. Study of mine water inrush from floor strata through faults[J]. Mine water and the Environment,2001,20(3):140-147.
    [12]邱秀梅,王连国.断层采动型突水自组织临界特性研究[J].山东科技大学学报(自然科学版),2003,21(1):59~61.
    [13]刘志军,胡耀青.承压水上采煤断层突水的固流耦合研究[J].煤炭学报,2007(10):1046~1048.
    [14]杨映涛,李抗抗.用物理相似模拟技术研究煤层底板突水机理[J].煤田地质与勘探,1997,25(增刊):33~36.
    [15]杨新安,程军.峰峰矿区矿井突水分类及发生机理研究[J].地质灾害与环境保护,1999,10(2):24~36.
    [16]武强,刘金韬,钟亚平.开滦赵各庄矿断裂滞后突水数值仿真模拟[J].煤炭学报,2002,27(5):511~516.
    [17]靳德武.我国煤层底板突水问题的研究现状及展望[J],煤炭科学技术,2002,30(6):1~4.
    [18]B.H.G.布雷斯,E.T.布朗,冯树仁等译.地下采矿岩石力学[M].北京:煤炭工业出版社,1990.6.
    [19]白峰青,姜兴阁,蒋勤明.断层防水煤柱设计的可靠度方法[J].辽宁工程技术大学学报,2000.19(4):356~359.
    [20]施龙青,韩进.采场底板断层防水煤柱留设研究[J].岩石力学与工程学报,2005,24(增2):5586~5590.
    [21]杜文堂.断层防水煤柱可靠度分析[J].煤田地质与勘探,2001,29(1):34~36.
    [22]郑少河,朱维申.承压水上采煤的固流祸合问题研究[J].岩石力学与工程学报,2000,19(4):421~424.
    [23]周钢,李世平.微山湖下断层煤柱留设与开采技术的模拟试验[J].煤炭科学技术,1997,25(5):13~16.
    [24][Gidley J. L., Holditch S. A., Ni erode D. E. etal. Recent advances in hydraulic fracture[J]. Society Petroleum Engineering Monograph,1989:452.
    [25]Murdoch L. C.,Slack W. W. Forms of hydraulic fractures in shallow fine-grained formations[J]. Journal of Geotechnical and Geoenvironment Engineering,2002,128(6): 479-487.
    [26]Wong. H. Y., Farmer. I. W. Hydro-fracture mechanisms in rock during pressure grouting[J]. Rock Mechanics,1973,5:21~41.
    [27]Murdoch L. C. Forms of hydraulic fractures created during a filed test in fine grained glacial draft[J]. Journal of Engineering Geology,1995,28:23-35.
    [28]D. Kenneth. Mahler. A review and perspective on far-field hydraulic fracture geometry studies[J]. Journal of Petroleum Science and Engineering,1999,24:13.
    [29]邓广哲,黄炳香,石增武,等.节理脆性煤层水力致裂技术与应用[A].见:中国岩石力学与工程学会.中国岩石力学与工程学会第七次学术大会论文集[C].北京:科学技术出版社,2002,636~638.
    [30]柳贡慧,庞飞,陈治喜.水力压裂模拟实验中的相似准则[J].石油大学学报(自然科学版),2000,24(5):45~48.
    [31]陈勉,庞飞,金衍.大尺寸真三轴水力压裂模拟与分析[J].岩石力学与工程学报,2000,19(增):868~872.
    [32]王国庆,谢兴华,速宝玉.岩体水力劈裂试验研究[J].采矿与安全工程学报,2006,23(4):480~484.
    [33]靳钟铭,弓培林.煤体压裂特性研究[J].岩石力学与工程报,2002,21(1):70-72.
    [34]靳钟铭,赵阳升.含瓦斯煤层力学特性的实验研究[J].岩石力学与工程学报,1991,10(3):271~280.
    [35]张渊.带压开采底板突水破坏规律与突变模型研究[D].太原:太原理工大学,2002.
    [36]邓虎,田建良,唐骏.承压水上开采防水煤柱临界宽度研究[J].能源技术与管理2010(6):8~10.
    [37]胡春岭.里彦矿灰岩水对下组煤安全开采影响的研究[D].山东科技大学,2005.
    [38]胡茂流.朱庄煤矿六煤层底板突水防治技术的研究[D].安徽理工大学,2005.
    [39]刘荣茂.水压致裂强度测试法在断层防水煤柱合理留设中的应用[J].煤炭工程2010(12):6~8.
    [40]尹尚先.承压含水层上采煤突水危险性评估研究[J].中国矿业大学学报2008(3):311~313.
    [41]张国华.本煤层水力压裂致裂机理及裂隙发展过程研究[D].阜新:辽宁工程技术大学,2001.
    [42]陈绍杰,郭惟嘉.基于室内试验的条带煤柱稳定性研究[J].岩土力学2008(10):2080~2081.
    [43]胡祖祥.高瓦斯煤层掘进工作面水力压挤技术研究[D].安徽理工大学,2006.
    [44]刘洋,伍永平.断层上盘防水煤柱合理宽度研究[J].西安科技大学学报,2010(5):523~528.
    [45]桑红星.帷幕截流技术在大水矿井治水中的应用[D].山东科技大学,2005.
    [46]毛飞.帷幕截流技术在大水矿井治水中的应用[D].西南科技大学,2007.
    [47]于喜东.地质构造与煤层底板突水[J].煤炭工程,2004(12):34~35.
    [48]汪华君等.断层防水煤柱开采回收技术研究[J].山东煤炭科技,2002(6):49~50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700