用户名: 密码: 验证码:
低渗透油层水力压裂三维裂缝数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大庆外围油田葡萄花和扶杨油层属于低渗透油层,自然产能低,压裂工艺是最有效提高单井产量的措施,也是增加储量的关键技术,但是,由于低渗透油层的构造和岩性复杂,传统压裂设计方法不适合施工的要求,使裂缝起裂和延伸不易预测与控制,改造强度低,效果差,措施成功率低。为此本文运用损伤力学和断裂力学方法深入研究大庆外围油田低渗透油层水力压裂裂缝的起裂机理与延伸规律,对大庆外围油田的有效开发具有重要意义和实用价值。
     进行压裂设计必须要考虑油藏储层地质特征及岩石力学性能,文中以敖南油田葡萄花油层为例系统研究了储层的沉积、构造及岩性等特征,进行了力学性能参数及地应力场的测定,它为三维水力压裂数值模拟奠定了基础。
     本文弥补了不考虑流固耦合效应以及岩石材料非线性影响的研究缺陷,根据岩石力学、渗流力学、弹塑性力学,建立了低渗透油层射孔地应力力学模型,采用有限元方法,考虑动态效应下,获得了低渗透油层在钻井-固井-射孔-压裂不同阶段的地应力分布状态。通过实际井验证,起裂压力误差率为3.5%,证明了模型较为合理。在此基础上,分析了射孔参数以及射孔眼的污染程度对起裂压力及起裂位置的影响,提出了较为合理的射孔方案,为提高低渗透储层水力压裂效果提供了前期保障。
     水力压裂过程具有惯性和速度、岩体破坏与发展、流体和固体耦合等特征,是材料非线性、几何非线性与结构动力学的耦合问题,本文通过力学分析,在考虑流固耦合效应、岩石的材料非线性效应以及裂缝扩展的动态效应基础上,建立了低渗透油层水力压裂三维裂缝动态扩展的力学模型,根据岩石力学、渗流力学及有限元理论,建立了低渗透岩体应力平衡方程,及考虑非达西渗流条件下的流体渗流平衡方程,并获得了流固耦合方程的有限元格式。在储层岩石预设定裂缝表面采用损伤力学理论与断裂力学理论相结合的方法建立了岩石材料的损伤判据及破坏后裂缝的演化方程,并嵌入到岩体的流固耦合方程中,运用Newton-Raphson法、载荷增量法以及线性搜索法进行求解,实现了低渗透油层三维裂缝形成过程的动态描述。为了检验低渗透油层三维水力裂缝数值模拟方法及理论的正确性,对肇38-271井进行了模拟计算,裂缝形态的平均误差率为10.7%,满足工程精度要求,证明了模拟方法的正确性。
     利用低渗透油层水力压裂的三维裂缝的数值模拟方法定性研究了岩石的力学性能、射孔参数、施工参数、压裂液粘度及滤失系数等因素对裂缝扩展形态的影响,为制定低渗透油层水力压裂施工工艺提供了依据。
     隔层是低渗透油层中控制裂缝高度以及影响裂缝形态的主要参数,它也是制定水力压裂措施的主要依据,为此,利用低渗透油层水力压裂的三维裂缝的数值模拟方法重点分析了隔层与储层地应力差、弹性模量差以及隔层厚度对裂缝扩展的影响,为低渗透油层中隔层的封隔效果进行了定性的理论指导,以有效的提高油层的动用程度及压裂效果。
     随着我国低渗透油气田的大量开发,具有一套能适用于现场实际使用的三维水力裂缝几何形态的预测软件是非常需要和迫切的,本文采用有限元方法建立的低渗透油层水力压裂的三维裂缝动态扩展的数值模拟方法和技术,为低渗透薄差储层水力压裂设计提供较为可靠和准确的预测手段,提高了低渗透油层水力压裂措施的成功率。因此,此项技术具有重要的意义和广阔的应用前景。
Putaohua formations and Fuyang formations of Daqing peripheral oilfields are a low-permeability reservoir, naturally low productivity. Hydraulic fracturing technology is potential to increasing per-well production and can increase oil reserves. However, because of the complex lithology and structure of the low-permeability reservoir, the traditional fracturing design method is't suitable for construction requirements, and is difficult to predict and control the fracture. Further the poor effect and success low. Fracture breakdown mechanism and extension law of Daqing peripheral low-permeability reservoir is researched using damage mechanics and fracture mechanics, which is of great significance and benefit for the development of Daqing peripheral oilfields.
     Reservoir geological features and rock mechanical properties have to be taken into consideration in the process of fracturing design. In this paper, sedimentary, structure, lithology and reservoir characteristics of Putaohua reservoir in Aonan oilfield are researched, and the mechanical properties parameters and determination of geostress field are tested which is basis for three-dimensional hydraulic fracturing numerical simulation.
     The perforation geostress mechanical model of low permeability reservoir is built according to the rock mechanics, seepage mechanics, elastic-plastic mechanics, considering solid-fluid coupling and rock material nonlinearity. Adopting the transient analysis, low-permeability reservoir geostress distribution of different stages is obtained using the finite element, such as drilling - cementing - perforation -fracturing. By Calculating the actual well, the error rate of breakdown pressure between test and calculation is 3.5 percent. It is proved that the model is reasonable. On this basis, analyzed the perforation parameters and the perforation eye pollution effect on breakdown pressure and location. Proposing reasonable perforation scheme, provide prophase guarantee for hydraulic fracturing effect to low-permeability reservoir.
     The features of hydraulic fracturing have inertia and speed, the rock mass failure and development, fluid-solid coupling, the process is a couple problems of material non-linear, geometry non-linear and structural dynamics. Through mechanical analysis, the 3-D fracture mechanical model of low permeability reservoir is established, considering solid-fluid coupling, material non-linear, dynamic effect of fracture propagation. The stress equilibrium equations of rock masses and the fluid seepage equilibrium equations under condition of non-darcy flow is established according to rock mechanics, seepage mechanics. Using finite element theory, Finite Element Scheme of fluid-solid coupling is obtained. Damage criterion and evolution equation of fracture extension is established on the preset fracture surface of the reservoir rock using the combination damage mechanics with fracture mechanics, which is embedded into the fluid-solid coupling equation to solve using the Newton-Raphson method, load incremental method and the linear search method, finally realize the dynamic description of 3-D fracture of the low-permeability reservoir. In order to test the correctness of low-permeability reservoir 3-D hydraulic fracture numerical simulation method and theory, calculation is carried on Zhao 38-271 Well.The mean error rate of fracture size is 10.7 percent, meets the requirements of engineering precision, which proves the correctness of the simulation.
     In order to make a reasonable process of the hydraulic fracturing for low-permeability reservoir, qualitatively analyze some factors influence on fracture propagation form using low-permeability reservoir 3-D hydraulic fracture numerical simulation method, such as mechanical properties of the rock, perforation parameters, construction parameters ,the fracturing fluid viscosity, filtration coefficient and so on.
     Interlayer is main parameter of controlling fracture height and affecting fracture form in low-permeability reservoir, as well as the main basis of making hydraulic fracturing measures. Therefore, emphatically analyze some factors influence on fracture propagation form using low-permeability reservoir 3-D hydraulic fracture numerical simulation method, such as the geostress difference, modulus of elasticity difference and interlayer height, which make the theoretical guidance for isolation effect of the low-permeability reservoir to effectively improve producing degree of oil reservoir and fracturing effect.
     With the great development of low-permeability oil and gas, the prediction software that suitable for using to 3-D hydraulic fracture geometry form is much needed and exigent. Using the finite element method, the low-permeability reservoir 3-D hydraulic fracture numerical simulation method and techniques can provide more reliable and accurate predicted means for hydraulic fracturing design, which improve hydraulic fracturing success rate to the low-permeability reservoir. As a result, this technology has very important significance and wide application prospect.
引文
[1]L.吉德利等著,单文文等译.水利压裂技术新进展[M].北京:石油工业出版社,1995.
    [2]李阳,于永波,尹喜永.大庆低渗透油田增效压裂技术研究[J].特种油气藏,2005,12(2):65-67.
    [3]尹喜永,于永波,王纪等.大庆外围低渗透油田薄互层压裂优化配套技术[J].中外能源,2007,12(2):41-44.
    [4]姜瑞忠,蒋廷学,汪永利.水力压裂技术的近期发展与展望[J].石油钻采工艺,2004,26(4):52-56.
    [5]Robert.S.S著,刘德铸译.油井增产技术[M].北京:石油工业出版社,2003.
    [6]蒋金宝,林英松,阮新芳,等.低渗透油藏改造技术的研究及发展[J].钻采工艺,2005,28(5):50-53.
    [7]扬秀夫,刘希圣,陈勉,等.国内外水压裂缝几何形态模拟研究的发展现状[J].West-China Exploration Engineering.1997,9(6):8-11.
    [8]王晓泉,陈作,姚飞.水力压裂技术现状及发展展望[J].钻采工艺,1998,21(02):29-34.
    [9]C.Espina and D.Baldassa,Pan American Energy,etc.Hydraulic Fracturing:Modeling and Optimization Using Latest Generation Logs and Conductivity Optimization Technologies[C].2009,SPE119460-MS.
    [10]R.R.McDaniel,D.V.Holmes,J.F.Borges,etc.Determining Propped Fracture Width From a New Tracer Technology[C].2009,SPE119545-MS.
    [11]李博,葛国宝.对地应力及其应用的认识[J].工程建设与管理,2009,235-239.
    [12]赵德安,陈志敏,蔡小林,等.中国地应力场分布规律统计分析[J].岩石力学与工程学报,2007,26(6):1265-1271.
    [13]葛洪魁,林英松.油田地应力的分布规律[J].断块油气田,1998,5(5):1-5.
    [14]李行船,马宗晋,曲国胜.分层地应力描述及其在胜利油田的应用[J].特种油气藏,2005,12(6):8-10.
    [15]朱焕春,陶振宇.不同岩石中地应力分布[J].地震学报,1999,16(01):49-63.
    [16]朱焕春,陶振宇.地形地貌与地应力分布的初步分析[J].水利水电技术,1994,30(1):29-33.
    [17]朱焕春,陶振宇,黄德凡.河谷走向与河谷地应力分布[J].岩石力学与工程学报,1995,14(1):17-24.
    [18]杜成良,姬长生,罗天雨,等.水力压裂多裂缝产生机理及影响因素[J].特种油气藏,2006,13(5):19-21.
    [19]李根生,黄中伟,牛继磊,等.综述地应力及射孔参数对水力压裂影响的研究进展[J].石油大学学报(自然科学版),2005,29(4):136-142.
    [20]胥元刚.射孔方位、密度、孔径对裂缝宽度的影响[J].钻采工艺,2005,24(10):47-49.
    [21]张保平,方竞,田国荣,等.水力压裂的近井筒效应[J].岩石力学与工程学报,2004,23(14):2476-2479.
    [22]蒋金宝,林英松,阮新芳,等.低渗透油藏改造技术的研究及发展[J].钻采工艺,2005,28(5):50-53.
    [23]王祖文,郭大立,邓金根,等.射孔方式对压裂压力及裂缝形态的影响[J].西南石油学院学报,2005,27(5):47-50.
    [24]张广清,陈勉,殷有泉,等.射孔对地层破裂压力的影响研究[J].岩石力学与工程学报,2003,22(1):40-44.
    [25]柳贡慧,李玉顺.考虑地应力影响下的射孔初始方位角的确定[J].石油学报,2001,22(1):105-108.
    [26]吕俊丰,刘鹏,林庆祥,等.地应力分析解释技术在压裂中的应用[J].大庆石油地质与开发,2005,24(2):64-66.
    [27]尤明庆.水压致裂法测量地应力方法的研究[J].岩土工程学报,2005,27(3):350-353.
    [28]赵奎,金解放等.声发射测量原岩应力研究现状及进展[J].矿业快报,2005,438(12):4-6.
    [29]张书瑞,翟阳等.应用录井资料求地应力剖面[J].录井资料,2003.14(3):36-40.
    [30]张广清,金衍,陈勉.利用围压下岩石的凯泽效应测定地应力[J].岩石力学与工程学报,2002,21(3):360-363.
    [31]周小平,王建华.测量地应力的新方法[J].岩土力学,2002,23(3):316-320.
    [32]景锋,梁合成,边智华,等.地应力测量方法研究综述[J].2008,29(2):71-74.
    [33]欧阳建,王贵文.电测井地应力分析及评价[J].石油勘探与开发,2001,28(3):92-94.
    [34]张筠,林绍文.利用测井进行地层弹性特征及应力场分布[J].测井技术,2001,25(6):467-472.
    [35]黄忠桥,康义逵.应用声发射资料计算地应力的方法[J].特种油气藏,2003,10(4):4-6.
    [36]马凤良,何绍勇,尹向阳.水压致裂法测量地应力[J].西部钻探工程,2009.1:86-88.
    [37]蔡美峰.地应力测量技术和原理[M].北京:科学出版社,2000.
    [38]余祺祥,吴爱军,李善良,等.地应力剖面在储层开发中的应用—以川西XL气田沙溪庙组储层为例[J].石油与天然气地质,2001,22(1):42-47.
    [39]董建华,刘鹏,王薇.地应力剖面在水力压裂施工中的应用[J].大庆石油学院学报,2005.29(2):40-42.
    [40]张传进,鲍洪志,路保平.油气开采中岩石力学参数变化规律试验研究[J].石油钻采工艺,2002,24(4):32-34.
    [41]CHEN Zhong-ming,ECONOMIDES M J.Effect of near wellhore fracture geometry on fracture execution and post treatment well production of deviated and horizontal welLs[R].1999,SPE39425.
    [42]张毅,闫相祯,颜庆智.三维分层地应力模型与井眼岩石破裂准则[J].西安石油学院学报(自然科学版),2000,15(4):42-45.
    [43]HOSSAIN M M,ROHMAN M K,RAHMAN Sheik S.A comprehensive monograph for hydraulic fracture initiation form deviated wellbore under arbitrary stress regimes[R].1999,SPE54360.
    [44]OLSON Jon E.Fracturing from highly deviated and horizontal wells numerical analysis of non-planar fracture propagation[R].1995,SPE29573.
    [45]HAINEY B W,WENGX,STOISITS R F.Mitigation of multiple fractures from deviated wellbores[R].1995,SPE30482.
    [46]CROSBY D G,RAHMAN M M,RAHMAN M K,etc.Single and multiple transverse fracture initiation from horizontal wells[J].Journal of Petroleum Science and Engineering,2002(35):191-204.
    [47]胡永全,赵金洲,曾庆坤,等.计算射孔井水力压裂破裂压力的有限元方法[J].天然气工业,2003,23(2):58-60.
    [48]MORALES R H,BRADY B H.Three dimensional analysis and visualization of the well bore and the fracturing process in inclined wells[R].1993,SPE25889.
    [49]MANRIQUEJ F,VENKITARAMAN A.Oriented fracturing a practical technique for production optimization[R].2001,SPE71652.
    [50]PEARSON C M,BOND A J,ELK M E,et al.Results of stress oriented perforating in fracturing deviated wells[R].1991,SPE22836.
    [51]YEW C H,SCHMIDT J H.On fracture design of deviated wells[R].1989,SPE19722.
    [52]潘迎德.应大力提倡高孔密射孔完井[J].石油钻采工艺,1994,16(1):51-59.
    [53]李海涛,王永清,李洪建,等.压裂施工井的射孔优化设计方法[J].天然气工业,1998,18(2):43-46.
    [54]BEHRMANNL A,ELBEL J L.Effect of perforation on fracture initiations[R].1999,SPE20661.
    [55]ABASS n H.HEDAYATI Saeed,MEADOWS D L.Non-planar fracture propagation from a horizontal well bore experimental study[R].1992,SPE24823.
    [56IVan de KETTERIJ R G,de PATER C J.Experimental study on the impact of perforation on hydraulic fracture tortuosity[R].1997,SPE38149.
    [57]黄中伟,李根生.水力射孔参数对起裂压力影响的实验研究[J].中国石油大学学报(自然科学版),2007,31(6):48-51.
    [58]T.K.Perkins,L.R.Kern:Width of hydraulic fracture[J].JPT,1961,13:937-949.
    [59]S.A.Khristianovich,YP.Zheltov.Formation of vertical fractures by means of highly viscous liquid[J].Proceedings of the Fourth World Petroleum Congress,Section Ⅱ,Paper No.3.
    [60]S.A.Khristianovich,Y.P.Zheltov:Theoretical principles of hydraulic fracturing of oil strata[J].Proceedings of the Fifth World Petroleum Congress,Section Ⅱ,Paper No.23.
    [61]R.R.McDaniel,D.V.Holmes,and J.F.Borges,etc.Determining Propped Fracture Width From a New Tracer Technology[C].2009,SPE119545-MS.
    [62]C.L.Cipolla,E.P.Lolon,and M.J.Mayerhofer.Resolving Created,Propped,and Effective Hydraulic Fracture Length[C].2008,SPE12147-MS.
    [63]Y.N.Wei,and S.A.Holditch.Computing Estimated Values of Optimal Fracture Half Length in the Tight Gas Sand Advisor Program[C].2009,SPE119374-MS.
    [64]Lujun Ji,A.(Tony) Settari,R.B.Sullivan.A Novel Hydraulic Fracturing Model Fully Coupled With Geomechanics and Reservoir Simulator[C].2007,SPE110845-MS.
    [65]Terzaghi K.Theoretical soil mechanics[J].Tiho Wiley,New York,1943.
    [66]Biot M.A.General theory of three dimensional consolidation[J].J.Appl.phys 1941.Vol.12(5):155-164.
    [67]Biot M.A.Gerneral solution of the equation of elasticity and consolidation for a porous material[J].J.Appl.phys,1956,Vol.27(3):91-96.
    [68]Zienkiewics O C,Shiomi T.:Dynamic behavior of saturated porous media:the generalized Biot formulation and its numerical solution[J].Int.J.Num.and Analy:Mech.in Geomech,1984,Vol.8:71-96.
    [69]李锡夔,朴光虎,邓子辰.考虑固结效应的结构-土壤相互作用分析及其有限元解[J].计算结构力学及其应用,1990,7(3):1-11.
    [70]张洪武,钟万勰,钱令希.饱和土壤固结分析的算法研究[J].力学与实践,1993,15(1):20-22.
    [71]张洪武,钟万勰,钱令希.土固结分析的一种有效算法[J].计算结构力学及其应用,1991,8(4):389-395.
    [72]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13(4):299-308.
    [73]件彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析[J].西安理工大学学报,2000,16(1):1-5.
    [74]冉启全,顾小芸.弹塑性变形油藏中多相渗流的数值模拟[J].计算力学学报,1999,6(1):24-31.
    [75]董平川,徐小荷.储层流固耦合的数学模型及其有限元方程[J].石油学报,1999,19 (1):64-70.
    [76]薛世峰,宋惠珍.非混溶饱和两相渗流与孔隙介质耦合的理论研究-方程解耦与有限元公式[J].地震地质,1999,21(3):253-260.
    [77]Li Sp,Wu D X.Effect of confining pressure,pore pressure and specimen dimension on permeability of yinzhuang sandston[J].Int.J.Rock Mech.Min.Sci.1997,34(3/4)435-441.
    [78]李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程[J].岩石工程学报,1995,17(2):231-235.
    [79]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩石工程学报,2001,23(1)68-70.
    [80]姜振泉,季梁军.岩石全应力应变过程渗透性试验研究[J].岩石工程学报,2001.,23(2):153-156.
    [81]Nelson R A.A discussion of the approximation of subsurface stress conditions in laboratory experiments,in Mechanical Behavior of Crustal rocks[J].The Handin Volume,Geophys,Monogr.Ser.,V24,Carter N L,FriedmanM,Logan J M et al.AGU,Washington,D.C.,1981,311-322.
    [82]Rhett D W,Twufel L W.Stress path dependence of matrix permeability of North Sea sandstone reservoir rock[J].Proc.U.S.Rock Mech.Symp.,1992,33:345-354.
    [83]Somertion W H,Soylemezoglu I M,Dudley R C.Effect fo stress on permeability of cial[J].Int.J.Rock Mech.Min.Sic.,1975,12:129-145.
    [84]Wang K J,Daniel C J.Permeability study of cracked concrete[J].Cement and Concrete Research,1997,27(3):381-393.
    [85]Souley M,Homand F,Pepa Set al.Damage-induced permeability changes in granite:a case example at the URL in Canada[J].Int.J.Rock Mech.Min.Sic.,2001(38):297-310.
    [86]杨天鸿,唐春安,朱万成等.岩石破裂过程渗流与应力耦合分析[J].岩石工程学报,2001,23(4):489-493.
    [87]薛柄.均匀岩层水力压裂的数值模拟及机理研究[D].合肥:中国科学技术大学.2007.
    [88]刘建军,裴桂红.裂缝性低渗透油藏流固耦合渗流分析[J].应用力学学报,2004,21(1):36-39.
    [89]高玉臣.固体力学基础[M].北京:中国铁道出版社,1999.
    [90]Bear J.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    [91]尹祥础.固体力学[M].北京:地震出版社,1985.
    [92]赵辉.低渗透油藏非线性渗流理论及其应用[D].大庆:大庆石油学院.2006.
    [93]翟云芳,渗流力学[M].北京:石油工业出版社,1999.
    [94]屈智炯.土的塑性力学[M].成都:成都科技大学出版社,1987.
    [95]Bear,J.,Dynamics of Fluids in Porous Media[M].American Elsevier Publishing Company,Dover,New York,1972.
    [96]王金昌,陈页开.ABAQUS在土木工程中应用[M].浙江:浙江大学出版社.2006.
    [97]陆严清.塑性变性理论及应用[M].北京:国防工业出版社,1988.
    [98]张学言,闫澎旺.岩土塑性力学基础[M].天津:天津大学出版社.2006.
    [99]张云真,曹富新.弹性力学及其有限元法[M].北京:中国铁道出版社,1983.
    [100]殷有泉.固体力学非线性有限元引论[M].北京:北京大学出版社,1987.
    [101]Ahmad,S.,B.MIrons,and O.C.Zienkiewicz.Analysis of Thick and Thin Shell Structures by Curved Finite Elements[J].International Journal for Numerical Methods in Engineeing,1970,2:419-51.
    [102]Beer,G.An isoparametric Joint/Interface Element for Finite Element Analysis[J].International Journal for Numerical Methods in Engineeing,1985,21:585-600.
    [103]Goncalves,J.P.,M.F.deMoura,P.T.deCastro,and A.T.Marques.Interface Element Including Point-to-Surface Constraints for Three-Dimensional Problems With Damage Propagation[J].Engineering Computations,2000,17(1):28-47.
    [104]Mi,Y.,M.A.Crisfileld,G.A.O.Davies,and H.B.Hellweg.Progressive Delamination Using Interface Elements[J].Journal of Composite Materials,1998,32:1246-73.
    [105]Schellekens,J.C.J.and R.de Borst.Numerical Simulation of Free Edge Delamination in Graphite-Epoxy Laminates Under Uniaxial Tension[J].Proceedings of the 6th International Conference on Composite Structures,1991,647-57.
    [106]Schellekens,J.C.J.and R.de Borst.On the Numerical Intergration of Interface Elements[J].International Joural for Numerical Methods in Engineering.1993,36;43-66.
    [107]Ungsuwarungsru,T.and W.G.Knauss.The Role of Damage-Softened Material Behaviour in the Fracture of Composites and Adhesives[J].International Journal of Fracture,1987,35:221-41.
    [108]Needleman,A.A Continuum Model for Void Nucleation by Inclusion Oebonding[J].Journal of Applied Mechanics,1987,54:525-31.
    [109]Alfano,G.and M.A.Crisfield.Finite Element Interface Models for the Oelamination Analysis of Laminated Composites:Mechanical and Computational Issues[J].International Journal for Numerical Methods in Engineering, 2001,50:1701-36.
    [110]Rice,J.R.A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks[J].Journal of Applied Mechanics,1968,31:379-86.
    [111]Davila,C.G.,P.P.Camanho,and M.F.Moura.Mixed-Mode Decohesion Elements for Analyses With Progressive Delamination[J].42nd AIAA/ASME/ASCE/AHS/ASC Structural Dynamics and Materials Conference(Seattle,Washington,U.S.A.),2001.
    [112]Cui,W.,M.R.Wisnom,and M.Jones.A Comparison of Failure Criteria to Predict Delammination of Unidirectional Glass/Epoxy Specimens Waisted Through the Thickness[J].Composites,1992,23(3):158-66.
    [113]Reeder,J.R.An Evaluation of Mixed-Mode Delamination Failure Criteria[J].NASA TM104210,1992.
    [114]Benzeggagh,M.L.and M.Kenane.Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites With Mixed-Mode Bending Apparatus[J].Composites Science and Technology &Research.1996,15(3):193-201.
    [115]Wu,E.M.AND R.C.Reuter Jr.Crack Extension in Fiberglass Reinforced Plastic[J].T.&AM Report NO.275,University of Illinois,1965.
    [116]Crisfield,M.A.,H.B.nellweg,and G.A.O.Davies.Failure Analysis of Composite Structures Using Interface Elements[J].Proceedings of the NAFEMS Conference on Application of Finite Elements to Composite Materials.1994,(London,U.K.):1-4.
    [117]Hellweg,H.B.Nonlinear Failure Simulation of Thick Composites[J].PhD Thesis,Imperial College of Science and Technology,University of London,U,K.1994.
    [118]Hibbitt,Karlsson and Sorensen.ABAQUS 6.2 Users Manuals.Pawtucket[J],U.S.A.1996.
    [119]王勖成,邵敏.有限单元法基本原理和数值方法(第二版)[M].北京:清华大学出版社,1997
    [120]李嘉珩.有限单元法及程序实例[M].北京:人民铁道出版社,1979.
    [121]张本照.流体力学中的有限元方法[M].北京:机械工业出版社,1986.
    [122]张国瑞.有限元法[M].北京:机械工业出版社,1991.
    [123]冯虎,刘刚芝,黄雷.水力压裂优化设计研究及应用[J].油气井测试.2008,17(5):58-62.
    [124]孙卫春,闵弘,王川婴.三维地应力测量及地质力学分析[J].岩石力学与工程学 报.2008,27(2):3778-3782.
    [125]崔世杰,张清杰,应用塑性力学[M].郑州:河南科学技术出版社,1992.
    [126]吕合祥,蒋和洋.非线性有限元[M].北京:化学工业出版社,1992.
    [127]董平,罗塞托斯.有限单元法-基本方法与实施[M].北京:国防工业出版社,1979.
    [128]胡永全,任书泉.影响压裂裂缝几何尺寸的因素分析[J].西部探矿工程.1995,7(3):20-23.
    [129]夏惠芬,李福军,夏克英.水力压裂垂直裂缝几何形态数值模拟及影响因素分析[J].大庆石油学院学报.1996,20(1):10-13.
    [130]徐芝纶.弹性力学[M].北京:高等教育出版社,1994.
    [131]刘北辰,陆鸿森.弹性力学[M].北京:冶金工业出版社,1979.
    [132]吴太平,李生莉,丘勇.国内外低渗油气藏压裂技术现状及发展趋势[J].河南石油.2003,17(6):42-46.
    [133]尹祥础.固体力学[M].北京:地震出版社,1985.
    [134]杨秀夫,陈勉,刘希圣.水压裂缝缝内流场的理论研究[J].西南石油学院学报.2002,24(1):87-90.
    [135]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [136]吴林高,缪俊发.渗流力学[M].上海:上海科学技术文献出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700