水下船体阴极保护与腐蚀电磁场优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下船体的防腐蚀采用涂层和阴极保护技术,阴极保护技术涉及到防腐蚀效果和水下电磁隐身性能,阴极保护系统的设计优化是关键环节,其目标是充分均匀的船体表面电位/电流分布和最小的水下电磁特征。开展阴极保护优化设计研究,同时获得充分的腐蚀控制和最小的水下电磁场信号,具有重要的理论意义和现实意义。
     本文利用均匀试验设计物理缩比模型方法和边界元阴极保护数值模拟优化方法,研究了由2组和3组阳极构成的阴极保护系统中,阳极位置和阳极输出电流对船体表面电位分布、水下稳态电场和腐蚀相关电磁场的影响规律,获得了阳极的最佳位置和最佳输出电流,优化的阴极保护系统不仅具有充分的腐蚀控制能力,而且可使得水下稳态电场、腐蚀相关磁场最小化。
     对于2组阳极构成的阴极保护系统中,经阳极位置优化和输出电流优化后,2组阳极分别布置于艉部水下2m/230#肋骨处、舯部阳极布置于水下2m/130#肋骨处,参比电极固定2组阳极之间水下1.5m/186#肋骨处,控制电位-0.85V时,船体阴极保护电位处于-0.80V~-1.00V(SSC,下同)范围,水下船体得到充分保护;稳态电场模值减小幅度达到41%,腐蚀相关磁场模值减小幅度达到45%。二步优化减小水下腐蚀电磁信号的效果非常明显。
     对于3组阳极构成的阴极保护系统,3组阳极分别位于110#、200#和230#肋骨时,稳态电场强度峰值最小。优化阳极输出电流后,3组阳极单只输出电流分别为1.82A,1.65A和3.65A。二步优化对降低水下稳态电场具有明显的效果,稳态电场最大值降低幅度高达72.7%;腐蚀相关磁场最大特征峰值降低幅度63.5%。
     缩比模型试验和实船试验证明,轴频电场产生的前提条件是:①艉轴中有电流流动,即轴-地间存在因电流流动导致的电压降;②螺旋桨轴转动使得轴-地之间接触电阻发生周期波动。设计研制的有源接地装置可完全消除轴频电场,其等效接地电阻RASG=1.37×10-5O。
     设计研制的低纹波恒电位仪纹波系数小于0.1%,为现有商用恒电位仪的1/50,可有效降低工频电磁场。利用IGBT技术,设计集成了兼具阴极保护恒电位仪功能模块和有源接地功能模块的“腐蚀电磁控制器”,二功能模块协同工作性能好,实现了模块化设计,方便使用维护,减小了体积重量。
     水下稳态电场和腐蚀相关磁场在船体周围迅速衰减,控制电位时,稳态电场和腐蚀相关磁场衰减符合E(B)=a+brc;控制电流时,稳态电场按照距离的二次方衰减E=d/r2。
     涂层破损严重影响着阴极保护电位分布和保护电流。利用均匀设计试验的缩比模型试验方法获得了优化的二组阳极组成的阴极保护系统,在涂层破损2%-10%范围内,保护电流随着涂层破损量的增加而增大,电极布置合理获得较均匀电位分布时,保护电流随着涂层破损率的增加呈线性增大;艏部阳极过于靠近船头时,保护电流随着涂层破损率的增加呈非线性的加速增大。利用BP人工神经网络可以有效预测电极位置和控制参数对电位分布均匀性的影响。
Coating and cathodic protecton are generally applied to anti-corrosion of hull, the later can induce corrosion related electromagnetic signatures under seawater. The optimization of impressed current cathodic protection (ICCP) system design is important in order to achieve uniform potential profile and minimum electromagnetic characteristics under seawater.
     The methods, including physical scale model (PSM) and numerical simulation (NS) are used to investigate optimization of cathodic protection and minimum of the electromagnetic characteristics. The anodes position and current output are optimized as account for uniform potential distribution, minimum of static electric (SE) and corrosion related magnetic field (CRM) in the ICCP which composed of2and3group of anodes respectively. Not only the hull corrosion is effectively controlled, but also corrosion related electromagnetic signature is minimized by optimized ICCP.
     The four anodes are located on frame230and130(S&B) in depth2m under seawater for the ICCP where the Ag/AgCl reference electrode is arranged on frame186and potential controlled at-0.85V after the positions optimized. And then, the hull potential range from-0.80V to-1.00V (Ag/AgCl electrode, SSC in short) in sufficient protection while SE and CRM module are decreased41%and45%respectively after current output optimized. The SE and CRM are effectively controlled by the double optimizations.
     The six anodes are positioned on frame110,200and230(S&B) in depth2m under seawater after the positions optimized for the ICCP composed of a triple of anode groups and current controlled in order to minimize SE peaks. Secondly, three piece of anodes belonging to the triple of anode groups are adjusted to current output1.82A,1.65A and3.65A respectively after the current output optimized, and where hull is best protected with potential-0.80V~-0.90V (SSC). SE and CRM are effectively decreased72.7%and63.5%respectively after the double optimizations.
     The results of PSM and onboard demonstrated that extremely low-frequency electromagnetic field (ELEF in short) signature under seawater is generated in condition of current flowing in shaft and the resistance of shaft to hull being modulated as shaft rotation. ELEF can be totally eliminated by the active shaft grounding (ASG) that equivalent resistance less than1.37×10-5O。
     It is developed that the transformer-rectifier (TR) with ripple less than0.1%,1/50of commercial equipments, can significantly reduce industrial frequency electromagnetic signature. The ASG and the TR are integrated to be a cathodic protection and corrosion electromagnetic controller (CPEM) based on IGBT with module design and volume/weight decreasing. The two modules can ordinate in function and controlling.
     SE and CRM are rapidly attenuated nearly around hull according to E(B)=a+brc(a, b, c being constant, where c<0) while ship's potential controlled, and E=d/r2(d being constant) as anodes current controlled.
     The potential distributions and protection current of hull extremely depend on coating damage. The optimized ICCP which composed of4anodes are achieved by PSM and uniform test arrangement methods in coating damage ratio from2%to10%. The protection current is increasing with coating damage ratio, linear increasing in reasonable anode positions and even potential distributions, and no-linear increasing in fore anodes located at frame30.BP neural network method is used to predict the influence of anode position and given potential on even value of potential profile.
引文
[1]舒马赫M.海水腐蚀手册[M].北京:国防工业出版社,1985.
    [2]曹楚南.中国材料的自然环境腐蚀[M].北京:化学工业出版社,2004.
    [3]王曰义.海水冷却系统的腐蚀及其控制[M].北京:化学工业出版社,2006.
    [4]General Electrotechnical Standards Policy Commettee. BS 7361 Cathodic Protection, Part I Code of Practice for Land and Marine Applications [S]. London: authority of the Standards Board, 1991:1-122.
    [5]胡士信.阴极保护工程手册[M].北京:化学工业出版社,1999.
    [6]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术[M].北京:化学工业出版社,2006.
    [7]孙明先.舰船阴极保护技术的现状与发展[J].舰船科学技术,2001(2):44-46.
    [8]黄永昌.电化学保护技术及其应用[J].腐蚀与防护,2000(21):140-142.
    [9]Rajani G L. Modern trend in impressed current anodes for cathodic protection [J]. Proceedings of the 6th Middle East Corrosion Conferece,1994(1):383-414.
    [10]Bekeley K. G. Anodes for cathodic protection-old and new[J]. Corrosion'84 New Orleans,1984: 21-22.
    [11]中华人民共和国国家质量监督检验检疫总局.GB/T4948-2002锌合金牺牲阳极[S]//全国海洋船标准化技术委员会.文献工作国家标准汇编:5,北京:中国标准出版社,2002:1-15.
    [12]中华人民共和国国家质量监督检验检疫总局.GB/T4950-2002铝合金牺牲阳极[S]//全国海洋船标准化技术委员会.文献工作国家标准汇编:5,北京:中国标准出版社,2002:1-15.
    [13]DET NORSKE VERITAS. Cathodic Protection Design[M]. Norway:recommented practice DNV-RP-B401,2005.
    [14]交通部上海船舶运输科学研究所.CB3220船用恒电位仪技术[S]//全国船舶标准化技术委员会.文献工作国家标准汇编:18.北京:中国标准出版社,1984:1-7.
    [15]中国船舶工业总公司洛阳船舶材料研究所.GB/T7388-1987船用辅助阳极技术条件[S]//全国海洋船标准化技术委员会船用材料应用工艺分技术委员会.文献工作国家标准汇编:3.北京:中国标准出版社,1999:1-19.
    [16]中国船舶工业总公司725研究所.GB/T3455-1992船用阳极屏蔽层的设计与涂装[S]//中国船舶工业总公司.文献工作国家标准汇编:3.北京:国家标准出版社,1992:1-5.
    [17]中国船舶工业总公司洛阳船舶材料研究所.GB/T7387-87参比电极技术条件[S]//全国海洋船标准化技术委员会船用材料应用工艺分技术委员会.文献工作国家标准汇编:8.北京:中国标准出版社,1999:1-23.
    [18]中国船舶工业总公司洛阳船舶材料研究所.GB/T3108-1999船体外加电流阴极保护系统[S]//全国海洋船标准化技术委员会船用材料应用工艺分技术委员会.文献工作国家标准汇编:8.北京:中国标准出版社,1999:1-10.
    [19]柯伟,杨武.工业腐蚀与防护[M].北京:化学工业出版社,1996.
    [20]George P. Some experiments on the reactions of potassium superoxide in aqueous solutions[J]. Disc Faraday Soc,1947(2):196-205.
    [21]Smith J. Electricity and magnetism[C]. London:[出版者不详],1954.
    [22]McGrath J N, Tighe-Ford D J, Hodgkiss L. Scale modeling of a ship's impressed current cathodic protection system [J]. Corrosion prevention and control,1985(32):36-38.
    [23]Ditchfield R W, Mcgrath J N, Tighe-Ford D J. Theoretical validation of the physical scale modelling of the electrical potential characteristics of marine impressed current cathodic protection[J]. Journal of applied electrochemistry,1995,25(1):54-60.
    [24]Parks A R, Thomas E D, Lucas K E. Physical scale modeling verification with shipboard trials[J]. Material Performance,1991,30(5):26-29.
    [25]DeGiorgi VG, Thomas ED Ⅱ, Lucas KE, et al. A combined design methodology for impressed current cathodic protection systems[J]. Boundary Element Technology,1996(14):335-344.
    [26]Tighe-Ford D J, Khambhaita P, Walton C P, et al. Effect of propeller material and condition on the impressed current cathodic protection of ships[J]. Corrosion Prevention & Control,1993(8): 79-83.
    [27]Khambhaita P, Tihge-Ford D J, Hughes R D. A study of anode in the performance of ship ICCP systems [J]. The NACE international annual conference and corrosion,1995(309):26-31.
    [28]DeGiorgi VG, Hogan E, Lucas KE, et al. Shipboard impressed current cathodic protection system(ICCP) analysis [J]. Modelling of Cathodic Protection Systems,2005:20-21.
    [29]Gage N, Mart P.FURTHER CATHODIC PROTECTION STUDIES OF NAVAL SHIPS [J]. 2002:1-13.
    [30]Klingert J A, Lyan S, Tokras C W. Evaluation of current distribution in electrode systems by high-speed digital computers[J]. Electrochemical Acta,1964(9):297-311.
    [31]Doig P, Flewitt PE. Verification of the boundary element modelling technique [J]. Electrochemical Soc.,1979(12):2057-2063.
    [32]Strommen R, Roland A. Computerized Techniques Applied in Design of Offshore Cathodic Protection System[J]. Material Performance,1981(20):15-20.
    [33]Helle H P E, Beek G H M. Numerical Determination of Potential Distributions and Current Densities in Multi-Electrode Systems Corrosion[J]. Corrosion,1981(37):522-530.
    [34]Kasper R G, Martin G. Electrogalvanic finite elecment analysis of partially protected marine structures[J]. Corrosion,1983(39):181-188.
    [36]Brebbia C A. Boundary Element Method for Engineers[M], London UK:Pentch Press,1980.
    [37]Fu J W, Chow J S K. Cathodic Protection Design Using an Integral Equation Numerical Method [J]. Material Performance,1982(21):9-12.
    [38]Danson D J, Warne M A. Current Density/Voltage Calculation Using Boundary Element Method [J].NACE Conference,1983:211-218.
    [39]Robert J, Fergusion, Baron R, et al. Stancavage. Modeling scale formation and optimizing scale inhibitor dosages in membrane systems[J]. Memebrane technology conference,2011(30):1-19.
    [40]Matsuho Miyasaka. A boundary element analysis on galvanic corrosion problems-computational accuracy on galvanic fields with screen plates [J]. Corrosion Science,1990(30):2-3.
    [41]Huang Y, Iwata M, Z. Jin L. Numerical analysis of electropotential distribution on the surface of marine structure under cathodic protection (application of three dismensional BEM)[J]. J. of the society of naval architects of Japan,2006(168):589-592.
    [42]Iwata M, Huang Y, Fujimoto Y. Application of BEM to design of the impressed current cathodic protection system for ship hull[J]. J. of the society of naval architects of Japan,1992(171): 377-380.
    [43]Robert A. Adey, John Baynham. Design and Optimisation of cathodic protection Systems Using Computer Similation[J]. NACE's Annual Conference,2000(3):1-12.
    [44]S. M. Niku, R. A. Adey, A CAD system for the Analysis and Design of Cathodic Protection Systems[J]. Plant Corrosion: Prediction of Materials Performance,1987:233-256.
    [45]Xiao Dong Zhang. Study of influence of stray current on potential distribution of pipeline by numerical simulation[J]. Advance Materials Research,2010(265):154-155.
    [46]Robert A. Adey, John Baynham. Computer Simulation as an aid to CP System Design and Interference Prediction[J]. CEOCOR 2000 Conference,2000:1-15.
    [47]Santana Diaz E, Adey R. Optimization of the performance of an ICCP system by changing current supplied and position of the anode[J]. Boundary elements methods 24 conference,2002: 1-11.
    [48]Diaz E. Santana, R A.Adey, Optimising the location of anodes in cathodic protection systems to smooth potential distribution [J]. Advances in Engineering software,2005(36):591-598.
    [49]Diaz E. Santana, R A.Adey, J. Buynham. Prediction of the Condition of a Structure Subject to Corrosion Based Inverse Analysis[J]. Boundary Elements Technology,2003:1-10.
    [50]R A.Adey, Diaz E.Santana, Predictive Modelling of Corrosion and Cathodic Protection Systems[J]. Tri-Service Corrosion Conference,2003:1-15.
    [51]R A.Adey, Diaz E.Santana, Computer Simulation Of The Interference Between A Ship And Docks Cathodic Protection Systems[J]. NACE Corrosion Conference,2003:1-20.
    [52]JMW Baynham, R A.Adey, Simulating the Transient Response of ICCP Control Systems [J], 2004:1-30.
    [53]R. A. Adey. J. Baynham.Design and Optimization of Cathodic Protection Systems Using Computer Simulation[J]. NACE International,2000:26-31.
    [54]R. A Adey, Pei Yuan Hang, Computer Simulation as an Aid to Corrosion Control and Reduction[M], NACE Corrosion Conference, Corrosion/1999.
    [55]Diaz E. Santana, R A.Adey, Computational Environment for the Optimisation of CP system Performance and Signatures[M], Warship CP2001. Shrivingham. UK,2001.
    [56]DeGiorgi VG. Industrial Applications of the BEM, Chapter 2, Corrosion basics and computer modeling[J], Computational Mechanics Publication,1992:47-79.
    [57]DeGiorgi VG, P, Kee A, Thomas ED. Characterization accuracy in modeling of corrosion systems[J], Bondary Elements XV, Vol.1:Fluid Flow and Computational Aspect.1993: 679-694.
    [58]DeGiorgi VG, Lucas KE, Thomas EDII, et al. Boundary Element Evaluation of ICCP Systems Under Simulated Service Conditions [J]. Boundary Element Technology,1990:405-422.
    [59]DeGiorgi VG, Hamiltonb CP. Coating integrity effects on impressed current cathodic protection system parameters[J], Boundary Elements XVII, Computational Mechanics Publications,1995: 395-403.
    [60]DeGiorgi VG. Finite resistivity and shipboard corrosion prevention system perfo nuance [J], Boundary Elements XX,1998:555-564.
    [61]DeGiorgi VG. Finite resistivity and shipboard corrosion prevention system performance[J]. Boundary Elements XX,1998:555-564.
    [62]Trevelyan J, Hack HP. Analysis of stray current corrosion problems using the boundary element method[J]. Boundary Element Technology IX,1994:347-356.
    [63]Beribie. Simulation of Electrochemical Processes Ⅲ[M], Italy:WIT Press,2009
    [64]Harvey P. Hack. Atlas of Polarization Diagrams for Naval Materials in Seawater, Carderock Division[M]. Naval Surface Warfare Centre,1995.
    [65]卢新城.舰船轴频电场模型及其消除方法[D].北京:海军工程大学,2004.
    [66]Davidson S J, Rawlins P G. A multi influence range[J]. Conf. Proc. UDT Europe,1999:169-171.
    [67]Certenais J, Perious J J. Electromagnetic measurements at sea[J]. Conf. Proc. UDT Europe,1997, 433-436.
    [68]Dymarkowski K, Uczciwek J. Ships detection based on measurement of electric field in disturbance existing region [J]. Conf. Proc. UDT Europe,2000:554-557.
    [69]李宝祥(译).电场强度三分量测量传感器[J].舰艇装备.1992,(2):24-26.
    [70]周士弘,孙玉兰,刘永志.水中目标非声特性研究及其应用技术水中目标特性研究论文集[C].大连:[出版者不详],2002。
    [71]Bentson T E, Johnson D C, Cowling T J, et al. A rapidly deployable electric field array[J]. Conf. Proc. UDT Europe,1994,531-532.
    [72]Certenails J., Periou J. J.. UEP and the horizontal antenna[M]. UDT,1997.
    [73]孙玉兰,王珂,朱练军等.舰船物理场机动测量系统水中目标特性研究学术论文集[c].大连:[出版者不详],2002。
    [74]陆健(泽).电磁特征信号模拟与缩减[J].国外舰船工程.2000,(5):27-28.
    [75]Bostick F X, Smith H W, Boehl J E. The detection of ULF-ELF emissions from moving ships[M]. Technical Report:1977.
    [76]中国人民解放军海军司令部[J].苏美水雷资料.1975,43-45.
    [77]水雷武器编写组.苏联的水雷武器[M].宜昌:710所,1975.
    [78]傅金祝.国外水雷战装备参考资料[M].宜昌:710所,1994.
    [79]傅金祝.LSM智能滨海自导水雷[J].舰船知识.2001,(5):27-29.
    [80]傅金祝.水雷技术发展研究.水雷战与舰船防护.2002,(2):1-3.
    [81]Clem T R. Superconducting magnetic gradiometers for underwater target detection[J]. Navy Engineers Journal,1998,(1):139-142.
    [82]马淑萍.舰船电场及其在水雷上的应用[D].武汉:海军工程学院,1991.
    [83]龚沈光等.电场测量新途径[R].中国船舶科技报告.1996
    [84]周骏.海水中电磁场特性及舰船电磁场[D].武汉:海军工程大学,1999
    [85]刘胜道.舰船水下电场的测试技术与电偶极子模型研究[D].武汉:海军工程大学,2002
    [86]程锦房.水雷电场引信原理研究[D].武汉:海军工程大学.2002
    [87]卢新城,刘胜道,孙明,龚沈光.舰船螺旋桨转动调制腐蚀电流产生的低频电场研究[R].中国国防科学技术报告.2002
    [88]孙明.舰船感应电场和极低频电场研究[D].武汉:海军工程大学.2003
    89] Beasy Group. Geasy software introduction[M]. Beasy company.2012
    90] Frazer-Nash Continues to Expand Team. Frazer-Nash Consultancy[M]. Systems and Engineering Technology.
    91] Cornerstone. Defence Research and Development Canada[M]. Annual Report.2012.
    ;92] Ultra Electronics Holdings plc.Ultra Electronics[M]. Ultra Web site.2012.
    [93]DeGiorgi VG, Hogan E A. Experimental vs computational system analysis[J]. WIT Transaction on Engineering Sciences,2005(48):37-46.
    [94]DeGiorgi VG, Hogan E, Lucas KE, et al. Shipboard impressed current cathodic protection system(ICCP) analysis[J]. Modelling of Cathodic Protection Systems.2012:20-21.
    [95]TIGHE-FORD D J, DAHELE J S. Ship impressed current cathodic protection-modulations of system current outputs by propeller/shaft rotation on physical scale model hull[J]. British Corrosion Journal.2000 (35):269-272.
    [96]Tighe-Ford D J, Khambhaita P, Walton C P, et al. Effect of propeller material and condition on the impressed current cathodic protection of ships[J]. Corrosion Prevention & Control,1993,8(4): 79-83.
    [97]Khambhaita P, Tihge-Ford D J, Hughes R D. A study of anode in the performance of ship ICCP systems[J]. The NACE international annual conference and corrosion,1995(309):26-31.
    [98]TIGHE-FORD DJ, KHAMBHAITA P, TAYLOR SDH, et al. Dynamic characteristics of ship impressed current cathodic protection systems[J]. Journal of Applied Electrochemistry.2001(31): 105-113.
    [99]Jeffrey I, Brooking B. A Survey of New Electromagnetic Stealth Technologies[J]. The ASNE 21st Century Combatant Technology Symposium,1998(1):27-30.
    [100]Divis. Davis provides mechanical and electrical engineering consulting services[M]. W. r. davis engineering limited.2012
    [101]Barry Torrance. Low Signature Impressed Current Cathodic Protection-New Development-Future Concepts[J], The Journal of Corrosion Science and Engineering,2006(9):1-3.
    [102]Davidson S J, Rawlins P G. A multi influence range[C].Conf. Proc. UDT Europe 1999:169-171.
    [103]石博强,赵德永,李畅等.LabVIEW6.1编程技术实用教程[M],北京:中国铁道出版社,2002.
    [104]郑君里,应启珩,杨为理.信号与系统[M],北京:高等教育出版社,2002.
    [105]赵景波,吴建华,姚萍,等.基于虚拟仪器的舰船腐蚀电场仿真系统[J].计算机仿真.2006(23):223-226.
    [106]赵景波,吴建华,赵国良,等.基于虚拟仪器的海洋电场传感器系统设计.传感器与微系统[J].2006(.25):55-57.
    [107]R A.Adey, SM.Niku, Computer Modelling of Corrosion Using the Boundary Element Method[J]. Computer Modeling in Corrosion,1992:248-264.
    [108]Diaz E. Santana, R. A. Adey, Computational Environment for the Optimization of CP System Performance and Signatures [J]. Warship CP,2001:1-22.
    [109]耿吕松等.应用MATLAB建立焊接参数人工神经网络模型的方法[J].焊接.2001(5):14-15.
    [110]董长虹.Matlab神经网络与应用[M].国防工业出版社,2005.
    [111]董晓兰,吴卫,李晓慧.BP神经网络及其在压铸模具优化设计中的应用[J].模具技术,2006(6):7-10.
    [112]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].清华大学出版社,2005.
    [113]贡智兵,李东波,潘洋宇.应用BP网络和遗传算法的快速分析与优化[J].现代制造工程,2006(1):57-59.
    [114]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994.
    [115]刘极莉.船体内舱阴极保护设计技术研究[D].大连:大连理工大学,2005.
    [116]史光.船舶上层建筑牺牲阳极系统优化设计研究[D].大连:大连理工大学,2006.
    [117]Ditchfield R W, Mcgrath J N, Tighe-Ford D J. Theoretical validation of the physical scale modelling of the electrical potential characteristics of marine impressed current cathodic protection[J]. Journal of applied electrochemistry,1995(25):54-60.
    [118]龚路明李晓宇陈新刚.舰船电场探索[J].海军装备:2003(4):38-40.
    [119]魏国栋,李夏兰等.均匀设计法优化芥菜多糖的提取工艺及其神经网络模型的研究[J].生产与科研经验,2006(2):53-56.
    [120]方千山,王永初,方柏山.基于均匀设计法的人工神经网络及其应用[J].仪器仪表学报,2001,22(4):316-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700