汽车用铝合金车轮低压铸造过程的数值模拟及其疲劳性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铸造过程计算机模拟与仿真同结构有限元分析技术是信息科学、材料科学、工程力学及计算机图形学等各种学科的交叉科学,是先进制造科学的重要前沿领域。针对传统凭借经验设计制造车轮的过程中存在设计造型盲目性大、铸件成品率低、检测周期长的问题,本论文采用了计算机辅助造型技术及有限元分析方法,研究了车轮从初始造型设计到铸件生产过程数值模拟,最后到产品结构疲劳性能分析的全过程,这样能够迅速发现产品设计和生产中存在的问题,通过优化设计,提高产品成品率同时改善结构薄弱环节以缩短开发周期、降低成本,主要研究内容如下:
     1、详细分析了车轮造型设计的组成要素,考虑了车轮造型设计中所涉及的各种要求和标准,并通过三维造型技术对车轮实体建模,在此基础上归纳总结了现代CAD建模技术的特点。
     2、结合SU0011车轮的开发和制造要求,对其实际低压铸造过程进行了数值模拟,计算了车轮充型和凝固过程中的流场和温度场,预测了缩孔、缩松等缺陷,并就缺陷产生原因进行了分析,然后提出改进方案,优化了产品制造工艺,满足高铸造成品率的实际生产要求。
     3、针对结构优化设计过程中忽略的残余应力问题进行了分析,计算了车轮铸件的铸造残余应力,通过开发的接口程序将车轮的有限元网格信息和残余应力信息输入到ANSYS中,利用ANSYS的结构分析模块对车轮进行了加载计算,模拟了含有铸造残余应力的车轮在装车后形成的初始应力现象。这样的分析更符合铸件的实际生产情况,对后续的工作具有指导性意义。
     4、对铝合金车轮的弯曲疲劳强度试验进行了数值模拟,根据实际工况建立起车轮的有限元模型,在考虑铸造残余应力的基础上研究了螺栓预紧力、旋转离心力和试验弯矩对车轮结构强度的影响以及车轮结构的应力应变分布规律。同时,利用动态应变仪采集危险点的应力信号分析实际应力分布状态,结果表明:计算值与实测值间误差只有4%,有限元计算结果准确可靠,车轮结构能够满足强度的使用要求,利用有限元技术从结构使用强度上证明了车轮设计的合理性,同时对车轮结构的薄弱环节提出了修改方案,对车轮结构进行优化设计,做到节省材料的同时改善受力状况。
     经某车轮有限公司的实际验证,本文进行的汽车铝合金车轮的造型设计、低压铸造过程数值模拟及工艺优化和疲劳强度模拟验证的研究工作,具有很好的应用性、较大的通用性和工程实践价值,在合作项目中,取得了较大的经济效益。
Wheel is one of the most important parts in the driving system of automobile.It greatly affects the security and reliability of the car.We used to design wheels by experience.But it has many disadvantages,such as the blindness in design,the long period,the high cost and soon.The enterprises want exigent to improve the way because of the more and more intense competition.We build a platform about Design and Production of Aluminum Alloy Wheel Aided by Computer.Through Numerical Simulation,which provides the improving solution,the casting process is optimized. The preparation time for process is dramatically shortened and the cost of trial-production is reduced,saving valuable time for obtaining satisfactory percent of pass of the new model wheel.
     1.The conception of "Industrial Design" is applied to design the wheel.The methods and skills in the presentation of thoughts in modeling of the modeling design combine with the GB/T 3487-2005 tie the engineering technology and the presentation of artistic molding in perfectly.
     2.According to the process requirement of ProCAST for castings to be supplied to wheel,The basic model block and fluid analysis model block are applied to analyze fluid,temperature and stress when the casting is solidifying so as to predict shrinkage, dispersed shrinkage and other defects of these castings,being a scientific base for bogie castings manufacturing.
     3.Receive the residual stress of the wheel by the Stress Analysis module block of ProCAST software.Date exchange program is compiled.Node、element and the stress tensor at the node files are transmitted into ANSYS(a large-scale FEM software) using the Interface program.Then the structure of the wheel is analyzed by the structure module of ANSYS.Simulate the "initial dynamic stress" phenomenon of assambeled wheel.Through this mode,the wheel with residual stress can be analyzed when we load other weight on it.The results are more accurate than the one without residual stress.
     4.The structural strength is the key point to describe the quality of a wheel. Since the cornering test fails more frequently among the three,this paper applies CAE technology to analysis the structural strength under the condition of cornering test.The model of the aluminum alloy wheel is built.Stress analysis is carried out to study the influence of bolt pre-tension,centrifugal force and the cornering force to the structural as well as the distributing rule of stress and strain.To validate the result of CAE,the stress test is carried out.Compared with the collected stress,it proved that the error between them is just 4%.So the analysis model is correct and the result is credible.
     The research of modeling design,technique optimization、strength analysis and fatigue life prediction of aluminum alloy wheel possess versatility and practical value and obtain the huge economy benefit and engineering value in the project with an Auto company.
引文
[1]王祝堂.铝合金轮毂工业的发展[J].轻合金加工技术,1994,22(3):17-18
    [2]曾书民.高性能铝合金轮毂模锻新技术[J].中国有色金属学报,1997,7(1):65-66
    [3]张毅.铸造工艺CAD及其应用[M].北京:机械工艺出版社,1994
    [4]赵玉涛.铝合金车轮制造技术[M].北京:机械工业出版社.2004.6:5
    [5]赖华,范宏训.汽车铝合金轮毂的成形工艺[J].金属成形工艺,2002,20(6):38-40
    [6]沈少敏.汽车铝合金轮毂技术与设备引进可行性研究[J].特种铸造及合金,1995,(4):19-20
    [7]张正智,越人.国内外铝合金车轮制造业的现状与发展趋势[J].汽车研究与开发,2004(12):5-9
    [8]A.Coulibaly.Based Technologies in Modeling and Simulation,CAD/CAM Systems as the Basis of Integration Feature Mechanical Engineering.International Journal of 1998,18(1):26-35
    [9]范柳光.铸钢件凝固过程计算机模拟技术应用研究.大型铸锻件,2002,96(2):1-7
    [10]于百库,白文弟.铸什凝固过程温度场的数值模拟[J].中国铸造装备与技术,2002,218(2):16-19
    [11]K.Forsund.Das Eindringen von Stahl in Formsand Einflub der Ober flachenreaktion under Temperatur.Giesserei Techn.Wiss.Beih..1962,14(2):51-61
    [12]程军.计算机在铸造中的应用[M].北京:机械工业出版社,1994:121-127
    [13]P.R.Sahm,P.N.Hansen.Numerical Simulation and Modeling of Heat and Solidification Processes for Foundry and Cast House[J].CIATF Zurich,1984:21-23
    [14]J.T.Berry,J.A.M.Boulet.The Application of Geometric Modeling to Metal Casting Technology[J].Solid Modeling by Computer from Theory to Application.Plenum Press,1984:105-106
    [15]I.Ohnaka,T.Aizawa,etc.Computer Simulation of Solidification Processing[J].The Metals Society,1987:268-270
    [16]柳百成.新一代的精确铸造成形过程的物理冶金学基础技术学物理建模[M].柳百成院士科研文选.北京:清华大学出版社,2003:61-64
    [17]ESI GROUP.ProCAST—The Leading Finite Element Solution For Casting Process Simulation.2003:6-11
    [18]美国通力有限公司.ProCAST铸造过程仿真软件.北京:通力公司,1999:6-10
    [19]R.A.Ridha.Finite Element Analysis of Automotive Wheels.SAE Paper,760085
    [20]Miloslav Riesner and Richard I.DeVries.Finite Element Analysis and Structural Optimization of Vehicle Wheels.SAE Paper 830133
    [21]Marron,G.,and Teracher,P.Application of High-strength,Hot-rolled Steels in Automotive Wheels.Minerals,Metals&Materials Soc.JOM 48,1996
    [22]谢秀松,李兰芬,谭邦本.轿车61/2JJ×15型车轮钢圈应力分析.汽车工程,1984/4
    [23]韩鸣岗.汽车车轮有限元应力分析及结构优化:[硕士学位论文].武汉汽车工业大学, 199O/3
    [24]杨占春.基于有限元分析的汽车车轮结构优化设计.机械设计,2001/9
    [25]王立辉.铝合金车轮的强度分析及优化设计:[硕士学位论文].河北工业大学,2002/2
    [26]傅盛,夏复兴,袁庆丰.轿车车轮钢圈强度的有限元分析.机电一体化2003/4
    [27]张晨光.铝合金轮毂的造型设计与结构分析:[硕士学位论文].河北工业大学,2000/2
    [28]福克斯.工程中的金属疲劳.漆平生.北京:中国农业机械出版社,1983:1-3
    [29]弗罗斯特.金属疲劳.汪一麟.北京:冶金工业出版社,1984:1-2
    [30]叶旭轮,刘建华,张亚军.预载荷对曲轴弯曲疲劳强度的影响.机械工程材料,2001,25(9):35-36
    [31]余幼民.螺栓联接的疲劳破坏及改善措施.海南矿冶,2001,11(1):5-8参考文献
    [32]蒲泽林,刘宗德,杨昆,等.汽轮机联轴器螺栓低周疲劳特性实验研究.气轮机技术,2001,43(5):311-312
    [33]蒲泽林,刘宗德,杨昆,等.汽轮机联轴器螺栓剪切疲劳试验研究.机械强度,2002,24(4):588-590
    [34]Lemaitre J,Chaboche J L.Mechanics of Solid Materials[J].Cambridge University Press,1990:66-83
    [35]Chaboche J L.Continuous Damage Mechanics-A Tool to Describe Phenomena Before Crack Intiation.[J].Nucl Eng.Design,1981,64:233-247
    [36]Walter S.A History Of Fatigue.[J].Eng.Fract Mec.,1996,54(2):263-300
    [37]Lemaitre,Dufailly.Damage Measurements[J].Engng Fract Mech.,1987,28:643-650
    [38]Cheng S,Huang Y.Measurement Of Continuous Damage Parameter[J].Engng.Fract.Mech.,1988,31:985-992
    [39]Lemaitre J.A Course on Damage Mechanics[M].New York:Springer-Verlag,1992:93-103
    [40]Lemaitre J,Sermage J P,Desmorat R.A Two Scale Damage Concept Apllied to Fatigue[J].Int J Fract,1999,97:67-81
    [41]裴文开,姚陈编.工业设计基础.南京:东南大学出版社,1998
    [42]UnigraPhiesEssentialsUserManual,Version15.0,UnigraPhiesSolutionsIne,1998
    [43]李启炎,UGNXZ基础教程,上海,同济大学出版社,2006
    [44]付本国,UGNX3.0,三维机械设计,北京,机械工业出版社。2005
    [45]康鹏工作室,UGNX3.0三维建模精彩实例导航,北京,机械工业出版社。2005
    [46]王义林,郑金桥,李志刚.基于截面控制线模型的拉伸工序件设计.模具工业,2006,32(4):12-17
    [47]徐国生.基于UG的三维参数化汽车冲模标准件库研究与开发:[硕士学位论文].长沙:湖南大学,2004
    [48]万晖,廖敦明,刘瑞祥.UG环境下实用压铸模BoM系统的开发[J].特种铸造及有色合金,2005,25(4):213-215
    [49]尹显东,李在铭,刘春燕等.UG的二次开发及其应用技术研究[J].机械,2002(s1):32-34
    [50]川姚兴,石晓祥,陈军等.UG软什的二次开发工具在覆盖件冲模智能设计系统开发中 的应用[J].锻压技术,2002(6):55-57
    [51]刘维信主编汽车设计北京清华人学山版社 20017
    [52]大中逸雄.计算机传热凝固解析入门.北京:机械工业出版社,1998:16-29
    [53]杨全,张真.金属凝固与铸造过程数值模拟.浙江:浙江大学出版社,1996:2-14
    [54]王勖成,邵敏.有限单元法基本原理和数值方法[M].第2版北京:清华大学出版社,1998:46-48
    [55]孙逊等.大型铸钢轧辊三维充型与凝固过程数值模拟.铸造,1998,47(2):7-10
    [56]董秀琦.低压及差压铸造理论与实践[M],北京:机械工业出版社.2003
    [57]罗庚生.低压铸造[M].北京:国防工业出版社.1989
    [58]吴战越,王赏,宋德宏等.浅析低压铸造的工艺特点[J],煤矿机械械.2002(3):40-41
    [59]徐宏,侯华,杨品,等 铝合金电磁低压铸造CAD/CAE技术[J]兵工学报2006.5:511-512
    [60]赵镇南.传热学[M]北京:高等教育出版社2002.7:3
    [61]秦国庆,李兆铨.钢极水冷条件下的温度场分布[J].河北冶金,1999(1):18-20.
    [62]张春平,白敏丽.排气道隔热方式对气缸盖整体温度场影响的研究[J].小型内燃机,2001,30(1):1-4.
    [63]许光明,李兴刚,崔建忠.液固相铝-不锈钢板复合轧制温度场的模拟计算[J]钢铁研究学报2000(12):20
    [64]王柯,柳百成,熊守美,闻星火.低压铸造温度场数值模拟中换热情况处理[J].重庆大学学报,2002,25(12):11-12
    [65]李朝霞,郑贤淑,金俊泽.连续铸造铸锭与冷却水之间传热系数的确定[J]铸造,2001,50(1):141-142
    [66]杨世铭,陶文铨.传热学[M]北京:高等教育出版社,1998:5
    [67]赵镇南.传热学[M]北京:高等教育出版社2002.7:13
    [68]韩雄伟,吴卫.铝合金压铸模具温度场数值分析[J]常熟理工学院学报(自然科学版)2007(4):80-81
    [69]郭海冰,董秀琦.强制水冷离心铸造有限元模拟中边界条件的分析[J]铸造技术.200223(3):165-167
    [70]周玉辉;吴卫.压铸过程温度场的数值模拟及其在ProCAST中的应用[J]电加工与模具2005(5):42-45
    [71]苏大为,赵玉涛.低压铸造铝合金轮毂充型和凝固过程模拟分析.特种铸造及有色合金.2007年09期:682-684
    [72]Kreziak,G..,Rigaut,C.,Santarini,M.Low pressure permanent mould process simulation of a thin wall aluminum casting[J],Materials Science & Engineering A:Structural Materials:Properties,Microstructure and Processing.1993.v A173,n1-2
    [73]董秀琦.低压及压差铸造理论与实践[M]北京:机械工业出版社,2003.1:238-244
    [74]罗庚生,张志忠.低压铸造[M]北京:国防工业出版社,1989.1:97-98
    [75]Jolly MR.Cost Benefits of Solidification Simulation to Foundry Users[J].Foundry 1994,(1):11-18.
    [76]E.Carrera,A.Rodriguez,J.Talamantes.Measurement of residual stresses in cast aluminium engine blocks[J].Jourrnal of Materials Processing Technology.2007.(1):206-210
    [77]J.E.Wyatt,J.T.Berry,A.R.Williams.Residual stresses in aluminum castings.Jourrnal of Materials Processing Technology 2007(08):170-173
    [78]J.Z.YI,Y.X.GAO,P.D.LEE,and T.C.LINDLEY.Microstructure-based fatigue life prediction for cast A356-T6 aluminum silicon alloys[J].Metallurgical and materials transactions.2006(v37):301-311
    [79]P.LI,D.M.MAIJER,T.C.LINDLEY,P.D.LEE.Simulating the residual stress in an A356automotive wheel and its impact on fatigue life[J].Metallurgical and materials transactions 2007(v38):505-515
    [80]Maurice I.Ripley,Oliver Kirstein.Residual stresses in a cast iron automotive brake disc rotor[J].Physica B:Condensed Matter,Volumes 385-386,Part 1,2006(11):604-606
    [81]W.Y.Chien,J.Pan,D.Close,S.Ho.Fatigue analysis of crankshaft sections under bending with consideration of residual stresses[J].International Journal of Fatigue,Volume 27,Issue 1,January 2005(1):1-19
    [82]G.Albertini,G.Bruno,F.Fiori,E.Girardin,A.Giuliani,E.Quadrini and F.Romani.Neutron diffraction measurements for the determination of heat treatment effectiveness in generating compressive residual stress in an automotive crown gear[J].Physica B:Condensed Matter,Volumes 276-278,2000(5):925-926
    [83]Olga Karabelchtchikova,Iris V.Rivero and Simon M.Hsiang Maurice I.Ripley and Oliver Kirstein.Residual stresses in a cast iron automotive brake disc rotor[J].Physica B:Condensed Matter,Volumes 385-386,Part 1,15 2006(11):604-606
    [84]Alessandra Giuliani,Gianni Albertini,Fabrizio Fiori and Emmanuelle Girardin.Residual stress analysis on AA6061+22%A12O3p simple shape demonstrators of a wheel hub[J].Physica B:Condensed Matter,Volume 350,Issues 1-3,Supplement 1,15 2004(7):E495-E498
    [85]I.G.WATSON,P.D.LEE,R.J.DASHWOOD,and P.YOUNG.Simulation of the Mechanical Properties of an Aluminum Matrix Composite using X-ray Microtomography[J].Metallurgical and materials transactions,2006(5):551-557
    [86]苏大为,赵玉涛.考虑铸造残余应力的铝合金轮毂载荷分析.机械工程材料 2008,(5)
    [87]刘强,蒋玉明,杨屹等.铸件铸造过程应力场数值模拟[J].热加工工艺 2002,(5):52-54
    [88]雄守美,许庆彦,康进武.铸造过程模拟仿真技术[M]:278-292
    [89]Duane Hanselman B.Littefield著 李人厚 校译 MATLAB 5.0[M]西安:西安交通大学出版社 2000.11
    [90]赵玉涛.高强度、高延性铝合金轮毂材料的研究[J].江苏理工大学学报 1996(6)68-72
    [91]谭建荣,吴培宁,张树有等.压铸件凝固过程温度场变化的计算机模拟[J].农业机械学报,2002(2):105-108
    [92]苏大为,赵玉涛,王雷刚.前处理软件与ProCAST的接口连接方式.特种铸造及有色合金.2007年05期:348-350
    [93]Brown M W.Multiaxial Fatigue Testing and Analysis,in Fatigue Testing and High Temperature[M].London:AppliedSciencePublishers,1983:97-103
    [94]Brown M W.Low Cycle Fatigue Testing under Multiaxial Stresses at ElevatedTemperature in Measurement of High Temperature Mechanical Properties of Materials[M].London:Her Majesty's Stationary Office,1982:185-193
    [95]Andrews J M H,Ellision E G.A Testing Rig for Cycling at High Biaxial Strains[J].JStrain Anal,1973,10:1-9
    [96]Parsons M W,Pascoe J K.Development of a Biaxial Fatigue Testing Rig[J].J Strain nal,1973,10:1-9
    [97]钱锋,张治.汽车零部件计算机模拟疲劳试验研究.学术论坛,2002,(4):15-17
    [98]牟猷芳,候经纵.全国汽车车轮标准实施监督工作手册.天津:车轮实验中心,1995:144-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700