氧化皮对热轧盘条耐蚀性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁腐蚀与防护是一个困扰钢铁工业的难题。全世界每年因腐蚀而报废的钢铁材料和设备的量约为金属年产量的1/4~1/3。热轧盘条轧制成形以后,在放置过程中,表面往往会产生不同程度的锈蚀,这造成了材料的损耗,也大大降低了盘条的产品质量。其在轧制过程中以及在之后的空冷过程中,表面会自然形成一层薄的氧化铁皮。这层氧化皮在后续深加工中,需要极力去除。但是,这层氧化皮在热轧盘条的保存,转运过程中能起到极好防护作用。因此研究这层氧化皮的成分,致密性,以及防腐性能对于指导工业生产有着重要的意义。
     本文首先采用红外光谱检测盘条氧化皮的物相组成,扫描电镜观察氧化皮的组织形貌和结构,电化学方法及加速腐蚀实验测量热轧盘条的耐腐蚀性能。通过对比几种不同表面质量的盘条氧化皮,总结了热轧盘条的氧化皮的不同厚度、致密性、以及与基体的结合性对盘条耐腐蚀性能影响的规律,得出了盘条易锈蚀的原因。结果表明:在存放条件,外界环境气氛以及盘条成分材料基本一致的情况下,表面质量就成为了影响盘条锈蚀的关键因素。表面质量好即氧化层完好,厚度均匀,致密性高,基体与氧化层的结合紧密都能提高热轧盘条防腐性。
     其次,因为控冷工艺是影响热轧盘条氧化皮表面质量的主要因素,本文采用GLEEBLE1500型热模拟试验机研究了热轧盘条生产过程中的加热温度、保温时间、吐丝温度、冷却速度等控冷工艺参数对氧化皮耐蚀性影响。实验中,以不同的吐丝温度,不同的冷却速度冷却到500℃后空冷。吐丝温度分别选取910℃、880℃、850℃,冷却速度分别选取0.5℃/S、1℃/S、2℃/S、3℃/S。并通过X射线衍射检测氧化皮的物相组成,扫描电镜观察氧化皮的表面形貌、厚度、致密度,加速失重腐蚀实验检测氧化皮的耐蚀性。实验结果表明:吐丝温度为850℃、冷却速度为2℃/S的冷却工艺能得到较理想的厚度适中,致密度高,与基体结合紧密的氧化皮。吐丝温度为910℃和880℃会导致氧化皮增厚并产生裂纹,冷却速度0.5℃/S、1℃/S也会导致氧化皮增厚,冷却速度为3℃/S则导致氧化皮薄,起不到保护作用。
     在上述试验研究基础上又对热轧盘条实际生产控冷工艺进行了改进。结果表明,现场控冷工艺参数优化后,精轧温度为880℃、吐丝温度为860℃的盘条氧化层表面形貌质量得到改善:厚度适中、氧化层与基体的结合较好、无明显裂纹、且氧化层致密,耐锈蚀性能明显提高。
It is well know that the steel corrosion and protection is a big problem puzzling iron and steel industry. Every year, the metal yearly output of approximately a quarter to a third have been discarded by corrosion. Due to the surface corrosion of steel wire rolled and deposited in the air, the quality of steel wire will be decreased, meanwhile, the waste of material will be resulted. In the process of rolling machining and exposure to air, the hot-rolled wire will inevitably be formed a thin oxide scales on the surface. In the following machining of the hot-rolled wire, it’s necessary to remove the oxide scale. However, the oxide scale can be used against kinds of corrosion in the saving and transferring process before the next working procedure. Thus, it is significant for industrial manufacturin to research the oxide scale of composition, compacting and antisepsis capability.
     In this paper, the material component and morphology of oxide scale were respectively investigated by using the infrared absorption spectroscopy and SEM. Additionally, the anti-corrosive performance of steel scale on wire rod was also be researched by using the electrochemical potentiodynamic polarization curves and accelerated corrosion test. Comparing the oxide scale with different surface quality, a rule of anti-corrosive performance of steel scale was summarized by researching the influence of scale thickness, tightness and combines of substrate and steel scale on the anti-corrosive performance of steel scale. The results indicate that the surface quality of oxide scale can play an important role in effecting the anti-corrosive performance in the condition of constant air condition, deposited environment and material component. The high surface quality of oxide scale, including the thickness, well tightness and binding force between substrate and steel scale, can enhance the anti-corrosive performance of steel scale on wire rod.
     Due to the cooling process is an important effect on the surface quality of steel scale on wire rod, the influence of parameters in the process of producing the hot-rolled wire rod on corrosion resistance of iron oxide scale, such as the heating temperature, cooling rate and the cooling temperature was investigated by using the thermal simulator of GLEEBLE1500. The different cooling temperature of 910℃, 880℃and 850℃and cooling rate of 0.5℃/S,1℃/S,2℃/S and 3℃/S was respectively adopted in our experiments. Moreover, the scale composition was primarily analyzed through XRD. The scale surface feature, thickness and tightness were observed through SEM. The anti-corrosive performance of steel scale was investigated by accelerated corrosion test. The results indicate that when the temperature and cooling rate in the cooling process is 850℃and 2℃/S, the oxide scale with optimal thickness, tightness and binding force between substrate and steel scale can be obtained. The cooling temperature of 910℃and 880℃can increase the thickness of oxide scale and make the oxide scale crack. Moreover, the thickness of oxide scale also can be increased in the cooling rate of 0.5℃/S and 1℃/S. when the cooling rate is 3℃/S, the thickness of oxide scale will be decreased and lose the performance of corrosion resistance.
     Based on the above research, the practical production of steel wire rod was also be ameliorated. The results indicate that the surface quality of oxide scale including optimal thickness, tightness, the anti-corrosive performance, less crack, and binding force between substrate and steel scale, can be improved in the optimal process of rolling temperature at 880℃and cooling temperature at 860℃.
引文
[1]魏宝明.金属腐蚀理论及应用.北京:化学工业出版社, 2004,10-20
    [2]李铁藩.金属高温氧化和热腐蚀.北京:化学工业出版社, 2003:3-6, 51-54, 168-172.
    [3]蒋柯,韩静涛.20MnSi氧化铁皮成分和结构研究.塑性工程学报,2000,7(3):40-43
    [4]刘秀晨,安国强.金属腐蚀学.北京:国防工业出版社,2002, 6-14, 62, 262 -267
    [5]魏天斌.热轧氧化铁皮的成因及去除方法.钢铁研究, 2003, 4(8):54-57
    [6] Chaliampalias D, Vourlias G, Pavlidou E, et al. High temperature oxidation and corrosion in marine environments of thermal spray deposited coatings. Applied Surface Science, 2008, 255(9):3104-3111
    [7] Li Peng, Qing Li, Zhou Zhou. Cooling hot rolling steel strip using combined tactics. Materials, 2008, 15(3):362-365
    [8] Lesiak B, Jablonski A, Zemek J, et al. Studies of iron and iron oxide layers by electron spectroscopes. Applied Surface Science, 2005, 252(6):330-338
    [9] Nishimura T. Rust formation and corrosion performance of Si-and-Al-bearing ultrafine grained weathering steel. Corrosion Science, 2008, 50(5):1306-1312
    [10]王银军,穆海玲,董汉君,等. SPHC热带氧化铁皮酸洗困难原因及对策.轧钢,2006, 23(4):51-54
    [11] Frolish M F, Krzyzanowski M, Rainforth W M. Oxide scale behavior on aluminum and steel under hot working conditions. Journal of materials processing technology, 2006, 177(3):36-40
    [12]董汉君,陈家光,穆海玲,等.卷取后热轧带钢氧化铁皮显微分析.中国冶金,2007, 17(10):40-44
    [13] Chattopadhyay A, Bandyopadhyay N, Panigrahi M K, et al. Oxide scale characterization of hot rolled coils by Raman spectroscopy technique.Scripter Material, 2005, 52(3):211-215
    [14]吴祝民.热轧带钢氧化铁皮的成因及对策.轧钢,2007, 24(3):56-58
    [15]史良权.宝钢2030冷轧裸板易锈蚀原因.宝钢技术, 2002, 2(2):52-57
    [16]中村.板坯加热时氧化铁皮的高温剥离性.宽厚板, 2004, 6(3):42-46
    [17]何建新,易平,李泽华,等. Q235钢海洋大气腐蚀暴露实验研究.表面技术, 2006, 35(4):21-23
    [18]沈继程,何慎. 304奥氏体不锈钢带氧化皮直接冷轧技术研究.宝钢技术,2007, 6(4):13-15
    [19]张孟仪,邵光杰.原子力显微镜在低碳钢热轧板氧化铁皮分析上的应用.电子显微学报, 2006, 36(25):177-178
    [20]朱立,孙本良.钢材酸洗技术.北京:化学工业出版社,2007, 14-20
    [21]韩兴军,张继奎,李修峰,等.中轧车间大规格圆钢表面麻坑产生原因分析.山东冶金,1999,21(5):45-46
    [22]韩卫国,刘俊亮,崔玉所.氧化铁皮在冷轧工序中的演变.宝钢技术, 2004,6(2):16-17, 34
    [23]袁鹏举,王奉县,王化巨,等.阻锈处理技术在钢筋生产中的应用.轧钢, 2001,18(4):34-36
    [24]宋涛,闵宏刚.热轧钢板红色氧化铁皮形成原因分析.甘肃冶金, 2001, 4(5):27-30
    [25]张清东,黄纶伟,吴彬,等.热轧带钢表面氧化皮实测分析.上海金属, 2000, 22(5):32-34
    [26] Perez F J, Martinez L, Hierro M P. Gomez C. Corrosion behavior of different hot rolled steels. Corrosion Science, 2006, 48(2):472-480
    [27]夏立芳.金属热处理工艺学.哈尔滨:哈尔滨工业大学出版社, 1996, 30-32, 68-70
    [28]林芳婷,石旺舟,马学鸣.冷却速率对低碳钢线材表面氧化皮微观结构的影响.华东师范大学报, 2006, 4(3):23-28
    [29] Bhattacharya R, Jha G, Kundu S, et al. Influence of cooling rate on the structure and formation of oxide scale in low carbon steel wire rods during hot rolling. Surface&Coating Technology, 2006, 201(3):526-532
    [30]王昭东,杨光,张春丽,等.热轧钢卷强制冷却中的应力腐蚀分析.钢铁, 2002, 37(11):53-57, 63
    [31]李美栓.金属的高温腐蚀.北京:冶金工业出版社, 2001,79-90, 196-230
    [32]戴宝昌.重要用途线材制品生产技术.北京:冶金工业出版社, 2001,48-69
    [33]李曼云,乔德庸.高速轧机线材生产.北京:冶金工业出版社, 1995,116-142
    [34]那宝魁.我国高线盘条的标准与质量.轧钢,1993, 16(1):42-44
    [35]刘朝建.线材制品的现状与“十一五”发展趋势.冶金经济与管理,2004, 34(4):29-31
    [36]陈惠玲,魏雨.碳钢在含SO2环境大气中腐蚀机理的研究.腐蚀与防护, 2006, 27(6):284-286
    [37]杨晓梅.大气腐蚀研究中钢锈层的光谱分析.光谱学与光谱分析, 2000, 20 (3): 347-349
    [38] Birks N, Meier G H. Introduction to High Temperature Oxidation of Metals. London: Edward Arnold, 1983, 76(38):134-156
    [39]王光雍,王海江,李兴濂,等.自然环境的腐蚀与防护.北京:化学工业出版社, 1997, 20-25
    [40]胡传祈.表面处理手册.北京:北京工业大学出版社,2004,9-10,221
    [41] Weihua Sun, Tieu A K. Oxide scales growth of low-carbon steel at high temperatures. Journal of Materials Processing Technology, 2004, 156(15): 1300–1306
    [42] Anjali Taleka, Dhanesh Chandra. Oxidation kinetics of high strength low alloy steels at elevated temperatures. Corrosion Science, 2008, 50(10):2804-2815
    [43] Krzyzanowski M, Beynon J H. Modeling the boundary conditions for thermo-mechanical processing– oxide scale behavior and composition effects. Model Simulation Mater Science Engineering, 2000, 8(6):927–945
    [44] Krzyzanowski M, Beynon J H, Sellars C M. Analysis of secondary oxide scale failure at entry into the roll gap. Metallic Material Transaction, 2000 31(6):1483–1490
    [45] Krzyzanowski M, Beynon J H. Measurement of oxide properties for numerical evaluation of their failure under hot rolling conditions. Journal of Materials Processing Technology, 2002, 125(38):398-404
    [46] Nickel H T, Wouters M, Thiele W. Quadakkers. The effect of water vapor on the oxidation behavior of 9%Cr steels combustion gases. Fresenius J Anal Chem, 1998, 361(6):540-544
    [47] Gonzalez J A, Otero E, Cabans C. Recording polarization curves in thin electrolyte layer by electrochemical atmospheric corrosion monitors. Br Corros J, 1990, 25(2):125-132
    [48] Chung S C, Lin A S, Chang J R, et al. EXAFS study of atmospheric corrosion products on zinc at the initial stages. Corros Sci, 2000(42):1599-1602
    [49]程英亮,吴海兰,李玲玲,等. ZK60镁合金磷酸盐及锡酸盐化学转化膜.中国有色金属学报, 2007, 17(5):676-682
    [50] Schmutz P and Frankel G S. Characterization of AA2024-T3 by scanning Kelvin probe force microscopy. J Electrochem Soc, 1998, 145(7):2285-2293
    [51]林方婷,石旺舟,马学鸣.冷却速率对低碳钢线材表面氧化皮微观结构的影响.华东师范大学学报, 2006, 26(4):23-28
    [52] Fishkis M, Lin J C. Formation and evolution of a subsurface layer in a metalworking process. Wear, 1997, 206(1):156–170
    [53]祝汉良,郭景杰,贾均.压铸模与铝铸件焊合区的特征及形成机理.特种铸造及有色合金, 1999(5):23-25
    [54] Chen W, Jahedi M Z. Die erosion and its effect on soldering formation in high pressure die casting of aluminum alloys. Materials&Design, 1999, 20(6):303 -310
    [55]何建明.铝合金压铸模的防粘模处理.热加工, 1997,(8):4-5
    [56] Saeki I, Konno H, Furuichi R. Initial oxidation of type 430 stainless steels with 0.09-0.9 Mn in O2-N2 atmospheres at 1273K. Corrosion Science, 1996, 38 (9): 1595-1612
    [57] Saeki I, Konno H, Furuichi R, et al. The effect of the oxidation atmosphere on the initial oxidation of type 430 stainless steel at 1273K.Corrosion Science, 1998, 40 (2): 191-200
    [58] Saeki I, Konno H, Furuichi R. The initial oxidation of type 430 stainless steel in O2-H2O-N2 atmospheres at 1273K.Corrosion Science, 1996, 38 (1): 19-31
    [59] Saeki I, Saito T, Furuichi R, et al. Growth process of protective oxides formed on type 304 and 430 stainless steels at 1273K. Corrosion Science, 1998, 40(8): 1295-1302
    [60] Barrau O, Boher C, Gras R, et al. Analysis of the Friction and Wear Behavior of Hot Work Tool Steel for Forging.Wear, 2003, 255(2):1444-1454

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700