脉冲电流处理对热作模具钢组织及性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以热作模具钢为研究对象,研究了瞬态高能量脉冲电流处理对热作模具钢组织和性能的影响。研究发现脉冲电流处理后在热作模具钢热疲劳试样的切口前端形成热影响区,该区内的组织明显细化且硬度提高。脉冲电流处理提高了热作模具钢的抗拉强度,但也使其延伸率有所降低。冲击实验的结果表明,适当的脉冲电流处理可以提高热作模具钢的冲击韧性。热磨损实验证明,脉冲电流处理提高了热作模具钢的高温抗氧化性、抗热磨损性能。脉冲电流处理延缓了热疲劳裂纹的萌生,降低了热疲劳裂纹的扩展速率,提高了热作模具钢的抗热疲劳性能,并通过细晶强化、位错强化、弥散强化、应力转换强化四种机制解释了其作用机理。在对带有预制宏观裂纹的热作模具钢试样进行脉冲电流处理时,发现脉冲电流处理使预制裂纹尖端曲率半径增大、钝化,起到了裂纹止裂的目的。本文采用有限元分析的方法模拟研究了带有预制切口的热作模具钢试件在脉冲电流处理时的温度场、应力场。模拟计算表明在脉冲电流放电时,预制切口前端升温迅速且温升较大,在切口前端形成了很大的压应力场。模拟计算结果和实际实验有很好的对应关系,这对脉冲电流技术的实际工程应用中的参数优化具有重要的指导意义。
important foundation of process equipment was paid more and more attention .As the basement of die industry the die steel was developed raptly in recent years. According to the working conditions the die steel can be divided into cold working die steel and hot working die steel. The hot working die is in service under extreme condition, repeatedly heated and cooled by hot metal and cooling medium. Therefore the hot working die material is requested to be with the properties of high strength, high hot hardness, good hot stability and good resistance of thermal fatigue. The main invalidation form of hot working die is makeup of fracture, distortion, thermal fatigue and hot wear. As to one die, the invalidation form may be only one, also be some of them, it is lied on the working condition and property of die material.
     For prolonging the life of dies to deduce the production cost, we must to improve the property of hot working die steel when the working condition is immutable. Presently, to improve the property of the material, we can optimize the composition, improve the preparation technics, do surface treatment and pulse current stimulation. The pulse current technology was developed in recent years, as a new technology it was paid more and more attention. The main effect of pulse current stimulation on metal material is that the microstructure is refined, the electroplastic effect, the bulk of metal glass is crystallized, the fatigue of materials is recovered so as to prolonging the life of materials.
     In this paper, the hot working die steel is the research object. The effects of high-energy instant impulse current stimulation on microstructure and property of the die steel are studied. The main achievements of the study are as follows:
     1. After pulse electric current stimulation a heat affected zone (HAZ) is formed ahead of specimen notch. The area of HAZ is gradually enlarged with the prolonging of discharging duration and the increase of discharging voltage. However, when the discharging duration is too long (>240ms), part of the surface is melted. The microstructure of the HAZ is refined after pulse current stimulation. The effect is more evidently with the prolonging of the discharging duration, and the increase of the discharging voltage. At the same discharging duration and voltage but different stimulation phases, the effect of the pulse electric current on the microstructure is different. The effect is more evident simulated after 500 cycles of thermal fatigue. The XRD side inclination and fixedΨmethod measurement show that the surface residual stress of the spacemen stimulated by pulse electric current after 500 cycles of thermal fatigue is negative, and the value is increased with the increase of discharging duration and discharging voltage.
     2. The hardness of HAZ is improved after pulse electric current stimulation, and the amplitude is lager with the prolonging of the discharging duration. The ultra tensile strength of hot work die steel is improved after pulse electric current stimulation. At different stimulation phases the effect of the tensile property of hot work die steel is different. The strengthening effect is much more effective in the specimen stimulated after thermal fatigue. In this experiment, the longer the discharging duration and the higher the discharging voltage is, the more the ultra tensile strength of the specimen is improved. However, the elongation of electro-stimulated specimen is much lower than that of the un-electro-stimulated one, and the higher the ultra tensile strength the lower the elongation it is. The impact toughness of hot working die steel is improved after properly pulse current stimulation, which will be reduced when the discharging duration is too long. In this experiment, 40 cycles is the best discharging duration. The high-temperature wear resistance is improved after pulse current stimulation. And the long the discharging duration is the more the high-temperature oxidation resistance and high-temperature wear resistance is improved.
     3. The resistance of thermal fatigue the resistance of the initiation and propagation of thermal crack of hot work die steel are improved after pulse electric current stimulation, especially for the steel after thermal fatigue for 500 cycles. In this experiment, the longer the discharging duration and the higher the discharging voltage is, the more the resistance of thermal fatigue. The prefabricate crack is passivated and the curvature of the tip was decreased after properly pulse electric current stimulation. Finally, the crack is prevented. The improvement of thermal fatigue resistance is explained though four mechanism of refining strengthening, dislocation strengthening, dispersion strengthening and stress counteraction strengthening.
     4. Traditionally, the forecast of the temperature filed and stress filed come from pulse current stimulation is based on the experiment and experience curve or experience formula. To study the temperature filed and stress filed just though experiment is difficult and can not completely forecast the effect of the pulse current stimulation to the whole specimen. The study adopt finite element method simulated temperature field and thermal stress field of the specimen with prefabricate notch stimulated by pulse current. Calculation result shows that, the temperature rise is instantaneous and a thermal compressive stress field formed on the tip of the notch, during electro-pulsing discharging process. The simulation result is corresponding with the practical experiment; it is very important to the application of the pulse current technology in engineering.
引文
[1]. 洪慎章.模具制造业的现状及发展方向.模具制造. 2003,1(18):3-5.
    [2]. 李和平,肖根福.模具技术现状与发展趋势综述.井冈山学院学报(自然科学).2006,27(2):46-49.
    [3]. 洪慎章.模具工业的发展趋势及塑性成形技术的研究方向.模具制造. 2003, 12(29):3-5.
    [4]. 杜光华.模具钢的发展现状.特殊钢. 1999,1 : 9-14.
    [5]. 冯兆义.热作模具钢的疲劳性能影响因素的研究.吉林大学硕士论文.2006.
    [6]. 沈俊峰,沈利群.提高模具材料疲劳抗力的途径.上海金属.1998, 2(10): 35 -37.
    [7]. Las-Ake Norstrom Scand.Performance of Hot Work Tool Steels.Metallurgy. 1981, 9:45-47.
    [8]. C.S.Xie,J.S.Zhao.An Approach to Developing a Hot-work Die Steel for HighTemperature Application. Mater Sci. Aug..1990, 124A:1-9.
    [9]. H. Sehitoglu.Thermal-mechanical fatigue life prediction methods.STP, ASTM.1992, 1122:47-76.
    [10]. M.Buission, A. Molinrai.On thermal elastic damping in hetero genous material. Thermomechanical Couplings in solids, edited by H. D. Bui and Q. S. Nguyen, IUTAM, 1987:55-69.
    [11]. I.Cemy, V.Linhart etc. Influence of laser hardening and resulting microstructure on fatigue properties of carbon steels. Journal of Materials Engineering and Performance, ASTM International, 1998, 3(7):361-366.
    [12]. H.Samrout and R. EI Abdi, Fatigue behavior of 28CrMoV5steel under thermomechanical loading, Int. J. Fatigue, 1998, 8(20):555-563.
    [13]. 樊爱民等. 热处理对热作模具钢热疲劳能力的影响. 兵器材料科学与工程.1992, 15(11):31-36.
    [14]. V. Subramnya, Sarma etc. Low cycle fatigue behavior of low carbonmicroalloyed steel: microstructural evolution and life assessment. Materials Science and Technology, 1999, 15:260-264.
    [15]. Fuchs K D. Hot work tool steel with improved properties for die casting die application. The Use of Tool Steel, Proceedings of the 6Th international Tooling Conference, Sweeden, 2002:15-22.
    [16]. D.A. Spera, D.F. Mowbray. Thermal fatigue of materials and components. STP612, ASTM, 1976:1-12.
    [17]. Hovestadt etc. Tena glass cacmillian, New York, 1902:208.
    [18]. C.S. Xie, J.S. Zhao. An approach to developing a hot-work die steel for high temperature application. Mater Sci. Aug., 1990, A124:1-9.
    [19]. 刘俊英,蒋柏平,刘金海.热作模具钢的发展与应用.材料与工艺.2006.6,48-51.
    [20]. 刘剑红.几种钢材热疲劳行为的研究.哈尔滨工业大学博士学位论文.1991.
    [21]. 波卢欣.塑性变形的物理基础.冶金工业出版社.1987:6.
    [22]. 邵培革.热处理机制对 GR 钢和 3Cr2W8V 钢热疲劳行为影响的研究.哈尔滨工业大学硕士学位论文.1990:10-13.
    [23]. J.Landford. Initiation of Fatigue Cracks in 4340 Steel.Met.Trans.1973,(4):553.
    [24]. Newport.A .G linka.G.Ex pt,Mech.,1990,30(2):208-216.
    [25]. 梁洪达等.Mn 对热作模具钢 4Cr3Mo2NiVNb 热疲劳性能的影响.金属热处理学报.1999,15(4):22-25.
    [26]. P.J.E.Forsyth. Fatigue Damage and Crack Growth in Aluminum Alloy. Acta Met. 1963,11(7):703-706.
    [27]. M.Gell. The Characteristics of Stage I Fatigue Fracture in High-Strength Nickel Alloy. Acta Met.1968,(6):55.3.
    [28]. C.Laird. Fatigue and Microstructure. ASTM, Metals Park.Ohi. 1979:148-153.
    [29]. C.Laird. Fatigue Crack Propagation. ASTM,STP415.1967:131.
    [30]. B.B.Shields. Analytical Methods for Calculation of Stress Intensity Factors and Fatigue Crack Growth.Fra.Mech.1981,42(1):1 一 12.
    [31]. 宁志良. 压铸模具温度场热应力场及热疲劳行为的研究. 哈尔滨工业大学博士论文.2001.
    [32]. K. Hamada. Effects of precipitate shape on high temperature strength of Modified 90Cr-1Mo Steels. ISIJ International, 1995, 35(1):86-91.
    [33]. 隋鹤龙. 新型高 Cr 热作模具钢的组织与性能(博士学位论文). 长春: 吉林大学, 2006.
    [34]. 唐文军, 吴晓春. 4Cr5MoSiV1 钢中碳化物对热疲劳性能影响. 热处理,2003, 18(1):32-35.
    [35]. A. Gustafson, J. Agren. Modelling of carbo-nitride nucleation in 10% Cr steel.Acta mater., 1998, 46(1):81-90.
    [36]. J.H. Park etc. The effects of alloying elements on thermal fatigue and thermal shock resistance of the HSLA cast steels. ISIJ International, 2000, 40(11): 1164 -1169.
    [37]. 常立民等. 稀土元素对低铬半钢热疲劳性能的影响. 中国稀土学报, 2002, 20(1):85-87.
    [38]. Y.W. Son, Q.S. Luo etc. Effect of RE-B modification on the strength and toughness of 30CrMn2Si cast steel. J. Mater. Sci., 1994, 29(6):1492-1496.
    [39]. Q.X. Yang, Z.Q. Cui etc. Effect of rare earth elements on growth dynamics of austenite in 60CrMnMo steel. J. Rare Earth, 1999, 17(1):46-48.
    [40]. R.M. Ramage, K.V. Jata etc. The effect of phase continuity on the fatigue and crack closure behavior of a dual phase steel. Metall. Mater. Trans. A, 1987, 18:1291-1298.
    [41]. 张文华.材质和热处理对模具钢热疲劳性能的影响.耐磨料,1999,2:26-28.
    [42]. 胡正前等. 淬火工艺对 H13 钢韧性影响. 武汉工业大学学报,1996, 18(4): 61-63.
    [43]. S. Suresh 著,王中光译.材料的疲劳.北京:国防工业出版社,1993.
    [44]. A.M. Sherman, R.G. Davies. The effect of martensite content on the fatigue of a dual-phase steel. Int. J. Fatigue, 1981, 3:36-40.
    [45]. S.R. Mediratta, V. Ramaswamy etc. Low cycle fatigue behavior of dual-phase steel with different volume fractions of martensite. Int. J. Fatigue, 1985, 7:101-106.
    [46]. Z.Z. Hu, M.L. Ma etc. The effect of austenite on low cycle fatigue in three-phase steel. Int. J. Fatigue, 1997, 19(8-9):641-646.
    [47]. Y.C. Lin, Y.T. Lin etc. Role of retained ferrite on the thermal fatigue cracking resistance in martensitic stainless steel weldment. Mater. Sci. Eng. A, 2003, 339:133-135.
    [48]. 丁柏群,曹贵允.60CrMoRE 钢热疲劳性能研究.钢铁. 1999,34(2):38-42,50.
    [49]. A.K.Vasudevan, K.Sandananda and K.Rajan. Role of microstructure on the growth of long fatigue cracks. Int. J. Fatigue, 1997, 19(1):S151-S159.
    [50]. 何晋瑞. 金属高温疲劳. 北京: 科学出版社, 1988.
    [51]. V. Firouzdor, M. Rajabi etc. Effect of microstructural constituents on the thermal fatigue life of A319 aluminum alloy. Mater. Sci. Eng. A, 2007,454-455:528-535.
    [52]. W. Zleppnig, R. Danzer etc. Influence of the structure and the temperature field on the formation and propagation of thermal fatigue cracks. Proceedings of the 6th Biennial European Conference on Fracture, Amsterdam,1986.1139-1142
    [53]. A.M. Schindler, R.B. Danzer. Advanced materials for die casting and extrusion application-die life in die casting. Proceedings of the International Conference Step into the 90’s, 3. Queensland, 1986,905-909
    [54]. 张志辉.激光仿生耦合处理热作模具的热疲劳性能研究.吉林大学博士论文. 2007.
    [55]. 梁云虹.物理场对铸造热作模具钢微观组织和热疲劳行为的影响.吉林大学硕士论文.2005.
    [56]. V. Abramov. Action of high intensity ultrasonic on solidifying metal [J]. Ultrasonic,1987,25(2):73~76
    [57]. V. Abramov. Ultrasound in Liquid and Solid Metal [M].CRC Press Boca Ratan,F1,1994:289~329.
    [58]. Irsid. Ultrasonic can replace mouls oscillation during billet casting [J]. Steel Times Int,1989,(5):49~51
    [59]. 方铭, 杜百平. 疲劳损伤及中间退火修复的 40Cr 试件的微观结构分析. 机械强度 , 2003, (02),207-211.
    [60]. 杨晓华,李年. 回火对 2Cr13 钢疲劳损伤的恢复作用 [J]金属热处理学报 .1999, (01) ,6-11.
    [61]. 徐耀坤. 模具表面强化处理新技术. 锻压技术 . 2000, (01),58-60.
    [62]. Conrad H, White J, Cao W D, Lu X P, Sprecher A F. Material Science and Engineering, A 1991, 45,1.
    [63]. Cao W D, Conrad H. Fatigue Fract Engng Mater Struct, 1992. 6:573-579
    [64]. 沈以赴; 周本濂; 何冠虎; 姚戈; 鄢红春 材料疲劳恢复新途径的探索Ⅰ──低碳钢疲劳寿命的延长 材料研究学报 10(2)(1996) 165-166.
    [65]. O.A. Troitskii, Pressure shaping by the application of a high energy. Mater. Sci. Eng. A. 75(1985) 37-50.
    [66]. A.K. Misra, A Novel Solidification Technique of Metals and Alloys: Under the Influence of Applied Potential. Metall. Trans A. 16(77) (1985) 1354-1355.
    [67]. M. Nakada, Y. Shiohara, M.C. Flemings, Modification of Solidification Structures by Pulse Electric Discharging, ISIJ International , 30 (1990) 27-33.
    [68]. H. Conrad, Influence of an electric or magnetic field on the liquid–solid transformation in materials and on the microstructure of the solid, Mater. Sci. Eng. A 287(2) (2000) 205-212.
    [69]. 鄢红春,何冠虎,周本濂,秦荣山,郭敬东,沈以赴.脉冲电流对 Sn-Pb合金凝固组织的影响.金属学报.33(4)(1997):352-358.
    [70]. 秦荣山,鄢红春,何冠虎,周本濂,直接晶化法制备块状纳米材料的探索 I 脉冲电流作用下无序金属介质的成核理论,材料研究学报,9(3)(1995)219-222。
    [71]. 秦荣山,周本濂.直接晶化法制备块状纳米材料的探索 II 脉冲电流作用下金属熔体结晶晶粒尺寸的理论计算.材料研究学报.11(1)(1997)69-72.
    [72]. H. Conrad, A.F. Sprecher, W.D. Cao, X.P. Lu,Electroplasiticity –the effect of electricity on the mechanical properties of metals, J.O. M.42(99) (1999):28-33.
    [73]. H. Conrad, Electroplasticity in metals and ceramics, Mater. Sci. Eng. A287 (2000) 276-287.
    [74]. 藤功清,晁月盛,赖祖涵.Fe78B13Si9 非晶合金纳米晶化的新方法.科学通报.39(11)(1994)974-976.
    [75]. 藤功清,晁月盛,赖祖涵.Fe78B13Si9 纳米合金的晶体结构.东北大学学报(自然科学版)19(3)(1998)274-250.
    [76]. 藤功清,晁月盛,赖祖涵.Fe78B13Si9 非晶合金纳米晶化的亚结构.东北大学学报(自然科学版).17(5)(1996)529-533.
    [77]. H. Conrad, N. Karam, S.L. Mannan, Effect of electric current pulse on the recrystallization of copper, Script. Metall, 17 ( 1983): 411-416.
    [78]. V.V. Levitin,S.V. Loskutov, The effect of a current pulse on the fatigue of titanium alloy, Solid state communications 131 (2004) 181-183.
    [79]. O.V. Sosnin, A.V. Gromova, E.Yu. Suchkova, E.V. Kozlov, Yu.F. Ivanov, V.E. Gromov.The structural-phase state changes under the pulse current influence on the fatigue loaded steel, International Journal of Fatigue 27 (2005) 1221-1226.
    [80]. O.V. Sosnin, A.V. Gromova, Yu.F. Ivanov, S.V. Konovalov, V.E. Gromov, E.V. Kozlov, Control of austensite steel fatigue strength, International Journal of Fatigue, 27 (2005) 1186-1191.
    [81]. 沈以赴,郭晓楠,姚戈,何冠虎,李顺林,周本濂.材料疲劳恢复新途径的探索Ⅱ-脉冲电流对 Ti-6Al-4V 合金裂纹扩展的阻滞.材料研究学报.13(4):381-384.
    [82]. 吕宝臣,周亦胄,王宝全,郭敬东.脉冲电流对疲劳后 30CrMnSiA 钢组织结构的影响.材料研究学报.17(1)(2003):15-18.
    [83]. 肖素红,郭敬东,吴世丁,何冠虎,李守新.电脉冲处理下疲劳铜单晶的再结晶.金属学报.38(2),(2002):161-165.
    [84]. 乔桂英,白象忠等.电磁热效应对 T7 钢的裂纹止裂.热加工工艺.2000,(2):11~13.
    [85]. 乔桂英,白象忠等.单脉冲电流对高速钢裂纹的止裂效果.金属学报.2000,36(7):718~722.
    [86]. 高殿奎,付宇明等.3Cr2W8V 热疲劳裂纹的止裂与修复.中国表面工程.2001(4):42~45.
    [87]. 白象忠,付宇明等.低合金模具钢脉冲放电止裂的宏微观分析.模具工业.2001(8):43~46.
    [88]. 付宇明, 白象忠等.铝合金薄板中裂纹的电磁热效应局部跨越止裂.航空学报.2002,23(3):282-284.
    [89]. 高殿奎,李慧,付宇明,白象忠.脉冲放电截止热疲劳裂纹的亚临界扩展.机械工程学报.2001,37(1):28-31.
    [90]. 周亦胄.金属材料在脉冲电流作用下的裂纹愈合和超细晶化.中国科学院金属研究所博士论文.20030124.
    [91]. D.Godfrey. Chemical changes in steel surface during extreme pressure lubrication.Trans.ASLE,1962,5:57-66.
    [92]. W.T.Clark,C.Pritchard,J.W.Midgley.Mild wear of unlubricated hard steels in air and carbon dioxide,Proc.Inst.Mech.Eng,1967,9:99-121.
    [93]. T.F.J.Quinnn.The effect of hot-spot temperature on the unbricated wear of steel. Trans.ASLE,1967,10:158-168.
    [94]. Y.G. Zhao, Y.H. Liang, W. Zhou, Q.D. Qin, Q.C. Jiang, ISIJ Internation, 45(3) (2005) 410-412.
    [95]. J. Lindemann, C. Buque, F. Appel, Acta Metall. 54 (2006) 1155–1164.
    [96]. S.C. Tjong, J.S. Zhang, Scripta Metall. Mataidia 32 (10) (1995) 1589–1593.
    [97]. 胡光立, 谢希文. 钢的热处理. 西安: 西北工业大学出版社, 1993.
    [98]. R.K. Shiue, L.W. Tsay etc. The effect of residual thermal stresses on the fatigue crack growth of laser-surface-annealed AISI 304 stainless steel. Part1: computer simulation. Mater. Sci. Eng. A, 2004, 364:101-108
    [99]. LU Ke-mao. Basic knowledge of residual stress determination—lecture No.4 Stress determination method by X-ray (I).Handan Stree Technologies Co.Ltd.
    [100]. 张定铨,何家文. 材料中残余应力的 X 射线衍射分析和作用[M].西安:西安交通大学出版社,1999.
    [101]. 李家宝.机械工程材料测试手册.物理金相卷,第三篇,第 7 章[M].沈阳:辽宁科学技术出版社,1999.
    [102]. 杨子兴,漆 玄.金属 X 射线衍射分析[M].上海:上海交通大学出版社,1989.
    [103]. 付宇明.金属模具电磁热裂纹止裂的研究. 燕山大学博士生论文.2003.
    [104]. 王焕定,焦兆平.有限单元法.北京:高等教育出版社.2002.
    [105]. 张朝晖,范群波等,ANSYS8.0 热分析教程与实例解析.北京:中国铁道版社.2005.5.
    [106]. MSC. Marc Us er manual volume A: Theory and User Information(M),1997
    [107]. 方建儒.新型高性能压铸模具钢(HHD 钢)的开发.吉林大学博士后流动站博士后工作报告.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700