电催化—生物氧化组合工艺构建及处理除草剂废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药废水因具有化学需氧量高、可生化性差、毒性大等特点,采用传统的生化处理难以高效去除、达标排放。电催化氧化技术作为一种高级氧化技术已被证明对有毒有机物可高效降解并去除其毒性。而三维电极氧化技术因能更好地解决电催化氧化技术应用中存在的电流效率低、能耗高等瓶颈问题,成为近些年电化学领域的研究热点。本论文以电催化氧化技术为核心,建立电絮凝-三维电催化氧化-生物接触氧化组合工艺,并对除草剂废水的处理开展了试验研究,具体研究内容及成果如下。
     以Sb掺杂Ti/SnO_2电极为阳极,采用电催化氧化技术对含丙草胺、异噁草酮、2,4-D等除草剂的模拟废水分别进行电催化氧化预处理的可行性研究。以除草剂的去除率、TOC去除率、能耗等为考察指标,优化了电催化氧化反应条件;借助于HPLC、GC-MS等分析检测技术推测了丙草胺电催化氧化降解机理;采用微生物呼吸曲线法以及藻类生长抑制试验对预处理后废水的可生化性及毒性的变化进行了研究。结果表明,电催化氧化技术可有效去除废水中的异噁草酮、丙草胺、2,4-D及部分中间体,当电流密度为20 mA/cm2,电解质投加量为0.1 mol/L,分别处理100 mL的50 mg/L丙草胺、100 mg/L异噁草酮、100 mg/L 2,4-D废水,电解60 min后,除草剂的去除率分别为丙草胺98.8%、异噁草酮73%、2,4-D 98.7%;丙草胺、异噁草酮、2,4-D废水中TOC的去除率分别为43.1%、34.3%和52.3%;能耗分别为12.4 kWh/m3、12.48 kWh/m3和14.88 kWh/m3。此时废水不可生物降解,且对藻类的生长具有抑制作用。当电解时间延长到120 min后可去除废水中全部的除草剂,丙草胺、异噁草酮、2,4-D废水中TOC的去除率也分别增加到70.2%、57.9%和75.4%,此时废水的可生化性能明显提高,对藻类生长的抑制作用明显降低。为了能高效低耗处理除草剂废水,需建立新型三维电催化氧化体系。
     以价廉易得的石英微孔瓷环为载体,采用浸渍-焙烧法制备了新型的负载Sb掺杂SnO_2的石英微孔瓷环粒子电极,借助扫描电子显微镜(SEM)、能量色散X射线能谱(EDS)和X射线衍射(XRD)等分析检测技术对所制备的粒子电极的形貌及晶相组成进行了表征。以Sb掺杂Ti/SnO_2涂层电极为阳极,钛板为阴极,填充所制备的瓷环粒子电极,建立三维电极体系,以COD去除率、能耗为考察指标对二维电极体系与三维电极体系的降解效果进行对比;采用极化曲线、循环伏安曲线、羟基自由基的荧光光谱检测技术对三维电极体系的电催化氧化机理进行研究。结果表明,本论文所建立的三维电极体系因羟基自由基的产生量多于二维电极体系,因此对除草剂废水COD的去除率明显高于二维电极体系,而能耗反而低于二维电极体系,当电解120 min时,两体系COD去除率差值为28.7%,能耗差值为20.2 kWh/ kgCOD。通过对三维电极反应体系内粒子电极的电位分布进行测定表明,所建立的三维电极体系内电位分布是均匀的。采用Fluent软件对所设计反应器内流场分布进行模拟,表明反应器内流场分布也是均匀的。由此优化设计了新型的复极性三维固定床反应器。
     通过可行性研究,构建了电絮凝-三维电催化氧化-生物接触氧化组合工艺,并对电絮凝、三维电催化氧化以及生物接触氧化的运行工艺进行优化,结果表明,采用电絮凝预处理COD为3000 mg/L左右的除草剂废水,在电流密度为15 mA/cm2、进水流速为4 L/h的条件下,电絮凝30 min后,出水COD为1700 mg/L左右,浊度为25 NTU,此时能耗为0.78 kWh/m3。采用三维电极反应器继续处理电絮凝出水,当槽电压调节为30 V,曝气量控制在50 mL/min、粒子电极填充量为反应器体积的2/3、水力停留时间达到120 min,出水COD为400 mg/L左右,可生化性明显提高,B/C达到0.38以上,能耗为6.9 kWh/m3。继续采用生物接触氧化工艺对废水进行生化处理,通过对生物接触氧化反应器的启动、驯化、运行,保证出水COD﹤150 mg/L。然后建立连续运行的电絮凝-三维电催化氧化-生物接触氧化组合工艺处理除草剂实际废水,整个工艺对废水的COD去除率达95%以上,实现废水达标排放。本研究可为农药厂废水的实际处理提高基础研究数据。
The pesticide wastewater can not be treated in a conventional biological way due to the characteristics (high chemical oxygen demand, unbiodegradability and toxicity) of the wastewater. Electro-catalytic oxidation which is one method of Advanced Oxidation Processes was confirmed to treat the bio-refractory toxic organic pollutants effectively. Three-dimensional electrode reactor which solved problem of high consumption and low efficiency in the electro-catalytic oxidation process particularly becomes a research hotspot in the field of electrochemistry in recent years. In this paper, the electro-coagulation-electrocatalytic oxidization- biologicalcontact oxidation combined process system was founded with the core technology of electro-catalytic oxidation, and the herbicides wastewater treatment research was conducted.
     The feasibility study of electro-catalytic oxidation degradation of lab-synthetic pretilachlor, clomazone and 2,4-D wastewater was carried out with Sb doped Ti/ SnO_2 electrode as anode in this paper. The herbicide removal, TOC removal and energy consumption were investigated in order to determine the reaction conditions of the electro-catalytic. Degradation mechanism of pretilachlor was analyzed with the help of HPLC and GC-MS. The biodegradability and toxicity of processed wastewater were investigated by means of microbial respiration curve and algal growth inhibition test. The results showed that electro-catalytic oxidation technology can effectively remove clomazone, pretilachlor, 2,4-D and some intermediate in wastewater. Under the conditions of current density of 20 mA/cm2, Na2SO4 dosage of 0.1 mol/L,initial pretilachlor concentration of 50 mg/L, clomazone concentration of 100 mg/L, 2,4-D concentration of 100 mg/L, treatment time of 60 min, the removal of pretilachlor, clomazone and 2,4-D were 98.8%,73% and 98.7,and the TOC removal were 43.1%, 34.3% and 52.3%; and the energy consumption were 12.4 kWh/m3,12.48 kWh/m3 and 14.88 kWh/m3,respectively. The wastewater was bio-refractory and inhibiting the growth of algae. After electrolysis 120min, all herbicides (pretilachlor, clomazone, 2,4-D) were removed, TOC removal increased to 70.2%, 57.9% and 75.4%, respectively. And the biodegradability of wastewater was improved significantly, algal growth inhibition was significantly reduced. Accordingly it is necessary to establish the new three-dimensional electrode system in order to achieve high efficiency low consumption treatment herbicide wastewater.
     Quartz ceramic ring particle electrodes loaded with Sb doped SnO_2 were prepared by dip coating method. The micrograph, crystal phase structure of the particle electrodes were characterized by means of scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction techniques.The three-dimensional electrode system was established with Sb doped Ti/SnO_2 electrode as anode and stainless steel as cathode. The COD removal and energy consumption were investigated in order to compare with the efficiency of electrochemical degradation of herbicide wastewater between the three-dimensional electrode and the two-dimensional electrode. The electro-catalytic oxidation degradation mechanism of three-dimensional electrode was investigated be the means of anodic polarization curve, cyclic voltammetry and fluorescence spectroscopy. The results showed that the amount of hydroxyl radicals generated in three-dimensional electrode was much more than in the two-dimensional electrode. Therefore, the COD removal of herbicide wastewater was higher than the two-dimensional electrode. But the energy consumption was less than the two-dimensional electrode. After electrolysis 120 min, the difference of the COD removal and energy consumption between the two systems was 28.7% and 20.2 kWh/ kgCOD, respectively. Determination the potential distribution was measured in the three-dimensional electrode reactor. The results showed that the potential distribution was uniform in the reactor. Fluent software to simulate the flow field distribution was used in the reactor. And the results show that the flow field was uniform in the reactor. Thus a new type of bipolar three-dimensional fixed-bed reactor was designed.
     The electrocoagulation-electrocatalytic oxidization-biological contact oxidation combined process was constructed and the process parameters were optimized. The results showed that effluent COD and turbidity were 1700 mg/L and 25 NTU, under the conditions of initial COD concentration of 3000 mg/L, current density of 15 mA/cm2 and upstream speed of 4 L/h after electrocoagulation 30 min, meanwhile the energy consumption was 0.78 kWh/m3.The three-dimensional electrode reactor was used to treat the herbicide wastewater in the next step. When the cell voltage was 30 V, the amount of aeration was 50 mL/min, the volume of particle electrodes was 2/3 of the packed bed,the hydraulic retention time was 120 min, the effluent COD was 400 mg/L and the biodegradability of the wastewater was significantly improved and the ratio of B/C was larger than 0.38, meanwhile the energy consumption was 6.9 kWh/m3.Through startup, domestication, operation of bio-contact oxidation reactor, the effluent COD﹤150 mg/L in the biological oxidation process of wastewater biological treatment. On this basis, the establishment of continuous operation of the electrocoagulation- electro-catalytic oxidation - biological contact oxidation process for actual herbicide wastewater. The results showed that the COD removal rate was 95%, wastewater discharge standards to achieve. All of this will provide the basic research data for the practical treatment of the herbicide wastewater.
引文
1刘德英,张剑波,丁剑.我国农药类环境内分泌干扰物使用现状和对策.自然生态保护.2005,6:45~50
    2胥维昌.农药废水处理.北京:化学工业出版社,2000:22~24
    3矫彩山,彭美媛,王中伟.我国农药废水的处理现状及发展趋势.农药.2007,46(2):77~80
    4 M. Panizza, G. Cerisola.Application of Diamond Electrodes to Electrochemical Processes. Electrochim. Acta. 2005,51(2):91~99
    5 G. H. Chen. Electrochemical Technologies in Wastewater Treatment. Sep.Purif. Technol. 2004,38:27~31
    6 N. N. Rao, M. Rohit, G. Nitin, P.N. Parameswaran, J. K. Astik.Kinetics of Electrooxidation of Landfill Leachate in a Three-dimensional Carbon Bed Electrochemical Reactor. Chemosphere.2009,76:1206~1212
    7 Y. Xiong, P. J. Strunk, H. Xia.Treatment of Dye Wastewater Containing Acid Orange-II using a Cell with Three-phase Three-dimensional Electrode. Water Res. 2001,35:4226~4230
    8 L.Z. Wang, J. F. Fu, Q.C. Qiao, Y.M. Zhao.Kinetic Modeling of Electrochemical Degradation of Phenol in a Three dimension Electrode Process. J. Hazard. Mater. 2007,144:118~125
    9娄金生.水污染治理新工艺与设计.北京:海洋出版社,1999.
    10贺嵩邡,易辰俞,戴友芝.厌氧折流板反应器处理有机磷农药废水的研究.工业用水与废水.2002,33(4):26~28
    11 C. Y. Lin. Aerobic Treatment of Pesticide Plant Wastewater. Biological Wast- es.1990,34(4):301~302
    12 S. Chen, D.Z. Sun, J.S. Chung.Treatment of Pesticide Wastewater by Moving-bed Biofilm Reactor Combined with Fenton-coagulation Pretreatment.J.Hazard.Mater. 2007,144(1/2):577~584
    13蔡宝立,黄今勇,石建党.阿特拉津降解菌株的分离和鉴定.微生物学通报.2001, 28(2):22~26
    14韩玉英,赵彬侠,张小里,等.催化湿式氧化吡虫啉农药废水的研究.工业催化. 2005,13(2):43~46
    15张英民,李开明,周伟坚,等.高级氧化技术在农药废水处理中的应用.现代化农业. 2009,364(11):27~29
    16张翼,胡冰,张玉善,等.高级氧化技术降解水中有机磷农药的研究进展.环境污染与防治.2006,28(5):361~364
    17梁喜珍,黄国林,周跃明,等.TiO2光催化降解农药废水的研究.化工时刊.2005, 19 (10):20~23
    18 G. Jarnuzi, A. L.Winarti.Photocatalytic Degradation of Pentachlorophenol in Aqueous SolutionEmploying Immobilized TiO2 Supported on Titanium Metal.J. Photochem. Photobiol A :Chemistry.2005,173(1):51~55
    19葛湘锋,徐明芳,骆育敏,等.光催化降解敌百虫农药废水的影响因素分析.生态科学.2004, 23 (2):124~127
    20 M. H. Perez, G. Penuela, M.I. Maldonado. Degradation of Pesticides in Water using Solar Advanced Oxidation Processes. Applied Catalysis B: Environ- mental. 2006,64:272~281
    21 M. I. Maldonado,S. Malato, L. A. Perez-Estrada.Partial Degradation of Five Pesticides and an Industrial Pollutant by Ozonation in a Pilot-plant Scale Reactor.J.Hazard Mater.2006,138(16):363~369
    22张水平,董呈杰,袁非亮.臭氧氧化在水处理中的应用.工业安全与环保.2005, 31 (11):19~20
    23章永鹏,周军英,单正军,等.几种高级氧化技术在农药废水处理中的应用研究进展.农药学学报.2007,9(2):103~109
    24沈群,刘月,王群.应用臭氧降解农药百菌清的试验研究.中国农业大学学报. 2002,7(4):13~15
    25程寒飞,郑俊,陈祥宏.臭氧氧化-水解酸化-氧化沟工艺处理综合农药废水.给水排水.2002,128(15):50~53
    26夏晓武,孙世群.臭氧预处理农药废水的研究.合肥工业大学学报:自然科学版. 2005, 28 (3):270~273
    27 I. Gulkaya, G. A. Surucu. F. B. Dilek.Importance of H2O2/Fe2+ ratio in Fenton's Treatment of a Carpet Dyeing Wastewater.J.Hazard.Mater. 2006, 136(25):763~ 769
    28 C. F. Gromboni, M. Y. kamo, A. G. Ferreira.Microwave-assisted photo-Fenton Decomposition of Chlorfenvinphos and Cypenmethrin in Residual Water J.Photo Photobiol A:Chemistry.2007,185(1):32~37
    29 R. X. Li, C. P. Yang, H.Chen.Removal of Triazophos Pesticide from Wastewater with Fenton Reagent.J.Hazard.Mater.2009,167(1):1028~1032
    30 A. Zapata, T. Velegraki, J. A. Sánchez-Pérez.Solar Photo-fenton Treatment of Pesticides in Water: Effect of Iron Concentration on Degradation and Asses- sment of Ecotoxicity Andbiodegradability.Applied Catalysis B: Environmen- tal.2009,88(3/4):448~454
    31胡大波,刘福强,凌盼盼.农药废水的处理技术进展与展望.环境科技.2009, 22(5):63~66
    32 J. Muff, C. D. Andersen, R. Erichsen.Electrochemical Treatment of Drainage Water from Toxic Dump of Pesticides and Degradation Products.Electrochimica Acta.2008(54):2062~2068
    33 A. Vlyssides, E. M. Barampouti, S. Mai.Degradation of Methylparathion in Aque- ous Solution by Electrochemical Oxidation.Environ Sci Technol, 2004,38 (22):6125~6131
    34 H. F. Cheng,W. P. Xu,J. L. Liu.Pretreatment of Wastewater from Triazine Manufac- turing by Coagulation,Electrolysis,and Internal Microelectrolysis.J Haza- rd.Mater.2007,146(1/2):385~392
    35 S. A. Neto, A. R. Andrade.Electrooxidation of Glyphosate Herbicide at Different DSA Compositions:pH,Concentration and Supporting Electrolyte Effect. Electro- chimica Acta,2008(54):2039~2045
    36孟连军,张建新,陆少鸣.微碱解-厌氧水解-SBR好氧生化法处理有机磷农药废水.化工环保.2001,21(2):88~91
    37沈翔,杨赓.混凝-微电解-好氧生物碳工艺处理含氟农药废水.现代农药.2003, 2(6):28~31
    38 W. K. Lafi, Z. A. Qodah.Combined Advanced Oxidation and Biological Treat- ment Processes for the Removal of Pesticides from Aqueous Solutions.J.Hazard Mater. 2006,137(1):489~497
    39 I. Oller, S. Malato, J. A. Sánchez-Pérez,etal.Detoxification of Wastewater Contai-ning five common pesticides by solar AOPs-biological coupled system.Catalysis Today,2007,129(1/2):69~78
    40张焕祯,王艳茹,任洪强,等.草甘膦废水处理技术.化工环保.2001,21(5):274~ 278
    41 J. M. Hu, J. Q. Zhang, H. N. Meng. Electrochemical Activity,Stability andDegradation Characteristics of IrO2-based Electrodes in Aqueous Solutions Containing Cl Compounds.Electrochim.Acta.2005,50:5370~5378
    42 Y. Yavuz, A. S. Koparal. Electrochemical Oxidation of Phenol in a Parallel Plate Reacter Using Ruthenium Mixed Metal Oxide Electrode. J.Hazard Mater. 2006, 136:296~302
    43 G. Rajalo, T. Petrovskaya, Selective Electrochemical Oxidation of Sulphides in Tannery Wastewater, Environ.Technol.1996,17:605~612
    44 J. L. Cao, H. Y. Zhao, F. H. Cao. Electrocatalytic Degradation of 4-chlorophenol on F-doped PbO2 Anodes. Electrochimi. Acta, 2009,54:2595~2602
    45 R. J. Watts, M. S. Wyeth, D. D. Finn. Optimization of Ti/SnO2 -Sb2O5 Anode Preparation for Electrochemical Oxidation of Organic Contaminantsin Water and Wastewater. Appl Electrochem,2008,38:31~37
    46 G. M. Swain. The Electrochemical Activity of Boron-doped Polycrystalline Diamond Thin Film Electrodes, Anal. Chem.1993,65:345~351
    47 Ch. Comninellis, E. Plattner.The Preparation and Behavior of Ti/Au/PbO2 Anodes.J. Appl. Electrochem.1982,10:399~404
    48 A. B. Velichenko,E. A. Baranova,D. V.Girenko.Mechanism of Electrodeposition of Lead Dioxide from Nitrate Solutions.Russ.J.Electrochem.2003,39(6):615~621
    49 M. H. Zhou,Q. Z. Dai,L. C. Lei.Long Life Modified Lead Dioxide Anode for Organic Wastewater Treatment: Electrochemical Characteristics and Degradation Mechanism.Environ.Sci.Technol.2005,39:363~370
    50 J. A. Aboaf, V. C. Marcotte. Chemical Composition and Electrical Properties of Tin Oxide Flms Prepared by Vapor Deposition, J. Electrochem. Soc. 1973,120:701~702
    51 E. Giani, R. Kelly.A Study of SnO2 Thin Flms Formed by Sputtering and by Anodising, J. Electrochem. Soc. 1974,121:394~399
    52 B. Correa-Lozano, Ch. Comninellis, A. D. Battisti. Preparation of SnO2-Sb2O5 Films by the Spray Pyrolysistechnique.J. Appl. Electrochem.1996,26:83~89
    53 J. P. Chatelon, C. Terrir, E. Bernstein, R. Berjoan, J. A. Roger,Morphology of SnO2 Thin Films Obtained by the Sol-gel Technique, Thin Solid Films.1994,47:162~168
    54 F. Montilla, E. Morallon, A. D. Battisti.Preparation and Characterization of Anti- mony-doped Tin Dioxide Electrodes.Part 1. Electrochemical Characteriza-tion.J.Phys.Chem.B.2004,108:5036~5043
    55 R. Kotz, S. Stucki, B. Carcer, Electrochemical Waste Water Treatment Using High Overvoltage Anodes. Part I. Physical and Electrochemical Properties of SnO2 Anodes, J. Appl.Electrochem. 1991,21:14~20
    56 Ch. Comninellis, Electrochemical Treatment of Wastewater Containing Phenol. Trans. IChemE B. 1992,70:219~224
    57 F. Grimm, D. Bessarabov, W. Maier.Sol–gel Film-preparation of Novel Electro- des for the Electrocatalytic Oxidation of Organic Pollutants in Wat-er,Desalination.1998,115:295~302
    58刘峻峰,冯玉杰,吕江维.含Mn中间层提高钛基SnO2电催化电极的稳定性.材料研究学报.2008,22(6):593~596
    59 X. Chen, G. H. Chen, P. L. Yue, Stable Ti/IrOx–Sb2O5–SnO2 Anode for O2 Evolution with Low Ir Content. J. Phys. Chem. B.2001,105:4623~4628
    60景长勇.新型高效电化学反应器的研究.华北电力大学硕士学位论文.2004,12: 28
    61尹红霞,康天放,张雁.电化学催化氧化法降解水中甲基橙的研究.环境科学与技术.2008,31(2):88~91
    62赵国华,陈蕊,高廷耀.有机污染物苯胺在催化电极上氧化降解的途径.环境科学研究. 2003,1 6(3):51~54
    63俞杰飞,周亮,王亚林.掺硼金刚石薄膜电极电催化降解染料废水.高校化学工程学报.2004,18(5):648~652
    64周明华,吴祖成.含酚模拟废水的电催化降解.化工学报.2002,53(1):40~44
    65汪定国,王建飞,李炳华.电催化氧化法处理生活污水研究.环境工程,2007,25 (3):29~31
    66 Cabeza, A. M .Urtiaga,I. Ortiz. Electrochemical Treatment of Landfill Leachates using a Boron-doped Diamond Anode.Ind.Eng.Chem.Res.2007,46:1439~1446
    67 M. Panizza,G. Cerisola. Electrochemical Oxidation as a Final Treatment of Synthetic Tannery Wastewater.Environ.Sci.Technol.2004,38:5470~5475
    68 S. Khoufil, F. Aloui, S. Sayadi. Treatment of Olive Oil Mill Wastewater by Combined Process Electro-Fenton Reaction and Anaerobic Digestion.Water Res.2006,40(10):2007~2016
    69 N. Mohan, N. Balasubramanian,V. Subramanian. Electrochemic Treatment of Simulated Textile Effluent.Chem.Eng.Teehno.2001,7(24):749~753
    70 L. Liu,G. H. Zhao,Y. N. Pang. Integrated Biological and Electrochemical Oxidation Treatment for High Toxicity Pesticide Pollutant.Eng. Chem. Res. 2010,49: 5496~5503
    71汪群慧,张海霞,马军.三维电极处理生物难降解有机废水.现代化工.2004,24 (10):56~59
    72 V. D. Stankovic, S. Stankovic. An Investigation of the Spouted Bed Electrode Cell for the Electrowinning of Metal from Dilute Solutions.Appl. Electroch- em.1991,21:124~129
    73熊英健,范娟,朱锡海.三维电极电化学水处理技术研究现状及方向.工业水处理.1998,18(1):5~8
    74 F. Coeuret, M. Paulin. Experiments on Copper Recovery in a Pulsed Granular Fixed Bed Electrode. J. Appl. Electrochem.1988,18:162~165
    75李勇,朱又春,宋卫峰.废水处理中的复极性固定床电解槽技术.工业水处理. 2002,22(12):5~8
    76崔艳萍,杨昌柱.复极性三维电极处理含酚废水的研究.能源保护环境. 2004,15(1):23~26
    77陶龙骤,谢茂松.电催化和粒子群电极用于处理有机工业污水.工业水处理. 2000,209: l~3
    78 R. J. Coin, M. J. Niksa, D. I. Elyanow. Wastewater Treatment Enhanced by Electrochemistry. Environ. Prog.1996,15:122~127
    79周抗寒,周定.复极性固定床电解槽内电极电位的分布.环境化学.1994, 13(4):318~322
    80 M. I. Ismail. Electrochemical Reactors:Their Science and Technology Part A, Elsevier Science Publishers B.V.,Amsterdam.1989
    81何占航,张哲.复极性粒子群电极电解法在化工废水处理中的应用进展.河南化工,2002,6:3~5
    82周集体,杨松,艾尼瓦尔.复极性固定床电解槽中粒子电极感应电位研究.环境科学与技术.2004,27(6):27~29
    83 K. Kusakabe, S. Morooka, Y. Kato. Current Paths and Electrolysis Efficiency in Bipolar Packed Bed Electrodes.Journal of chemical Engineer of Japan, 1982,15(1):45~50
    84 D. C. Eardley, D. Handley, S. P. S.Andrew, Bipolar Electrolysis with Intra Phase Conduction in Two Phase Media. Electrochimica Acta,1973,18:839~848
    85 Y. Xiong, C. He, T. C. An, et al. Removal of Formic Acid from Wastewater using Three Phase Three Dimensional Electrode Reactor. Water Air Sol. Poll. 2003a. 144: 67~79
    86 Y. Xiong, C. He, H. T. Karlsson, X. H. Zhu. Performance of Three-phase Three-dimensional Electrode Reactor for the Reduction of COD in Simulated Wastewater Containing Phenol. Chemosphere. 2003b, 50:131~136
    87 X. Wu, X. Yang, D. Wu, R. Fu. Feasibility Study of Carbon Aerogel as Particle Electrodes for Decolorization of RBRZ Dye Solution in a Three-Dimensional Electrode Reactor. Chem. Eng. 2008,138:47~54
    88 C. He, Y. Xiong, D. Shu, X. H. Zhu. Performance of Three Phase Three-dimensional Electrode Reactor and its Application to the Degradation of Aniline.Chem. J. Internet. 2002,4:56
    89陈武.三维电极处理几种模拟有机废水研究.华中科技大学博士学位论文, 2007,1:47~61
    90曹敬华,张希衡.活性炭固定床电解槽处理苯酚废水.中国给水排水.2003, 18 (5):45~47
    91 N. N. Rao, M. Rohit, G. Nitin, et al. Kinetics of Electrooxidation of Landfill Leachate in a Three-dimensional Carbon Bed Electrochemical Reactor. Chemosphere, 2009,76:1206~1212
    92黄宇,孙宝盛,石玲,等.三维电极反应器处理染料废水效果分析.工业用水与废水,2007,38(2):27~29
    93徐海青,刘秀宁,王育乔,等.复合金属氧化物Sn-Sb-Mn/陶瓷粒子电极体系的电催化性能.物理化学学报.2009,25(5):840~846
    94班福忱,刘炯天,程琳.不同类型填料的三维电极/Fenton试剂法处理苯酚废水.环境污染与防治,2009,31(4):24~27
    95 H. Sharifina, D. W. Kikr. Electrochemical Oxidation of Phenol.J. Electrochem Soc.1986,133(5):921~924
    96刘会娟,曲久辉,雷鹏举.锰砂催化电化学方法对染料KZG脱色效果的研究.环境化学.2002,21(l):68~71
    97 R. D. Gunnar, H. L. Stanley. Comparisons of Ebonex and Graphite Supports for Platinum and Nickel Electrocatalysis.Electrochim Acta. 1998,44(2-3):437~444
    98辛岳红,魏刚,魏云鹏,等.沸石负载复合氧化物粒子电极的制备及其电催化活性.北京化工大学学报(自然科学版).2010,37(2):54~58
    99 E. Fockedey, A. V. Lierde.Coupling of Anodic and Cathodic Reactions for Phenol Electro-oxidation Using Three-dimensional Electrodes. Water Research,2002, 36(16):4169~4175
    100 T. C. An, G. Y. L, X. H. Zhu, et al.Photo-electrocatalytic Degradation of Oxalic Acid in Aqueous Phase with a Novel Three-dimensional Electrode-hollow Quartz Tube Photoelectrocatalytic Reactor. Applied Catalysis A: Genera,l.2005,279(1~2):247~256
    101孙洪伟,王亚娥,李杰.工业废水可生化性及其测定方法的比较研究.甘肃环境研究与监测.2003,16(3):213~215
    102谢艳,李宗芸,冯琳,等.藻类毒物检测方法及其应用研究进展.环境科学与技术.2008,12:77~83
    103张朝晖,刘颖,张焕胜.污水可生化性及其影响因素研究.中国海洋大学学报. 2005,35(6):1029~1032
    104齐安翔,蔡明刚,黄天春.不同盐度下敌敌畏对海水小球藻的毒性效应.厦门大学学报(自然科学版).2005,1(44):27~34
    105 T. Tsuda, T. Nakamura, A. Inoue, K. Tanaka. Pesticides in Water, Fish and Shellfish from Littoral Area of Lake Biwa. Bull. Environ. Contam. Toxicol, 2009,82:716~721
    106 N. Posecion, E. Ostrea, D. Bielawski, M. Corrion, J. Seagraves, Y. Jin. Detection of Exposure to Environmental Pesticides during Pregnancy by the Analysis of Maternal Hair using GC-MS. Chromatographia, 2006,64:681~687
    107 Inderjit, S. Kaushik. Effect of Herbicides with Different Modes of Action on Physiological and Cellular Traits of Anabaena Fertilissima. Paddy Water Environ, 2010,8:277~282
    108 H. Y. Kim, I. K. Kim, J. H. Shim, Y. C. Kim, T. H. Han. Removal of Alachlor and Pretilachlor by Laboratory Synthesized Zerovalent Iron in Pesticide Formulation Solution. Bull. Environ. Contam. Toxicol, 2006,77:826~833
    109 M. H. Zhou, Z. C. Wu, D. H. Wang. Electrocatalytic Degradation of Phenol in Acidic and Saline Wastewater. J. Env. Sci. Heal. A, 2002,37:1263~1275
    110 E. Guinea, C. Arias, P. L. Cabot, J. A. Garrido, R.M. Rodríguez, F. Centellas, E. Brillas. Mineralization of Salicylic Acid in Acidic Aqueous Medium by Electrochemical Advanced Oxidation Processes using Platinum and Boron-doped Diamond as Anode and Cathodically Generated HydrogenPeroxide. Water Res, 2008,42:499~511
    111 X. Y. Li, Y. H. Cui, Y. J. Feng, Z. M. Xie, J. D. Gu. Reaction Pathways and Mechanisms of the Electrochemical Degradation of Phenol on Different Electrodes. Water Res, 2005,39:1972~1981
    112 Z. M. Qiang, CH. Liu, B. Z. Dong, Y. L. Zhang. Degradation Mechanism of Alachlor during Direct Ozonation and O3/H2O2 Advanced Oxidation Process. Chemosphere, 2010,78:517~526
    113 D. M. Stamper, O.H. Tuovinen. Biodegradation of the Acetanilide Herbicides Alachlor, Metolachlor and Propachlor. Crit. Rev. Microbiol, 1998,24:1~22
    114 W. Chu, C. C. Wong. Study of Herbicide Alachlor Removal in a Photocatalytic Process Through the Examination of the Reaction Mechanism. Ind. Eng. Chem. Res, 2004,4:5027~5031
    115 Ch. Comniellis, C. Pulgarin. Electrochemical Oxidation of Phenol for Wastewater Treatment using SnO2 Anodes. J. App. Electrochem, 1993,23: 108~112
    116 Ch. Comninellis. Electrocatalysis in the Electrochemical Conversion/ Combussion of Organic Pollutants for Waste Water Treatment. Electrochim. Acta, 1994,39:1857~1862
    117丁海洋,冯玉杰,吕江维,等.钛基二氧化锡电极电解过程中羟基自由基检测及电催化机理.分析化学.2007,35(10):1395~1399
    118 P. Dabo, A. Cyr, F. Laplante, F. Jean, H. Ménard, J. Lessard. Electrocatalytic Dehydrochlorination of Pentachlorophenol to Phenol or Cyclohexanol. Environ. Sci. Technol, 2000,34:1265~1268
    119庞雅宁,赵国华,刘磊.金刚石膜电极电化学氧化提高废水可生化性的研究.中国环境科学.2009,29(12):1255~1259
    120薛光.化学除草剂实用技术手册.北京:中国农业科技出版社,1995
    121 T. L.Mervosh, G. K.Sims, E. W. Stoller. Clomazone Fate in Soil as Affected by Microbial Activity, Temperature and Soilmoisture. J.Agric. Food Chem. 1995a, 43:537~543
    122何文.异噁草酮的水环境毒理学及水解动力学研究.湖南农业大学硕士学位论文.2006,6:15~25
    123 D. Rajkumar, K. Palanivelu. Electrochemical Treatment of Industrial Wastewater. Journal of Hazardous Materials.2004:B113:123~129
    124 M. S. Abdo, R. S. Alameeri Anodic Oxidation of a Direct Dye in an Electro- chemical Reactor.J. Environ.Sei.Health.1997,A,22:27~45
    125苏允兰,莫汉宏,安凤春.土壤中苯氧羧酸类除草剂的降解动态.环境科学. 2000,21(6):92~94
    126李亚峰,赵娜,班福忱.三维电极法处理硝基苯废水.沈阳建筑大学学报(自然科学版).2009,25(1):148~151
    127班福忱,刘炯天,程琳,等.三维和二维电极法催化降解苯酚废水.沈阳建筑大学学报(自然科学版), 2009, 25(1):156~160
    128 J. J. Gao, K. H.Xu, J. X. Hu, et al. Determination of Trace Hydroxyl Radicals by Flow Injection Spectrofluorometry and its Analytical Application.J. Agric. Food Chem. 2006, 54 (21):7968~7972
    129 L. B.Tichenor, J. L. Graham, T.Yamada, et al. Kinetic and Modeling Studies of the Reaction of Hydroxyl Radicals with Tetrachloroethylene.J. Phys. Chem. A, 2000, 104(8):1700~1707
    130吴辉煌.电化学工程基础.北京,化学工业出版社,2008:159~160
    131罗铭,刘金凤,杜特专,等.基于Fluent的多相模拟反应器的设计.计算机与应用化学.2007,24(9):1153~1158
    132郭雪岩.CFD方法在固定床反应器传热研究中的应用.化工学报,2008,59 (8):1914~1922
    133 R. K. Reddy, J. B. Joshi. CFD Modeling of Solid–liquid Fluidized Beds of Mono and Binary Particle Mixtures.Chemical Eng.Sci. 2009, 64(16):3641~3658
    134穆斌,高韦,贾金明.计算流体力学在填充床反应器中的应用进展.化学反应工程与工艺,2005,2:149~157
    135马素娟,蓝兴英,高金森.径向流固定床反应器内流动规律的数值模拟.石油化工高等学校学报,2007,(4):68~71
    136 S. Mahesh, B. Prasad, I. D. Mall. Electrochemical Degradation of Pulp and Paper Mill Wastewater. Part I. COD and Color Removal. Industrial & Engineering Chemistry Research, 2006,45:2830~2839
    137 S. Mahesh, B. Prasad, I. D. Mall. Electrochemical Degradation of Pulp and Paper Mill Wastewater.part II. Characterization and Analysis of Sludge.Industrial & Engineering Chemistry Research, 2006,45:5766~5774
    138 X. Chen, G. Chen, L. Y. Po.Separation of Pollutants from Restaurant Wastewater by Electrocoagu Lation. Separation and Purification Technology,2000,19:65~76
    139 F. I. Anto, J. Ponselvan,M. Smith,et al. Electrocoagulation Studies on Treatment of Biodigester Effluent using Aluminum Electrodes,Water Air Soil Pullut, 2009, 199:371~379
    140 M. Bayramoglu, O. T. Can, M. Kobya. Decolorization of Reactive Dye Solutions by Electrocoagulation using Aluminum Electrodes. Industrial & Engineering Chemistry Research, 2003,42:3391~3396
    141周川.交变电絮凝处理垃圾渗滤液的试验研究.江苏大学硕士学位论文, 2009,12:34~35
    142李杰.电絮凝法处理毛毯印染废水的研究.合肥工业大学硕士学位论文. 2008:45
    143 D. P. Smith.Submerged Filter Biotreatment of Hazardous Leachate in Anaerobic and Anaerobic/Aerobic Systems.Hazardous Waste & Hazardous Materials,1995,12(2):167~183
    144刘亚丽,张智,段秀举.生物接触氧化处理渗滤液有机物的动力学模型研究.环境污染与防治. 2008, 30(10):1~4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700