厌氧氨氧化关键技术及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧氨氧化(anaerobic ammonia oxidation, Anammox)工艺是高效、经济、节能的新型生物脱氮工艺,具良好的应用前景和很高商业价值。但该工艺赖以进行的厌氧氨氧化菌存在倍增时间长、细胞产率低且易受外界环境干扰等弱点,工程实践中易受接种物、基质性毒物以及外源性毒物的影响。有鉴于此,本论文针对厌氧氨氧化工艺应用中常遇的问题,开展了厌氧氨氧化关键技术及其机理的研究,主要结论如下:
     1)研究了厌氧氨氧化工艺的启动特性与污泥特性,提供了可行的厌氧氨氧化接种物的解决方法和简便的污泥比活性监测方法。
     ①试验证明,厌氧产甲烷污泥、新鲜厌氧氨氧化污泥和储藏厌氧氨氧化污泥作为接种物均可成功启动厌氧氨氧化反应器。三种接种物启动厌氧氨氧化反应器呈现不同的过程特征:以厌氧产甲烷污泥为接种物的启动过程包含菌体水解期(15d)、活性迟滞期(54d)和活性提高期(40d)三个阶段;以新鲜厌氧氨氧化污泥和储藏厌氧氨氧化污泥为接种物的启动过程只有活性迟滞期(分别为2d和12d)和活性提高期(分别为15d和57d)两个阶段。三种接种物所启动的厌氧氨氧化反应器呈现不同的运行性能,其优劣次序为:R2(接种物为新鲜厌氧氨氧化污泥)>R3(接种物为储藏厌氧氨氧化污泥)>R1(接种物为厌氧产甲烷污泥)。三种接种物中以新鲜厌氧氨氧化污泥最佳,储藏厌氧氨氧化污泥次之,厌氧产甲烷污泥最差。
     ②研究发现,三种供试接种物启动厌氧氨氧化反应器呈现相似的污泥性能变化过程:污泥物理指标色度值a*、粒径和沉降速度增大;污泥化学指标胞外多聚物和血红素含量升高;污泥生物指标脱氢酶活性和比厌氧氨氧化活性升高。污泥色度值a*,血红素含量、脱氢酶活性和比厌氧氨氧化活性之间存在定量关系。
     ③研究表明,在厌氧氨氧化污泥匮乏时,将厌氧产甲烷污泥用作接种物是一种可行的解决方法;将获得的厌氧氨氧化污泥潜浴于反应器出水中,是储藏厌氧氨氧化接种物的有效方法;将储存的厌氧氨氧化污泥用作接种物是缩短启动时间的有效方法。
     ④研究表明,以色度值a*、血红素含量和脱氢酶活性作为监测指标,可简化厌氧氨氧化启动过程的监测技术,其中以物理指标色度值a*最为简便。
     2)研究了基质性毒物对厌氧氨氧化反应性能和污泥性能的影响,揭示了基质性毒物对厌氧氨氧化的抑制特性。
     ①试验表明,分批培养条件下,基质氨和亚硝酸对厌氧氨氧化菌的半抑制浓度及其95%置信区间分别为1670.0(1516.7-1820.0)mg·L-1和585.6(241.1~912.1)mg-L-1;两者相对毒性大小为:亚硝酸>氨;氨和亚硝酸的联合作用类型为独立作用,二者各自对厌氧氨氧化菌产生毒害。
     ②试验表明,连续培养条件下,随着基质氨浓度的上升,三组厌氧氨氧化反应器(A1-A3)的容积氮去除速率和基质去除率均较为稳定,联氨积累少,基质氨对厌氧氨氧化反应性能影响不大。随着基质亚硝酸浓度的上升,三组厌氧氨氧化反应器(B1-B3)的性能下降,容积氮去除速率和基质去除率均不断下降,联氨大量积累,基质亚硝酸对厌氧氨氧化反应性能影响较大。
     ③试验表明,连续培养条件下,随着基质氨浓度的上升,污泥色度值a*、血红素含量、脱氢酶活性、胞外多聚物含量、粒径和沉降速度均没有显著变化,基质氨对厌氧氨氧化污泥性能影响不大。随着基质亚硝酸浓度的上升,污泥色度值a*、血红素含量、脱氢酶活性、胞外多聚物含量、粒径和沉降速度均出现不同程度的下降,基质亚硝酸对厌氧氨氧化污泥性能影响较大。
     ④研究揭示,基质亚硝酸的抑制机理为过量亚硝酸抑制厌氧氨氧化关键酶(联氨脱氢酶活)活性,一方面造成代谢受阻;另一方面中间产物联氨积累而毒害细胞,由此形成双重抑制效应。
     3)研究了外源性毒物(抗生素)对厌氧氨氧化的反应性能和污泥性能的影响,揭示了外源性毒物对厌氧氨氧化的抑制特性。
     ①试验表明,分批培养条件下,青霉素G钠、硫酸多粘菌素B、氯霉素和硫酸卡那霉素对厌氧氨氧化菌的半抑制浓度及其95%置信区间分别为2215.8(1972.2-2611.1) mg·L-1、39.1(35.7-42.4) mg·L-1、441.2(431.8-445.5) mg·L-1和1188.6(1022.7-1318.1)mg·L-1。相对毒性大小为:硫酸多粘菌素B>氯霉素>硫酸卡那霉素>青霉素G钠。
     ②试验表明,分批培养条件下,抗生素之间的复合毒性效应以及基质和抗生素之间的复合毒性效应多为相加作用,少部分为协同或独立作用。二元抗生素混合物中,青霉素G钠+硫酸卡那霉素、氯霉素+硫酸卡那霉素为独立作用;青霉素G钠+氯霉素、硫酸多粘菌素B+硫酸卡那霉素为协同作用;其余两组为相加作用。三元抗生素混合物中,硫酸多粘菌素B+氯霉素+硫酸卡那霉素为协同作用,其余三组均为相加作用。基质+抗生素的处理组均为相加作用。
     ③试验表明,连续培养条件下,四种抗生素均对反应器性能产生不利影响,造成反应器容积氮去除速率和基质去除率下降,引起中间产物联氨积累。与分批培养试验结果相比,四种抗生素在较低浓度下即影响厌氧氨氧化反应器性能,四种抗生素的毒性强弱与分批培养试验一致。四种抗生素均对反应器的污泥活性产生不利影响,造成污泥色度值a+、血红素含量和脱氢酶活性下降。
     ④研究揭示,在外源性毒物胁迫时,厌氧氨氧化菌会启动自我保护机制,通过超量合成胞外多聚物(尤其是胞外蛋白),屏蔽不良环境因素的影响。
     4)建立了厌氧氨氧化示范工程,探究了生产性厌氧氨氧化装置处理含氨制药废水的启动模式。
     ①短程硝化-厌氧氨氧化工艺可成功实现制药废水生物脱氮。制药废水进水氨氮浓度平均为(430.40±55.43)mmg·L-1,出水氨氮浓度平均为(24.26±11.37)mg·L-1,氨氮去除率平均为(81.75+9.10)%,厌氧氨氧化系统的容积氮负荷平均为(4.31±1.07) kgN·m-3·d1,容积氮去除速率平均为(3.66±0.96) kgN·m-3·d-1。
     ②“两步法”运行模式适用于短程硝化系统的工程调试。以制药废水启动短程硝化系统的时间约为74d,短程硝化系统的亚硝氮积累率平均为(52.11±9.13)%,实现半量硝化;最大容积氮负荷为0.26kgN·m-3·d1,最大容积氮去除速率为0.15kgN·m-3·d-1,可为后续厌氧氨氧化工艺提供基质。
     ③“造血”结合“输血”的菌种流加式运行模式适用于厌氧氨氧化系统的工程调试。以制药废水启动厌氧氨氧化系统的时间约为145d,厌氧氨氧化系统的最大容积氮负荷为6.96kgN·m-3·d-1,最大容积氮去除速率为6.35kgN·m-3·d-1,容积效能处于生产性装置的领先水平。
Anaerobic ammonia oxidation (Anammox) process is a new type of biotechnology for nitrogen removal with high efficiency and low cost, which has a very good application prospect and high commercial value. But Anammox bacteria are chemoautotroph with long double time and low yield rate. Besides, they are sensitive to changes of environmental conditions. The large-scale application of Anammox process is often limited by the seeding Anammox sludge, substrates and exogenous toxicants (i.e. antibiotics). Therefore, some key technologies and their mechanisms are investigated to solve these problems. The main results are as follows:
     1) The start-up characteristics and sludge characteristics were revealed, and a method to solve the shortage of seeding sludge and a method to monitor the specific Anammox activity were established.
     It was proved that anaerobic methanogenic sludge (AMS), fresh Anammox sludge (FAS) and stored Anammox sludge (SAS) could be used to start up Anammox-EGSB bioreactors successfully (the reactors were named Rl, R2and R3, respectively). But the start-up progresses showed different characteristics. The start-up course of R1could be divided into three phases including autolysis phase (15d), lag phase (54d) and activity elevation phase (40d). The start-up courses of R2and R3only included lag phase (2d and12d, respectively) and activity elevation phase (15d and57d, respectively). The performance of R3was better than that of R1, but worse than that of R2. The physical parameters color value a*, particle diameters and settling velocities were raised. The chemical parameters extracellular polymeric substances (EPS) and heme contents are elevated. Besides, the biological parameters dehydrogenase activity (DHA) and specific Anammox activity (SAA) were also promoted. The color value a*, heme contents, DHA and SAA were closely related to each other. Under the condition without supply of Anammox sludge, AMS could be used as the seeding sludge for Anammox process. Bathing the Anammox sludge in the effluent of bioreactors was a convenient way to keep the activity of Anammox sludge. Seeding Anammox reactor with SAS was effective way to shorten the start-up time. Color value a*, heme content or DHA could serve as the parameters to monitor the SAA of Anammox sludge, whose measurements were more convenient than the batch test. Among them, color value a*was the simplest and most environmental friendly.
     2) The influence of two substrates on Anammox reaction and sludge characteristics was studied and the inhibition mechanism of endogenous toxicants was explored.
     The batch tests showed that the half inhibition concentrations (IC50) and their95%confidence interval of ammonia and nitrite were1670(1516.7~1820.0) mgN·L-1and585.6(241.1~912.1) mgN·L-1. Nitrite was more toxic than ammonia. The joint action of ammonia and nitrite was independent. The continuous cultivation tests showed that the performances of reactor Al, A2and A3were steady, which meant ammonia did not inhibit Anammox reaction under the setting ammonia concentrations. However, the performances of reactors B1, B2and B3were sharply down, which meant nitrite inhibited Anammox reaction under the setting nitrite concentrations. The physical, chemical and biological parameters of the sludge in A1, A2and A3did not have significant changes while the situation was totally different in B1, B2and B3. All the parameters declined sharply. All the changes of sludge characteristics were in accordance with the reactors'performances. The inhibition mechanism of nitrite is as follows:the excessive nitrite inhibited the activity of key enzyme hydrazine dehydrogenase (HDH), which led to the disturbance on substrate catabolism. On the other hand, the accumulated intermediate hydrazine (N2H4) could poison the Anammox cell.
     3) The influence of exogenous toxicants (four antibiotics) on Anammox performance and sludge characteristics was studied and the inhibition mechanisms of exogenous toxicants were explored.
     The batch tests showed that the half inhibition concentrations (IC50) and their95%confidence interval of penicillin G-Na, polymyxin B sulfate, chloramphenicol and kanamycin sulfate were2215.8(1972.2-2611.1)mg·L-1、39.1(35.7-42.4) mg·L-1441.2(431.8-445.5) mg·L-1and1188.6(1022.7-1318.1) mg·L-1. The antibiotics toxicities were as follows:polymyxin B sulfate> chloramphenicol> kanamycin sulfate> penicillin G-Na. The joint actions of antibiotics or the joint actions of substrates and antibiotics mostly belonged to additive effect. Only small part of treatment groups belonged to synergistic effect or independent effect. The continuous cultivation tests showed that the performances of reactors with different antibiotics dosage declined with the increase of antibiotics'concentrations. All the changes of sludge characteristics were in accordance with the reactors'performances. The inhibition concentrations got from continuous cultivation tests were much lower than those from batch tests. Under the exogenous toxicant stress, Anammox bacteria might produce much more EPS, especially extracellular protein to form the barrier to prevent the cell from the toxicants. This was similar to the self-protection mechanism of other bacteria.
     4)In order to solve the nitrogen pollution from strong-ammonium pharmaceutical wastewater, a full-scale short-cut nitrification process combined with Anammox process was investigated. The results showed that the short-cut nitrification process and Anammox process could successfully remove nitrogen from pharmaceutical wastewater. In the combined system, influent ammonia and effluent ammonia were (430.40±55.43) mg-L-1and (24.26±11.37) mgL-1, respectively. Ammonia removal efficiency was (81.75±9.10)%. Volumetric nitrogen loading rate and volumetric nitrogen removal rate of Anammox process were (4.31±1.07) kgN·m-3·d-1and (3.66±0.96) kgN·m-3·d-1, respectively. Two-step mode using synthetic wastewater and real wastewater was suitable for operations of the short-cut nitrification system which provided substrates for Anammox system. The start-up took about74d. Nitrite accumulation efficiency was (52.11±9.13)%. Maximum volumetric nitrogen loading rate and volumetric nitrogen removal rate were0.26kgN·m-3·d-1and0.15kgN·m-3·d-1, respectively. The combination of Anammox sludge growth with sequential biocatalyst addition was suitable for the operation of Anammox process. The start-up process took about145d. Maximum volumetric nitrogen loading rate and volumetric nitrogen removal rate were6.96kgN·m-3·d-1and6.35kgN·m-3·d-1, which were in the leading level in full-scale reactors.
引文
Abma WR, Schultz CE, Mulder JW, van der Star WRL, Strous M, Tokutomi T, van Loosdrecht MCM. Full-scale granular sludge Anammox process[J]. Water Science and Technology,2007,55(8-9):27-33.
    Abma WR, Driessen W, Haarhuis R, van Loosdrecht MCM. Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater[J]. Water Science and Technology,2010,61(7):1715-1722.
    Angelidaki I, Ahring BK. Thermophilic anaerobic-digestion of livestock waste-the effect of ammonia[J]. Applied Microbiology and Biotechnology,1993,38(4): 560-564.
    Anthonisen AC, Loehr RC, Prakasam TB, Srinath EG. Inhibition of nitrification by ammonia and nitrous acid[J]. Water Pollution Control Federation,1976,48(5): 835-52.
    Aktan CK, Yapsakli K, Mertoglu B. Inhibitory effects of free ammonia on Anammox bacteria[J]. Biodegradation,2012,23(5):751-762.
    Avella AC, Essendoubi M, Louvet JN, Gorner T, Sockalingum GD, Pons MN, Manfait M and de Donato Ph. Activated sludge behaviour in a batch reactor in the presence of antibiotics:study of extracellular polymeric substances[J]. Water Science and Technology,2010,61(12):3147-3155.
    Bassham JA, Benson AA, Calvin M. The path of carbon in photosynthesis:The role of malic acid[J]. Journal of Biological Chemistry,1950,185(2):781-787.
    Berg IA, Kockelkorn D,Buckel W, Fuchs GA.3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea[J]. Science,2007, 318(5857):1782-1786.
    Berry EA, Trumpower BL. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra[J]. Analytical Biochemistry,1987,161(1):1-15.
    Bettazzi E, Caffaz S, Vannini C, Lubello C. Nitrite inhibition and intermediates effects on Anammox bacteria:A batch-scale experimental study[J]. Process Biochemistry, 2010,45(4):573-580.
    Boumann HA, Longo ML, Stroeve P, Poolman B, Hopmans EC, Stuart MC, Sinninghe Damste JS, Schouten S. Biophysical properties of membrane lipids of Anammox bacteria:I. Ladderane phospholipids form highly organized fluid membranes[J]. Biochim Biophys Acta,2009,1788(7):1452-1457.
    Carvajal-Arroyo JM, Sun WJ, Sierra-Alvarez R, Field JA. Inhibition of anaerobic ammonium oxidizing (Anammox) enrichment cultures by substrates, metabolites and common wastewater constituents[J]. Chemosphere,2013,91(1):22-27.
    Cema G, Wiszniowski J, Zabczynski S, Zablocka-Godlewska E, Raszka A, Surmacz-Gorska J, Plaza E. Deammonification in an aerobic rotating biological contactor (RBC)[M]. Management of Pollutant Emmission from Landfills and Sludge,2008,211-218.
    Chen TT, Zheng P, Shen LD, Ding S, Mahmood Q. Kinetic characteristics and microbial community of Anammox-EGSB reactor[J]. Journal of Hazardous Materials,2011,190(1-3):28-35
    Cirpus IEY, Geerts W, Hermans JHM, Op den Camp HJM, Strous M, Kuenen JG, Jetten MSM. Challenging protein purification from Anammox bacteria[J]. International Journal of Biological Macromolecules,2006,39(1-3):88-94.
    Dapena-Mora A, Arrojo B, Campos J L, Mosquera-Corral A, Jetten MSM, Mendez R. Improvement of the settling properties of Anammox sludge in a SBR[J]. Journal of Chemical Technology Biotechnology,2004,79(12):1417-1420.
    Dapena-Mora A, Fernandez I, Campos JL, Mosquera-Corral A, Mendez R, Jetten MSM. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production[J]. Enzyme and Microbial Technology, 2007,40(4):859-865.
    Desloover J, De Clippeleir H, Boeckx P, Du Laing G, Colsen J, Verstraete W, Vlaeminck SE. Floc-based sequential partial nitritation and Anammox at full scale with contrasting N2O emissions[J]. Water Research,2011,45(9):2811-2821.
    Dosta J, Fernandez I, Vazquez-Padin JR, Mosquera-Corral A, Campos JL, Mata-Alvarez J, Mendez R. Short-and long-term effects of temperature on the Anammox process[J]. Journal of Hazardous Materials,2008,154(1-3):688-693.
    Egli K, Fanger U, Alvarez PJJ, Siegrist H, van der Meer JR, Zehnder AJB. Enrichment and characterization of an Anammox bacterium from a rotating biological contactor treating ammonium-rich leachate[J]. Archives of Microbiology,2001, 175(3):198-207.
    Fernandez I, Dosta J, Fajardo C, Campos JL, Mosquera-Corral A, Mendez R. Short-and long-term effects of ammonium and nitrite on the Anammox process[J]. Journal of Environmental Management,2012,95:S170-S174.
    Fernandez I, Mosquera-Corral A, Campos JL, Mendez R. Operation of an Anammox SBR in the presence of two broad-spectrum antibiotics[J]. Process Biochemistry, 2009,44(4):494-498.
    Fuchsman CA, Staley JT, Oakley BB, Kirkpatrick JB, Murray JW. Free-living and aggregate-associated Planctomycetes in the Black Sea[J]. FEMS Microbiology Ecology,2012,80(2):402-416.
    Fux C, Boehler M, Huber P, Brunner I, Siegrist H. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (Anammox) in a pilot plant[J]. Journal of Biotechnology, 2002,99(3):295-306.
    Gallert C, Bauer S, Winter J. Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population[J]. Applied and Environmental Microbiology,1998,50(4):495-501.
    Gerardi MH. Nitrification and denitrification in the activated sludge process[M]. John Wiley & Sons, Inc.
    Guven D, Dapena A, Kartal B, Schmid MC, Maas B, van de Pas-Schoonen K, Sozen S, Mendez R, Op den Camp HJM, Jetten MSM, Strous M, Schmidt I. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria[J]. Applied and Environmental Microbiology,2005,71(2):1066-1071.
    Hansen KH, Angelidaki I, Ahring BK. Anaerobic digestion of swine manure: Inhibition by ammonia[J]. Water Research,1998,32(1):5-12.
    Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, Debont JAM. Mechanisms of resistance of whole cells to toxic organic-solvents[J]. Trends in Biotechnology, 1994,12(10):409-415.
    Hong YG, Li M, Cao HL, Gu JD. Residence of habitat-specific Anammox bacteria in the deep-sea subsurface sediments of the south China sea:analyses of marker gene abundance with physical chemical parameters[J]. Microbial Ecology,2011, 62(1):36-47.
    Hu BL, Rush D, van der Biezen E, Zheng P, van Mullekom M, Schouten S, Damste JSS, Smolders AJP, Jetten MSM., Kartal B. New anaerobic, ammonium-oxidizing community enriched from peat soil[J]. Applied and Environmental Microbiology, 2011,77(3):966-971.
    Hu ZY, van Alen T, Jetten MSM, Kartal B. Lysozyme and penicillin inhibit the growth of anaerobic ammonium-oxidizing Planctomycetes[J]. Applied and Environmental Microbiology,2013,79(24):7763-7769.
    Imajo U, Tokutomi T, Furukawa K. Granulation of Anammox microorganisms in up-flow reactors[J]. Water Science and Technology,2004,49(5-6):155-163.
    Isaka K, Suwa Y, Kimura Y, Yamagishi T, Sumino T, Tsuneda S. Anaerobic ammonium oxidation (Anammox) irreversibly inhibited by methanol[J]. Applied Microbiology and Biotechnology,2008,81(2):379-385.
    Jaroszynski LW, Cicek N, Sparling R, Oleszkiewicz JA. Impact of free ammonia on Anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor[J]. Chemosphere,2012,88(2):188-95.
    Jensen MM, Thamdrup B, Dalsgaard T. Effects of specific inhibitors on Anammox and denitrification in marine sediments[J]. Applied and Environmental Microbiology, 2007,73(10):3151-3158.
    Jetten MSM, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongen UGJM, van de Graaf AA, Logemann S, Muyzer G, van Loosdrecht MCM, Kuenen JG. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews,1999,22(5): 421-437.
    Joss A, Salzgeber D, Eugster J, Konig R, Rottermann K, Burger S, Fabijan P, Leumann S, Mohn J, Siegrist H. Full-scale nitrogen removal from digester liquid with partial nitritation and Anammox in one SBR[J]. Environmental Science and Technology,2009,43(14):5301-5306.
    Jung JY, Kang SH, Chung YC, Ahn DH. Factors affecting the activity of Anammox bacteria during start up in the continuous culture reactor[J]. Water Science and Technology,2007,55(1-2):459-468.
    Kartal B, de Almeida NM, Maalcke WJ, Op den Camp HJM, Jetten MSM, Keltjens JT How to make a living from anaerobic ammonium oxidation[J]. FEMS Microbiology Reviews,2013,37(3):428-461.
    Kartal B, Rattray J, van Niftrik LA, van de Vossenberg J, Schmid MC, Webb RI, Schouten S, Fuerst JA, Damste JSS, Jetten MSM, Strous M. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology,2007, 30(1):39-49.
    Kartal B, Tan NCG, van de Biezen E, Kampschreur MJ, van Loosdrecht MCM, Jetten MSM. Effect of nitric oxide on Anammox bacteria[J]. Applied and Environmental Microbiology,2010,76(18):6304-6306.
    Kartal B, van Niftrik L, Rattray J, van de Vossenberg JLCM, Schmid MC, Damste JSS, Jetten MSM, Strous M. Candidatus 'Brocadia fulgida':an autofluorescent anaerobic ammonium oxidizing bacterium[J]. FEMS Microbiology Ecology,2008, 63(1):46-55.
    Kumar S, Nicholas DJD. Proton electrochemical gradients in washed cells of Nitrosomonas-Europaea and Nitrobacter-Agilis[J]. Journalof Bacteriology,1983, 154(1):65-71.
    Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM. Full-scale partial nitritation/Anammox experiences:An application survey[J]. Water Research,2014,55:292-303.
    Lindsay MR, Webb RI, Strous M, Jetten, MSM, Butler MK, Forde RJ, Fuerst JA. Cell compartmentalisation in planctomycetes:novel types of structural organisation for the bacterial cell[J]. Archives of Microbiology,2001,175(6):413-429.
    Liu ST, Yang FL, Gong Z, Meng FG, Chen HH, Xue Y, Furukawa KJ. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal[J]. Bioresource Technology,2008,99(15): 6817-6825.
    Liu XW, Sheng GP, Yu HQ. Physicochemical characteristics of microbial granules[J]. Biotechnology Advances,2009,27(6):1061-1070.
    Liu Y, Tay JH. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Researh,2002,36(7):1653-1665.
    Lotti T, van der Star WRL, Kleerebezem R, Lubello C, van Loosdrecht MCM. The effect of nitrite inhibition on the Anammox process[J]. Water Research,2012, 46(8):2559-2569.
    Molinuevo B, Garcia MC, Karakashev D, Angelidaki I. Anammox for ammonia removal from pig manure effluents:Effect of organic matter content on process performance[J]. Bioresource Technology,2009,100(7):2171-2175.
    Mulder A, van de Graaf AA, Robertson LA, Kuenen JG. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed Reactor[J]. FEMS Microbiology Ecology,1995,16(3):177-183.
    Ni BJ, Chen YP, Liu SY, Fang F, Xie WM, Yu HQ. Modeling a granule-based anaerobic ammonium oxidizing (ANAMMOX) process[J]. Biotechnology and Bioengineering,2009,103(3):490-499.
    Ni SQ, Zhang J. Anaerobic ammonium oxidation:from laboratory to full-scale application [J]. Biomed Research International,2013:1-10.
    Oshiki M, Shimokawa M, Fujii N, Satohl H, Okabe S. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium'Candidatus Brocadia sinica'[J]. Microbiology,2011,157(Pt6):1706-1713.
    Park S, Bae W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid[J]. Process Biochemistry,2009,44(6):631-640.
    Puyol D, Carvajal-Arroyo JM, Sierra-Alvarez R, Field JA. Nitrite (not free nitrous acid) is the main inhibitor of the Anammox process at common pH conditions[J]. Biotechnology Letters,2014,36(3):547-551.
    Ragsdale SW. Enzymology of the acetyl-CoA pathway of CO2 fixation[J]. Critical Reviews in Biochemistry and Molecular Biology,1991,26(3-4):261-300.
    Rosenwinkel KH, Cornelius A. Deammonification in the moving-bed process for the treatment of wastewater with high ammonia content[J]. Chemical Engineering and Technology,2005,28(1):49-52.
    Schalk J, de Vries S, Kuenen JG, Jetten MSM. Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation[J]. Biochemistry,2000,39(18): 5405-5412.
    Schmid M, Walsh K, Webb R, Rijpstra WIC,van de Pas-Schoonen K, Verbruggen MJ, Hill T, Moffett B, Fuerst J, Schouten S, Damste JSS, Harris J, Shaw P, Jetten MSM, Strous M. Candidatus "Scalindua brodae", sp nov., Candidatus "Scalindua wagneri", sp nov., two new species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology,2003,26(4):529-538.
    Schouten S, Strous M, Kuypers MMM, Rijpstra WIC, Baas M, Schubert CJ, Jetten MSM, Damste JSS. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria[J]. Applied and Environmental Microbiology,2004,70(6):3785-3788.
    Shi Y, Xing S, Wang XH, Wang SG. Changes of the reactor performance and the properties of granular sludge under tetracycline (TC) stress[J]. Bioresource Technology,2013,139:170-175.
    Shimamura M, Nishiyama T, Shigetomo H, Toyomoto T, Kawahara Y, Furukawa K, Fujii T. Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture[J]. Applied and Environmental Microbiology,2007,73(4):1065-1072.
    Shimamura M, Nishiyama T, Shinya K, Kawahara Y, Furukawa K, Fujii T. Another multiheme protein, hydroxylamine oxidoreductase, abundantly produced in an Anammox bacterium besides the hydrazine-oxidizing enzyme[J]. Journal of Bioscience and Bioengineering,2008,105(4):432-432.
    Sikkema J, Debont JAM, Poolman B. Interactions of cyclic hydrocarbons with biological-membranes[J]. Journal of Biological Chemistry,1994,269(11): 8022-8028.
    Sinninghe Damste JS, Rijpstra WIC, Geenevasen JAJ, Strous M, Jetten MSM. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (Anammox) [J]. FEBS Journal,2005,272(16):4270-4283.
    Sinninghe Damste JS, Strous M, Rijpstra WIC, Hopmans EC, Geenevasen JAJ, van Duin ACT, van Niftrik LA, Jetten MSM. Linearly concatenated cyclobutane lipids form a dense bacterial membrane[J]. Nature,2002,419(6908):708-712.
    Song C, Sun XF, Xing SF, Xia PF, Shi YJ, Wang SG. Characterization of the interactions between tetracycline antibiotics and microbial extracellular polymeric substances with spectroscopic approaches[J]. Environmental Science and Pollution Research,2014,21(3):1786-1795.
    Strous M, Heijnen JJ, Kuenen JG, Jetten MSM. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology,1998,50(5): 589-596.
    Strous M, Kuenen JG, Jetten MSM. Key physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology,1999,65(7):3248-3250.
    Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJM, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MSM, Wagner M, Le Paslier D. Deciphering the evolution and metabolism of an Anammox bacterium from a community genome[J]. Nature,2006,440(7085):790-794.
    Tang CJ, Zheng P, Mahmood, Q, Chen JW. Effect of substrate concentration on stability of Anammox biofilm reactors[J]. Journal of Central South University of Technology,2010a,17(1):79-84.
    Tang CJ, Zheng P, Wang CH, Mahmood Q. Suppression of anaerobic ammonium oxidizers under high organic content in high-rate Anammox UASB reactor[J]. Bioresource Technology,2010b,101(6):1762-1768.
    Tang CJ, Zheng P, Chen TT, Zhang, JQ, Mahmood Q, Ding S, Chen XG, Chen JW, Wu DT. Enhanced nitrogen removal from pharmaceutical wastewater using SB A-ANAMMOX process [J]. Water Research,2011,45(1):201-210.
    Tang CJ, Zheng P, Chai LY. Characterization and quantification of Anammox start-up in UASB reactors seeded with conventional activated sludge[J]. International Biodeterioration and Biodegradation,2013,82:141-148.
    Tao Y, Gao DW. Impact of ecological factors on anaerobic ammonia-oxidizing bacteria enrichments[J]. Environmental Engineering Science,2012,29(6): 479-485.
    Tsushima I, Kindaichi T, Okabe S. Quantification of anaerobic ammonium oxidising bacteria in enrichment cultures by real-time PCR[J]. Water Research,2007,41(4): 785-794.
    van de Graaf, AA, Mulder A, Debruijn, P, Jetten MSM, Robertson LA, Kuenen JG. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology,1995,61(4):1246-1251.
    van de Vossenberg J, Woebken D, Maalcke WJ, Wessels HJ, Dutilh BE, Kartal B, Janssen-Megens EM, Roeselers G, Yan J, Speth D, Gloerich J, Geerts W, van der Biezen E, Pluk W, Francoijs KJ, Russ L, Lam P, Malfatti SA, Tringe SG, Haaijer SC, Op den Camp HJM, Stunnenberg HG, Amann R, Kuypers MMM, Jetten MSM. The metagenome of the marine Anammox bacterium'Candidatus Scalindua profunda'illustrates the versatility of this globally important nitrogen cycle bacterium[J]. Environmental Microbiology,2013,15(5):1275-89.
    van der Star WRL, Abma WR, Blommers D, Mulder JW, Tokutomi T, Strous M, Picioreanu C, van Loosdrecht MCM. Startup of reactors for anoxic ammonium oxidation:Experiences from the first full-scale Anammox reactor in Rotterdam[J]. Water Research,2007,41(18):4149-4163.
    van Niftrik L, Fuerst JA, Damste JSS, Kuenen JG, Jetten MSM, Strous M. The Anammoxosome:an intracytoplasmic compartment in Anammox bacteria[J]. FEMS Microbiology Letters,2004,233(1):7-13.
    van Niftrik L. Cell biology of unique Anammox bacteria that contain an energy conserving prokaryotic organelle[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology,2013,104(4):489-497.
    van Niftrik L, Geerts WJC, van Donselaar EG, Humbel BM, Webb RI, Fuerst JA, Verkleij AJ, Jetten MSM, Strous M. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria:Cell plan, glycogen storage, and localization of cytochrome c proteins[J]. Journal of Bacteriology,2008a, 190(2):708-717.
    van Niftrik L, Geerts WJC, van Donselaar EG, Humbel BM, Yakushevska A, Verkleij AJ, Jetten MSM, Strous M. Combined structural and chemical analysis of the Anammoxosome:A membrane-bounded intracytoplasmic compartment in Anammox bacteria[J]. Journal of Structural Biology,2008b,161(3):401-410.
    Waki M, Tokutomi T, Yokoyama H, Tanaka Y. Nitrogen removal from animal waste treatment water by Anammox enrichment. Bioresource Technology,2007,98(14): 2775-2780.
    Wei YJ, Li KA, Tong S Y. A linear regression method for the study of the Coomassie brilliant blue protein assay[J]. Talanta,1997,44(5):923-930.
    Woebken D, Lam P, Kuypers MMM, Naqvi SWA, Kartal B, Strous M, Jetten MSM, Fuchs BM, Amann R. A microdiversity study of Anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones[J]. Environmental Microbiology,2008,10(11):3106-3119.
    Yang SF, Li XY, Yu HQ. Formation and characterisation of fungal and bacteria granules under different feeding alkalinity and pH conditions [J]. Process Biochemistry,2008,43(1):8-14.
    Zhou Y, Oehmen A, Lim M, Vadivelu V, Ng WJ. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research,2011,45(15): 4672-4682.
    陈建伟.高效短程硝化和厌氧氨氧化工艺研究[D].杭州:浙江大学,2011.
    陈婷婷,唐崇俭,郑平.制药废水厌氧氨氧化脱氮性能与毒性机理的研究[J].中国环境科学,2010,30(4):504-509.
    陈旭良,郑平,金仁村,胡宝兰,周尚兴,丁革胜.味精废水厌氧氨氧化生物脱氮的研究[J].环境科学学报,2007,27(5):747-752.
    丁爽,郑平,唐崇俭,张吉强,胡安辉.三种接种物启动Anammox-EGSB反应器的性能[J].生物工程学报,2011,27(4):629-636.
    国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    国家环境保护部、国家统计局、农业部.第一次全国污染源普查公报[A].2010.
    国家统计局.2009年中国统计年鉴[M].北京:中国统计出版社,2009.
    国家环境保护部.中国环境状况公报[M].北京:2012.
    马迪根,马丁克,帕克.Brock微生物生物学[M].北京:科学出版社,2007.
    沈萍,彭珍荣.微生物学[M].北京:高等教育出版社,2003.
    唐崇俭,郑平,陈建伟,胡宝兰.不同接种物启动Anammox反应器的性能研究[J].中国环境科学,2008,28(8):683-688.
    唐崇俭,郑平,张吉强,陈建伟,丁爽,周尚兴,丁革胜.中试厌氧氨氧化反应器的运行性能及其过程动力学特性[J].环境科学,2010,31(8):1834-1838.
    唐崇俭,郑平,汪彩华,陈建伟,张吉强,丁爽.高负荷厌氧氨氧化EGSB反应器的运行及其颗粒污泥的ECP特性[J].化工学报,2010,61(3):732-739.
    唐崇俭.厌氧氨氧化工艺特性与控制技术的研究[D].杭州:浙江大学,2011.
    杨洋,左剑恶,沈平,顾夏声.温度、pH值和有机物对厌氧氨氧化污泥活性的影响 [J].环境科学,2006,27(4):691-695.
    郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报,2001,17(2):193-198.
    郑平,胡宝兰,徐向阳.厌氧氨氧化菌好氧代谢特性的研究[J].浙江大学学报,2000,26(5):521-526.
    郑平,胡宝兰,徐向阳.新型生物脱氮理论与技术[M].科学出版社,2004.
    郑平,吴明生,金仁村.有机物对ANAMMOX反应器运行性能的影响[J].环境科学学报,2006,26(7):1087-1092.
    郑平,冯孝善.废物生物处理[M].北京:高等教育出版社,2006.
    朱南文,闵航,陈美慈,赵宇华.TTC-脱氢酶测定方法的探讨[J].中国沼气,1996,14(2):3-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700