三态(固、气、生物)微界面反应过程及其应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的进步,特别是化学工业的发展促进了社会进步和生活水平提高。但同时由于不合理开发与化学物质排放使得环境特别是水资源,易受到前所未有的污染。因此水质的改善也就成了现代社会不得不重视的问题。化学能够带来灾难,同时化学可带来幸福,化学可以治理好环境、改善环境。水处理工艺中要涉及到许多界面过程,界面化学的应用在水处理过程中是不可缺少的。但是目前对界面科学的认识和研究还不成熟,本文就是从固—气—液的界面过程出发来研究水处理问题。
     国家自然科学基金委的“自然科学学科发展战略调研报告”中指出:污染控制化学研究有赖于并促进表面化学(吸附、催化等)、胶体化学(絮凝、沉淀理论等)、化学分离工程和化学反应工程(低浓度系统)等学科的发展,也促进了污染控制技术、资源合理开发与利用、清洁生产技术等方面的发展。从中可见胶体和界面科学技术在环境治理和污染控制过程中起到重要的作用。
     本文研究探讨了微电解反应过程中硝基苯降解的情况,这是固液界面过程。同时探讨了降解硝基苯的微电解反应动力学。通过实验发现,硝基苯在微酸性或中性的条件下,能够被大量地转化,从而可提高整个污水体系的可生化性。通过动力学模拟研究,发现可以通过控制整个反应过程的停留时间,来提高降解、转化硝基苯的效率。
     国内外已经逐渐采用气浮技术来处理污水,但一般都是使用微孔曝气,此过程产生的气泡较大,气泡的利用效率较低。本文中实验是通过自行组装的微气泡发生装置,产生微气泡;然后探讨了产生的微气泡的性质并将产生的微气泡用来处理污染的河水和污水,同时使用本实验室陈邦林教授设计研制的JM99C型双驱动态膜压记录仪,对处理过的污水的膜压以及滞回环的指标测定。实验发现,微气泡技术对污水的COD和BOD的降解趋势相同,膜压和滞回环指标显示,污水经过微气泡的处理后,其可生化性提高。这种研究方法还未见报道。
     生物膜法是一种高效的废水处理方法,与传统的废水生物方法相比,具有许多优点,例如:产生的污泥量少,不会引起污泥膨胀,对废水的水质和水量的变动具有较好的适应能力;运行管理较方便、简易等。此技术的关键是形成性能良
    
    譬,东~学申请硕士学位论文
    摘要
    好的生物膜,生物膜的形成及其生长是实现污水有效处理的前提。生物膜的载体
    的选用也是一个关键。本文主要研究新型无机悬浮材料在固定化生物膜处理技术
    中的应用。由于无机材料表面的带电性质,有利于微生物粘附,同时又有悬浮性,
    使得微生物膜处理技术的效率提高。
     将固一液、气一液和固(生物)一液三个界面反应过程联合使用,是本文的
    新的探索。将多种界面技术联合使用,可为水处理开发新技术提出一些思路。其
    中内在的多变因素以及效率提高等还有待进一步研究和探讨。
Along with the advance of science and technology, especially chemistry, the development of industry promotes the social progress and raises people's living standard. At the same time, with unreasonable development and the drain of chemical material, environment, especially water resource has been polluted unprecedentedly. So the improvement of water quality becomes a problem that modern society has to value. Chemistry can cause disaster, at the same time, chemistry can bring happiness, chemistry can control environment and improve environment too. The technology of water treatment involves a lot of interface course and interface chemistry, which are necessary in the course of water treatment. However, the research and the knowledge on interface science are still not perfect. This paper is to study the problem of water treatment on the basis of the interface course of solid-gas-liquid.
    The Report of Investigation on the Development Stratagem of Natural Science released by nation nature science fund committee points out: The research of pollution control chemisty depends on and promotes interface chemistry (adsorption, catalysis etc.), colloid chemistry (flocculation, sediment theory etc.), chemistry separation engineering and chemical reaction engineering (low concentration system) etc, and it also promotes the development of the pollution control technology, resource reasonable exploitation and utilization, clean production technology and other aspects.lt is evident that colloid & interface science and technology have an important effect on environment and pollutes control course.
    This paper has studied and discussed the reducing of nitrobenzene in the microelectrolysis reaction course, which is a solid-liquid interface course. And it has discussed the dynamics of microelectrolysis reaction of nitrobenzene's reducing as well. In the experiment, it has been discovered that in the mild acid or neutral condition nitrobenzene can be changed in large quantities, so that entire sewage system becomes easy to convert by biochemical method. Through dynamics simulation research, it has been discovered that, the efficiency of reducing and
    
    
    
    changing nitrobenzene can be increased by controlling the stopover time of entire reaction course.
    Flotation technology, but usually by using the tiny hole puffing air, have been gradually applied to dispose sewage domestically and internationally , in which the bubbles produced are larger, and the efficiency of the use of bubble is lower. In this experiment, equipment is assembled independently to produce microbubbles, then the nature of microbubble and how to use microbubbles produced to dispose polluted river water and sewage were discussed. At the same time, an instrument of double-drive dynamic membrane pressure designed by Professor Chen Banglin ( the JM99C model) in this laboratory was applied to measure membrane pressure and area of hystersis loop of the disposed sewage. It is discovered in the experiment that there's an identical decrease trend of the COD and BOD of the sewage disposed by microbubble technology. And the membrane presses and area of hystersis loop show that after being disposed by microbubbles, biochemical conversion ability of sewage can be raised. This kind of research method has not been reported in the literature.
    Biological film is a kind of efficient method of water treatment. Comparing with the tradition water biological method, biological film has a lot of advantages, such as: it produced less mud, will not arouse mud expansion, is adapt to the change of the quality and quantity of the sewage, and is easy and convenient to manage, etc. The key of this technology is to form biological film with good function. The growth and formation of biological film are the prerequisite to effective sewage disposing. The selection of the carrier of biological film is also a key. This paper mainly studued new inorganic suspended material used in the fixed biological film handling technology. Because of the electrical nature of inorganic material surface, microorganism i
引文
1 张敬东,张家华.污水处理技术的新发展.环境技术,1997(6):28~33
    2 上海市环境保护局.废水物化处理.同济大学出版社,上海,1999
    3 国家环保局(水和废水监测分析方法)编委会.水和废水监测分析方法(第三版),1989:354~368
    4 城乡建设环境保护部环境保护局.环境监测分析方法编写组,(环境检测分析方法),1983
    5 污染源统一监测分析方法编写组.污染源统一监测分析方法(废水部分),技术标准出版社,1982
    6 GB 7488-87,水质五日生化需氧量—稀释与接种法
    7 曹一兵.铁屑内电解法处理综合电镀废水技术[J].重庆环境科学,1995,17(4):41~43
    8 杨凤林,全燮,高桂英等.铁屑过滤法处理染料废水的研究[J].化工环保,1998,8(6):330~333
    9 赵永才,孙又山,王玉树.微电解法脱除水溶性染料废水色度的研究[J].环境污染与防治,1994,16(1):18~21
    10 徐根良,微电解处理分散染料废水的研究.水处理技术,1998(8):235~238
    11 张毅,苎麻污水处理工艺设计.工业水处理,1998(9):38~46
    12 叶燕,内电解法脱除气田水中COD的研究.石油与天然气化工,2001,30(1):50~53
    13 蓉菁,夏明芳,尹协东,李国平,王志良.臭氧氧化法处理印染废水.污染防治技术,2003,16(4):68-70
    14 阮新潮,曾庆福.两种活性染料废水的光催化氧化处理及回用研究.武汉科技学院学报,2003,16(5):13-16
    15 李海英,石宝龙,柳荣展.内电解——催化氧化法处理染料废水.青岛大学学报,1998,(3).6-9
    16 Lara L. Zawaideh,Tian C. Zhang. The effects of pH and addition of an organic buffer (HEPES) on nitrate transformation in Fe~0-water systems: Water Science and Technology, Volume 38, Issue 7, 1998, Pages 107-115
    17 Chin F. Chew, Tian C. Zhang. In-situ remediation of nitrate-contaminated ground water by electrokinetics/□iron wall processes: Water Science and Technology ,Volume 38, Issue 7,
    
    1998,Pages 135-142
    18 徐文英,周荣丰,高廷耀.催化铁内电解法处理难降解有机废水.上海环境科学,2003,22(6):402—406
    19 Jones S, Evans G, Galvin K. Bubble nucleation from gas cavities a review[J]. Adv, Colloid Interface Sci, 1999,80:27~50
    20 汤鸿霄.微界面水质过程的理论与模型应用[J].环境科学学报,2000,20(1):1~9
    21 汤鸿霄,钱易,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理(第一版)[M].北京,中国环境科学出版社,2000:1~267
    22 Ralaton J, Fornasiero D, Hays R. Bubble-particle attachment and detachment in flotation[J].Int J Miner. Process, 1999,56:133~164
    23 Jegatheesan V, Vigeneswaran S,Transient stage deposition ofsubmicron particlesin deep bed filtration under unfavorable conditions[J].Wat, Res, 2000,34(7):2119~2131
    24 Vakovska D, Danov D, Ivanov I. Surfactants role on the deformation of colliding small bubble[J].Colloid Surf A, 1999,156:547~566
    25 王毅力.高效絮凝/溶气气浮(DAF)水质净化集成系统的研究[D].博士学位研究生学位论文.北京,中国科学院生态环境研究中心.2000
    26 Tyreell J, Attard P. Images of nanobubbles on hydrophobic surfaces and their interactions[J]. Phy Rev Let, 2001, 87(17): 176104-1-176104-4
    27 王永广,杨剑锋.微电解技术在工业废水处理中的研究与应用.环境污染治理技术与设备.2000(4),3(4):69~73
    28 李家珍.染料、染色工业废水处理.化学工业出版社,北京.1997
    29 Jahn A and Nielesen PH. Cell Biomass and Exopo;ymer Compositionin Sewer Biofilm. Wat, Sci, Tech. 1998,37(1): 17~24
    30 Zhang X, Bishop PL and Kupferle MJ. Measurement of Polysaccharides and Proteins in Biofilm Extracellular Polymers.Wat. Sci. Tech,1998,37(4-5):345~348
    31 Veiga M Cetal. Composition and Role of Extracellular in Methanogenic Granules. Appl. Environ. Microbiol, 1997,63(2):403~407
    32 王丽英.生物膜的形成与控制.食品工业科技,1998(4):69~70
    33 Bungartz HJ, Kuehn M, Mehl M. Fluid Flow and transport in defined biofilm: Experiments and numerical simulation on a microscale. Wat. Sci. Technol,2001,41:331
    
    
    34 Morgenroth E, Eberl H. Van Loosdrecht Evaluating 3-D and 1-D mathematical modela for masa transport in heterogeneous biofilm. Wat. Sci. Technol,2001,41:347
    35 Wasche S Horn H Hempel D C. Mass transfer phenomena in biofilm system. Wat. Sci. Technol, 2001,41:357
    36 Sizgerist H, Gujer W.Mass transfer mechanism sinaneterotrophic biofilm. Wat. Res, 1985,19(12):1969~1985
    37 De Beer D, Stoodley P, Roe F, etal. Effects of biofilms structures on Oxygen distribution and mass transfer[J]. Biotechnol Bioeng, 1994, 43(11):1131~1138
    38 Yang S, Lew and Owski Z.Messurement of flocal transfer coefficinet in biofilms[J]. BiotechnolBioeng, 1995,48(6)737~744
    39 刘翔,高廷耀.生物接触氧化法处理污水的一种新型填料——悬浮填料.重庆环境科学,1994(4):42~44
    40 周少奇,周吉林.生物脱氮新技术研究进展.环境污染治理技术与设备,2000(10):11~19
    41 Heijinen J J, Van Loosdrecht M C M, Mulder A, etal. Formation of biofilms in a biofilm air lift suspension reactor[J]. Wat. Sci. Technol, 1992,26(5):647~654
    42 何平笙等.Langmuir单分子膜的动态稳定性.化学物理学报,2001,14(3):371~377
    43 H.B.小马克,J.S.马特森主编,佟亮等译.现代水质分析检测技术(中国建筑工业出版社),1988.237~264
    44 Victor Kla Mee. Retardation of Evaporation by Monolayer, transport processes. Academic express, New York, 1962, 75
    45 Harry B. Mark, James S. Mattson, Water Quality Measurement: the Modern Analytical techniques. Marcel Decker Joes. New York, 1981,257
    46 陈武荣等.猪肺泡表面活性物质替代治疗时的量效关系.麻醉与重症监测治疗,1998,4(2):76~79
    47 吴静怡等.肺表面活性物质蛋白质分离和生物活性作用.上海医科大学学报,1991,18(6):421~425
    48 杨建标,秦菲,陈邦林.动态膜压法测定江污混合水体中有机物含量的探讨.上海环境科学,2002,21(4):32~34
    49 陈郁,全燮.零价铁处理污水的机理及应用.环境科学研究,2000(5):24~27
    50 樊冠球.利用废铁屑的微电池原理处理电镀含铬废水[J].环境工程,1984(4):1~7.
    
    
    51 张大胜,姚培正,张军杰.铁屑法处理含合成洗涤剂废水的研究[J].环境科学研究,1993,6(3):56~59.
    52 朱义春等.电池厂含汞废水的微电解处理.工程技术,1999(3):11~16
    53 柳荣展,吕环成,冷兆华.高浓度硫化染料染色废水的综合处理.青岛大学学报,2001(12):42~44
    54 黄秀山,余宗学.高浓度有机化工酸性废水集中预处理.重庆大学学报(自然科学版),2000(11):124~125
    55 王琴.化工综合污水处理试验研究.工业用水与废水,2000(5):23~25
    56 张成志,任伟,邵东煜.高浓度酸性废水处理技术.山东轻工业学院学报,2002(6):47~51
    57 张素丽.内电解法处理纺织印染废水试验.广东化纤,2000(3):20~24
    58 周建等.染料废水的催化氧化处理.环境污染与防治,2000(8):25~33
    59 程凯英,林美强,林建民,朱又春.微电解法处理染整废水的工程应用.工业水处理,2001(12):36~37
    60 肖利平,李胜群,周建勇,张森林.微电解一厌氧水解酸化—SBR串联工艺处理制药废水试验研究.工业水处理,2000(11):25~27
    61 张敬东,张家华.污水处理技术的新发展.环境技术,1997(9):26~33
    62 石金田,张士金,井继琛.气浮净水技术及应用.江苏化工,2003(2):48~50
    63 张声,刘洋,谢曙光,张晓健.溶气气浮工艺在给水处理中的应用.中国给水排水,2003(8):26~29
    64 周洁,马建录,钱宗水.气浮净水技术在处理石油污染水中的应用.石油化工腐蚀与防护,2003,20(3):53
    65 吕玉娟,朱锡海.十二烷基苯磺酸的溶剂气浮研究.水处理技术,2202(8):203~206
    66 洪雷,王三反.生活污水气浮处理及滴灌试验研究.兰州铁道学院学报(自然科学版),2002(8):79~82
    67 刘春生,刘宏远,王卫文,郑道福.高效气浮技术设备及其在造纸废水处理中的应用.浙江工业大学学报,2001(12):338~402
    68 秦菲.城市污水的表面膜研究.2002届华东师范大学硕士毕业论文
    69 侯宇光 杨凌真 黄川友,自然净化与水污染控制—水环境保护.成都科技大学出版社,
    
    1990
    70 White D C et al.Biofilm Ecology:On-line Methods Bring New Insights into Mic and Microbial Biofouling.Biofouling. 1996,10(1-3):3-16
    71 Pey K et al.Development of a Membrane Biofilm Reactor for the Degradation of Chlorinated Aromatics.Wat.Sci.Tech,1997,36(1): 205~214
    72 Akiyoshi O and Hideki H.A Novel Concept for Evaluation of Biofilm Adhesion Strength by Applying Tensile Force and Shear Force.Wat.Sci.Tech. 1996,34(5-6):201~211
    73 Kara manev D G and Samson R. High-Rate Biodegradation of Pentachlorophenol by Biofilm Development in the immobilized Soil Bioreactor.Environ.Sci.Technol. 1998,32(7):994~999
    74 Percival S Let al.Biofilm.Mains Water and Stainless.Wat.Res.1998,32(7):2187~2201
    75 Hunt A P and Parry J D.The Effect of Substratum Roughness and River Flow Rate on the Development of a Freshwater Biofilm Community Biofouling 1998,12(4):287~303
    76 沈耀良 黄勇 赵丹 宋吟玲 李勇,固定化微生物污水处理技术.化学工业出版社,北京,2002
    77 蒋建华 许春建 周明,超声降解水体中有机污染物的研究进展.化工进展,2001(2):11-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700