沼气高效厌氧发酵的条件及产气效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国能源结构的调整,生物质能以其资源丰富、廉价易得、低碳等优势成为能源的重要组成部分。沼气作为生物质能的一种已被广泛应用于我们的生产和生活中,具有显著的能源、经济和生态效益。厌氧是一个复杂的过程,预处理、接种比例、总固体浓度、原料、温度和外源添加物等因素都对厌氧发酵有显著影响。试验采用可控性恒温发酵装置,模拟沼气池的发酵环境,选取粪便和秸秆为原料,系统的研究了不同预处理、接种比例、总固体浓度、原料、温度和外源添加物对厌氧发酵产沼气的影响,得到如下结论:
     1.秸秆经生物预处理后,碳氮比下降,5种生物预处理菌剂(微生物催腐剂、腐秆剂、复合菌剂、糖酵酶和沼液)中,沼液的预处理效果最好;糖酵酶的预处理效果最差,在发酵过程中易出现酸化现象。麦秆、稻秆、玉米秆分别经沼液预处理6d、6d、9d后的产气效率最高。
     2.在中温范围内,各接种比例的干物质产气速率和干物质总产气量随着温度的升高呈先升高后下降的变化趋势;随着接种比例的增加,干物质产气速率和干物质总产气量呈先增大后减小的变化趋势。多元回归分析结果表明,最佳发酵温度为36.6℃,最佳接种比例为发酵原料干重的0.24。
     3.在发酵温度为40℃时,鸡粪总固体浓度为20%时总产气量最大(17653mL);麦秆总固体浓度为16%时总产气量最大(26855mL);鸡粪与麦秆的混合原料总固体浓度为16%时的总产气量最大(11733mL)。4种总固体浓度下的干物质产气量大小顺序为:8%>12%>16%>20%。
     4.单一原料中猪粪的产气效率最高,干物质产气量为459.54mL/g;人粪的产气效率最低,干物质产气量仅为144.13mL/g;秸秆中玉米秆的产气效率最高,干物质产气量为216.03mL/g。混合原料中猪粪与麦秆、稻秆、玉米秆配比分别为1﹕1、3﹕1、2﹕1的混合物产气效率最高,干物质产气量分别为为327.4、422.86、413.71mL/g;牛粪与麦秆、稻秆、玉米秆配比分别为2﹕1、2﹕1、1﹕1的混合物产气效率最高,干物质产气量分别为321.72、274.96、308.08mL/g;鸡粪与麦秆、稻秆、玉米秆配比分别为3﹕1、1﹕1、2﹕1的混合物产气效率最高,干物质产气量分别为325.22、296.13、284.47mL/g;人粪与麦秆、稻秆、玉米秆配比分别为2﹕1、2﹕1、1﹕1的混合物产气效率最高,干物质产气量分别为132.56、168.75、126.83mL/g;猪粪、鸡粪分别与麦秆、稻秆、玉米秆配比为1.2﹕0.8﹕1的混合物产气效率最高,干物质产气量分别为252.44mL/g、253.53、247.75mL/g。
     5.猪粪在30℃时,干物质产气量最大为468.60mL/g;牛粪45℃时,干物质产气量最大为373.91mL/g;鸡粪在50℃时干物质产气量最大为355.28 mL/g;麦秆在50℃时干物质产气量最大为314.79mL/g;稻秆在45℃时干物质产气量最大为364.22mL/g;玉米秆在55℃时干物质产气量最大为355.06mL/g;猪粪麦秆混合原料在55℃时干物质产气量最大为362.19mL/g;猪粪稻秆混合原料在35℃时干物质产气量最大为416.80mL/g;猪粪玉米秆混合原料在35℃时干物质产气量最大为413.71mL/g;牛粪麦秆混合原料在45℃时干物质产气量最大为357.97mL/g;牛粪稻秆混合原料在50℃时干物质产气量最大为345.50mL/g;牛粪玉米秆混合原料在40℃时干物质产气量最大为391.31mL/g;鸡粪麦秆混合原料在45℃时,干物质产气量最大为344.47mL/g;鸡粪稻秆混合原料在45℃时干物质产气量最大为323.59mL/g;鸡粪玉米秆混合原料在50℃时干物质产气量最大,为389.93mL/g。
     6.添加尿素和纤维素酶可增加沼气的产气量,分别比对照提高2.46%~214.32%和1.63%~104.28%。
     在进行厌氧发酵时,要选择适宜的接种比例和总固体浓度,当接种比例为0.24、总固体浓度为8%时,产气效率最高。不同发酵原料产气效率不同,单一猪粪原料产气效率最高。以秸秆为主要发酵原料时,用沼液预处理6~9d后,再加入适量的畜禽粪便进行混合发酵,产气效率明显提高;而在混合原料的发酵过程中添加尿素或纤维素酶,可以进一步提高产气效率。温度不同,原料的产气效率亦不同,各种原料适宜的发酵温度范围在30~55℃。因此,农村户用沼气应根据其实际的设施情况和所选的发酵原料,采取相应的保温或加热措施。
With the energy restructuring in China, biomass energy with its advantages such as rich resources, cheap and easy to get, low-carbon and so on has been becoming an important part of energy structure. Biogas as one of biomass energy has been widely used in our production and life, which has significant energy, economic and ecological benefits. Anaerobic fermentation require strict anaerobic environment, factors of biopretreatment, inoculum-substrate ratio (ISR), total solid concentration, material, temperature, exogenous additives and so on have significant influence on anaerobic fermentation. In order to simulate biogas fermentation environment, controllable constant–temperature fermented equipment was used, manure and straw was chose as material. Factors that affect the anaerobic fermentation such as biopretreatment, inoculum-substrate ratio, total solid concentration, material, temperature, exogenous additives were studied. The main conclusions indicate that:
     1. The carbon and nitrogen ratio of straw decreased after biopretreatment. Among the agents of biopretreatment, biogas slurry was best. Biogas slurry was used pretreated wheat straw, rice straw and corn straw, and the optimal pretreatment time was 6d, 6d and 9d.
     2. At 25~35℃, the TS biogas production rates and TS biogas production yields of each ISR were first increased and then decreased with the increasing of temperature, the TS biogas production rates and TS biogas production yields were first increased and then decreased with the increasing of ISR. Multiple regression analysis predicted, at 36.6℃and the ISR is 0.24.
     3. At 40℃, when the total solid concentration was 20%, the biogas production yields of chicken manure was highest (17653mL); when the total solid concentration was 16%, the biogas production yields of wheat straw was highest (26855mL); when the total solid concentration was 16%, the biogas production yields of the mixture was highest (11733mL). The order of TS biogas yields was: 8%>12%>16%>20%.
     4. Single material: the biogas production efficiency of the pig manure was best, the TS biogas yield was 459.54mL/g; the biogas production efficiency of the human excrement was lowest, the TS biogas yield was 144.13mL/g; the biogas production efficiency of the corn straw was better than other straws, the TS biogas yield was 216.03mL/g. Mixture of pig manure and wheat straw, rice straw, corn straw, the biogas production efficiency of 1﹕1, 3﹕ 1, 2﹕1 were highest, the TS biogas yields were 327.46, 422.86, 413.71mL/g, respectively. Mixture of cow manure and wheat straw, rice straw, corn straw, the biogas production efficiency of 2﹕1, 2﹕1, 1﹕1 were highest, the TS biogas yields were 321.72, 274.96, 308.08mL/g, respectively. Mixture of chicken manure and wheat straw, rice straw, corn straw, the biogas production efficiency of 3﹕1, 1﹕1, 2﹕1were highest, the TS biogas yields were 325.22, 296.13, 284.47mL/g, respectively. Mixture of human excrement and wheat straw, rice straw, corn straw, the biogas production efficiency of 2﹕1, 2﹕1, 1﹕1 were highest, the TS biogas yields were 132.56, 168.75, 126.83mL/g, respectively. Mixture of pig manure, chicken manure and straws, the biogas production efficiency of 1.2﹕0.8﹕1 were highest, the TS biogas yields were 252.44, 253.53, 247.75mL/g, respectively.
     5. The best fermentation temperature of pig manure, cow manure, chicken manure were 30, 45, 50℃, the TS biogas yields were 468.60, 373.91, 355.28mL/g, respectively. The best fermentation temperature of wheat straw, rice straw, corn straw were 50, 45, 55℃, the TS biogas yields were 314.79, 364.22, 355.06mL/g, respectively. The best fermentation temperature of pig manure and straws mixture were 55, 35, 35℃, the TS biogas yields were 362.19, 416.80, 413.71mL/g, respectively. The best fermentation temperature of cow manure and straws mixture were 45, 50, 40℃, the TS biogas yields were 357.97, 345.50, 391.31mL/g, respectively. The best fermentation temperature of chicken manure and straws mixture were 45, 45, 50℃, the TS biogas yields were 344.47, 323.59, 389.93mL/g, respectively.
     6. Added urea and cellulose can increase biogas production yields, which were increased 2.46%~214.32% and 1.63%~104.28% than control, respectively.
     ISR and total solid concentration are important factors to anaerobic fermentation, when the ISR is 0.24 and total solids concentration is 8%, biogas production efficiency is highest. Different materials have different biogas production efficiency, and the biogas production efficiency of pig manure is highest. When straw is used as the main fermentation material, biopretreatment and co-digestion with manure can enhance the biogas production efficiency; and add urea or cellulose in mixed material during anaerobic fermentation, can further improve the biogas production efficiency. Biogas production efficiency of material is different at different temperatures, the optimum fermentation temperature rang of materials is between 30~55℃. Therefore, rural household biogas should be take some insulation or heating measures based on the actual situation of the facilities and materials.
引文
白洁瑞,李轶冰,郭欧燕,杨改河,任广鑫,冯永忠,李勇. 2009.不同温度条件粪秆结构配比及尿素、纤维素酶对沼气产量的影响.农业工程学报, 25(2): 188~193
    边骆华,张灵芝,贾建和,边志敏. 2000.处理制药综合有机废水活性污泥中主要厌氧微生物生理群组成的研究. 2000年国际沼气技术与持续发展研讨会论文集,北京, 94~100
    蔡磊. 1997.德国利物浦罐技术在大中型沼气工程中的应用.中国沼气, 15(2): 29~32
    陈广银,郑正,方彩霞,罗艳,邹星星. 2010.压滤处理对水葫芦不同部位厌氧发酵的影响.环境化学, 29(3): 462~466
    陈广银,郑正,邹星星,杨世关. 2008.添加猪粪对凤眼莲中温厌氧消化过程的影响.中国环境科学, 28(10): 898~903
    陈广银,郑正,邹星星,李继红,杨世关. 2009.稻草与猪粪混合厌氧消化特性研究.农业环境科学学报, 28(1): 185~188
    陈广银,郑正,邹星星,杨世关,方彩霞,冯景伟. 2009.牛粪与互花米草混合厌氧消化产沼气的试验.环境科学, 3(7): 2130~2135
    陈朝猛,曾光明,张碧波,乔玮,张盼月,胡天觉,蒋晓云. 2004.城市有机垃圾厌氧消化痕量激活剂的促进作用及产能研究.南华大学学报(理工版), 18(1): 12~16
    陈明功,贾同领,高凤彩. 2001.生活垃圾发酵废水治理的研究.煤矿环境保护, 15(6): 24~26
    程洋,陈泽智,龚慧娟,孟德胜. 2009.搅拌对猪粪半干法发酵产沼气的影响.安徽农业科学, 37(34): 17021~17022
    陈小华,朱洪光. 2007.农作物秸秆产沼气研究进展与展望.农业工程学报, 23(3): 179~283
    邓功成,李静,赵洪,高礼安,马媛,李永波,黎娇凌,俸才军,张林,杨世凯. 2009.沼气发酵微生物低温驯化研究.安徽农业科学, 37(27): 12894~12895
    邓怡国,王金丽,孙伟生,焦静,郑勇,王刚. 2010.干物质浓度对菠萝叶渣干式厌氧发酵产沼气的影响.安徽农业科学, 38(32): 18607~18610
    丁维新,蔡祖聪. 2003.氮肥对土壤甲烷产生的影响.农业环境科学学报, 22(3): 380~383
    段文霞,牟树森. 1994.畜粪污染处理与利用研究.四川环境, 13(2): 27~310
    方治华,柯益华,郝晓刚. 1991. UASB反应器处理制药废水及其颗粒污泥形成条件的研究.中国沼气, 9(3): 1~50
    冯永忠,杨世琦,任广鑫. 2005.双重背景下发展沼气产业的机遇和挑战.中国沼气, 23(3): 32~33
    杭怡琼,薛慧琴,郁怀丹,陈谊. 2001.白腐真菌对稻草秸秆的降解及其有关酶活性的变化.菌物系统, 20(3): 403~407
    何辰庆,李士兰. 1990.豆渣、鸡粪厌氧消化制取沼气发酵条件的研究.辽宁大学学报(自然科学版).17(l): 50~54
    何荣玉,闫志英,刘晓风,袁月祥,廖银章,王佳婧,贺荣娜,李旭东. 2007.秸秆干发酵沼气增产研究.应用与环境生物学报, 13(4): 583~585
    高白茹,常志州,叶小梅,杜静,徐跃定,张建英. 2010.堆肥预处理对稻秸厌氧发酵产气量的影响.农业工程学报, 26(5): 25~256
    高洁,汤烈贵. 1999.纤维素科学.北京:科学出版社, 10
    谷洪春,顾永宝,蓝李桥,李凤梅,刘晓光,钱思敏,王瑛,谢立青,张荫芬. 1997.电子束辐射加工研究进展.原子核物理评论, 14(3): 185~188
    管运涛,蒋展鹏. 1999.两相厌氧膜生物系统产气特性研究.中国沼气, 17(4): 32
    桂江生,应义斌. 2003.微波干燥技术及其应用研究.农机化研究, (4): 153~154
    郭欧燕,李轶冰,白洁瑞,杨改河,周子凡,任广鑫,冯永忠. 2009.温度对鸡粪与秸秆混合原料厌氧发酵产
    气特性的影响.西北农林科技大学学报(自然科学版), 37(6): 78~83
    胡觉,张无敌,尹芳,刘士清,官会林. 2006.紫茎泽兰连续发酵产沼气实验研究.农业与技术, 26(4): 33~36
    胡民强. 2004.臭氧处理粗饲料的研究进展.世界农业, 1: 52~53
    胡启春. 1998.国外厌氧处理城镇生活污水技术的应用现状和发展趋势.中国沼气, 16(2): 11~15
    胡晓明,张建萍,张无敌,尹芳,李建昌,徐锐. 2008.香根草中温发酵产沼气的试验研究.科技信息, 27: 8~9
    胡小平,王长发. 2001. SAS基础及统计实例教程.西安:西安地图出版社
    黄爱霞,邹晓庭. 2006.集约化畜禽养殖污染的现状及解决方法.甘肃畜牧兽医, (2): 42~44
    黄祖新,陈由强,陈如凯. 2004.甘蔗渣的酶降解研究进展.甘蔗, 11(4): 52~56
    黄志南译. 1981.世界沼气建设的研究概况.国外沼气资料, 5: 1~6
    蒋展鹏. 2001.环境工程学.北京:高等教育出版社
    焦静,王金丽,邓怡国,欧忠庆,李明,宋德庆. 2010.草粪比对甘蔗叶干法厌氧发酵产气效果的影响.广东农业科学, 1: 51~54
    兰吉武,陈彬,曹伟华,赵由才. 2004.水葫芦厌氧发酵产气规律.黑龙江科技学院学报, 14(1): 18~21
    乐毅全,王士芬. 2005.环境微生物学, 186~189
    李长生. 2004.农村沼气实用技术.北京:金盾出版社, 1~2
    李刚,欧阳峰. 2001.两相厌氧消化工艺的研究与进展.中国沼气, 19(2): 25~29
    李国学,张福锁. 2000.固体废物堆肥化与有机复混肥生产.北京:化学工业出版社
    李杰,李文哲,许洪伟,王永成. 2007.牛粪湿法厌氧消化规律及载体影响的研究.农业工程学报, 23(3): 186~191
    李金平,柏建华,李珍. 2010.不同恒温条件厌氧发酵的沼气成分研究.中国沼气, 28(6): 20~23
    李静,杨红霞,杨勇,刘燕,魏世强. 2007.微波强化酸预处理玉米秸秆的乙醇化工艺的研究.农业工程学报, 23(6): 199~202
    李美群,熊兴耀,谭兴和,周红丽,邓洁红,苏小军,李清明,彭丹,王丹. 2010.温度对红薯酒糟沼气发酵的影响.湖南农业大学学报(自然科学版), 36(2): 233~236
    李木子,孙军德. 2010.猪羊粪及其配比发酵沼气试验初报.微生物学杂志, 30(2): 95~98
    李世密,寇巍,张晓健,卞永存,张大雷. 2009.一株纤维素降解菌的筛选及其在沼气应用中的研究.可再生能源, 27(2): 40~42
    李文哲,王忠江,王丽丽,夏吉庆,关正军. 2008.影响牛粪高浓度水解酸化过程中乙酸含量的因素研究.农业工程学报, 24(4): 204~208
    李稳宏,吴大雄,高新,刘蓬军,王梅兰,李宝璋. 1997.麦秸纤维素酶解法产糖预处理过程工艺条件.西北大学学报(自然科学版), 27(3): 227~230
    李亚新,董春娟. 2001.激活甲烷菌的微量元素及其补充量的确定.环境污染与防治, 23(3): 116~118
    李轶冰,杨改河,楚莉莉,陈豫. 2009.中国农村户用沼气主要发酵原料资源量的估算.资源科学, 31(2): 231~237
    李轶冰,张翠丽,杨改河,卜东升,楚莉莉,任广鑫,冯永忠. 2009.温度对粪便与玉米秸秆混合厌氧消化产生特性的影响.西北农林科技大学学报(自然科学版), 37(1): 66~72
    廖双泉,邵自强,马凤国,廖建和,谭惠民. 2002.剑麻纤维蒸汽爆破处理研究.纤维素科学与技术, 10(6): 45~49
    林长松,袁旭峰,王小芬,朱万斌,程序,崔宗均. 2009.炭纤维载体固定床厌氧发酵启动运行效果实验.环境工程学报, 3(9): 1557~1562
    刘德江,高桂丽,朱妍梅,李焰,裴智琴. 2005.猪粪、牛粪、羊粪沼气发酵比较试验.塔里木大学学报, 17(2): 11~13.
    刘荣厚,郝元元,武丽娟. 2006.温度条件对猪粪厌氧发酵沼气产气特性的影响.可再生能源, (5): 32~35
    刘荣厚,王远远,孙辰,梅晓岩. 2008.蔬菜废弃物厌氧发酵制取沼气的试验研究.农业工程学报, (4): 209~213
    刘志杰,陆正禹,梁永明,胡纪萃,李静. 1993. UASB工艺处理啤酒厂废水的生产性试验研究.中国沼气, 11(4): 1~5
    刘战广,朱洪光,王彪,张亚雷. 2009.粪草比对干式厌氧发酵产沼气效果的影响.农业工程学报, 25(4): 130~134
    刘仲齐. 1999.生物乙醇转化技术的研究进展.西南农业学报, (12): 64~68
    鲁杰,石淑兰,邢效功,杨汝男. 2004. NaOH预处理对植物纤维素酶解特性的影响.纤维素科学与技术, 12(1): 1~6
    罗婕,刘志国. 2006.生物质利用技术研究进展.株洲师范高等专科学校学报, 11(2): 48~51
    罗艳,陈广银,罗兴章,郑正,邹星星,王卫平. 2010.互花米草不同部位厌氧发酵特性.环境化学, 29(5): 909~913
    罗艳,郑正,杨世关,陈广银,邹星星. 2010.皇竹草厌氧发酵产沼气特性.环境化学, 29(2): 258~261
    吕淑霞,陈祖洁. 1994.纤维素酶应用于酒精糟废水厌氧消化中的研究.中国沼气, 12(1): 1~5
    马传杰,花日茂,郭亮. 2008.接种量对牛粪厌氧干发酵的影响.家畜生态学报, 29(5): 81~84
    马欢,尹芳,张无敌. 2005.玉米苞皮沼气发酵潜力的研究.能源工程, 1: 34~35
    满娟. 2010.世界能源结构清洁化趋势明显.中国石化, (7): 52~54
    梅翔,何惠君. 1994.生活垃圾AAFEB工艺制取沼气试验.中国沼气, 12(3): 7~11
    南艳艳,邹华,严群,阮文权. 2007.秸秆厌氧发酵产沼气的初步研究.食品与生物技术学, (6): 64~68
    宁桂兴,申欢,文一波,王凯,李天增. 2009.秸秆厌氧消化试验研究.农业环境科学学报, 28(6): 1279~1283
    农业部人事劳动司. 2004.沼气生产工.北京:中国农业出版社, 73-77
    潘亚杰,张雷,郭军,张大雷. 2005.农作物秸秆生物法降解的研究.可再生能源, 23(3): 33~35
    潘云霞,李文哲. 2004.接种物浓度对厌氧发酵产气特性影响的研究.农机化研究, (1): 187~192
    潘云霞,潘云锋,李文哲. 2005.不同阶段沼液作发酵接种物对牛粪产气的影响.农机化研究, (1): 202~204
    庞云芝,李秀金. 2006.中国沼气产业化途径与关键技术.农业工程学报,22(增刊1): 53~57
    庞云芝,李秀金,罗庆明. 2005.温度和化学预处理对玉米秸厌氧消化产气量的影响.生物加工过程, 3(1): 37~41
    蒲贵兵,王胜军,孙可伟. 2009.接种量对泔脚发酵产氢余物甲烷化的强化研究.中山大学学报(自然科学版), 48(1): 87~92
    邱凌,杨改河,毕于运. 2005.中国西部发展农村沼气的条件与对策研究.干旱地区农业研究, 23(3): 200~204
    邱凌,张正茂,谢惠民. 1998.农村沼气工程理论与实践.西安:世界图书出版公司, 38~46
    瞿礼嘉,顾红雅,胡苹,陈章良. 1998.现代生物技术导论.北京:高等教育出版社
    全国人大常委会办公厅. 2005.中华人民共和国可再生能源法.北京:中国民主法制出版社
    全国农村沼气工程建设规划(2006~2010). 2006.中华人民共和国农业部,北京
    任南琪,王爱杰. 2004.厌氧生物技术原理与应用.北京:化学工业出版社
    石磊,赵由才,柴晓利. 2005.我国农作物秸秆的综合利用技术进展.中国沼气, 23(2): 11~18
    石卫国. 2006.生物复合菌剂处理秸秆产沼气研究.农业工程学报, 22(增1): 93~95
    四川省生物研究所. 1977.沼气(资料汇报)第二集.重庆:科学技术文献出版社重庆分社
    宋洪川. 2007.农村沼气实用技术.北京:化学工业出版社, 15~16
    宋立,邓良伟,尹勇,蒲小东,王智勇. 2010.羊、鸭、兔粪厌氧消化产沼气潜力与特性.农业工程学报,
    26(10): 277~282
    宋籽霖,李轶冰,杨改河,秦佳佳,任广鑫,冯永忠. 2010.温度及总固体浓度对粪秆混合发酵产气特性的影响.农业工程学报, 26(7): 260~265
    苏海锋,张磊,曹良元,李艳宾,张学军. 2009.低温下沼气促进剂驯化菌种及其应用研究.能源工程, 2: 31~35
    苏亚欣,毛玉如,赵敬德. 2006.新能源与可再生能源概论.北京:化学工业出版社
    孙辰,刘荣厚. 2010.稻秆NaOH预处理及厌氧发酵产沼气的试验研究.农机化研究, 4: 127~129
    孙传伯,李云,廖梓良,刘士清. 2008.马铃薯皮渣沼气发酵潜力的研究.现代农业科技, 2: 8~9
    孙国朝,邵廷杰,郭学敏. 1988.沼气干发酵工艺必须的条件.沼气新技术应用研究.成都:四川科学技术出版社, 47-58
    孙树贵,任广鑫,翟宁宁,王诺菡,霍敏. 2010.中温下3种落叶厌氧发酵产气量研究.安徽农业科学, 38(19): 10164~10166
    孙振钧,孙永明. 2006.我国农业废弃物资源化与农村生物质能源利用的现状与发展.中国农业科技导报, 8(1): 6~13
    孙智谋. 2004.混合酶及汽爆法提高秸秆发酵酒精的产量.酿酒科技, 5: 75~78
    屠家宝. 2005.有为的中国沼气.农村工作通讯, 2: 48~49
    汪丹妤,王海燕,薛国新. 2004.麦草浆臭氧漂白中戊聚糖含量的变化.纸和造纸, 5: 67~70
    王华,杨光,刘小刚,罗华. 2008.温度对沼气菌群产气能力的影响及菌群变化的研究.西北农业学报,17(5): 294~297
    王家俊,胡瑞,刘建红, 1998.俄罗斯沼气技术发展动向.中国沼气, 16(1): 49
    王寿权,严群,缪恒锋,阮文权. 2009.接种比例对猪粪与蓝藻混合发酵产甲烷的影响.农业工程学报, 25(5): 172~176
    王晓娟,王斌,冯浩,李志义. 2007.木质纤维素类生物质制备生物乙醇研究进展.石油与天然气化工, 36(6): 452~461
    王晓娇,李轶冰,杨改河,李敏,任广鑫,冯永忠. 2010.牛粪、鸡粪和稻秆混合的沼气发酵特性与工艺优化.农业机械学报, 41(3): 104~108
    王许涛,张百良,宋安东,罗志华,任天宝. 2008.蒸汽爆破技术在秸秆厌氧发酵中的应用.农业工程学报, 24(8): 198~192
    王永泽,邵明胜,王志,陈雄,李冬生,王金华. 2009. pH值对水稻秸秆厌氧发酵产沼气的影响.安徽农业科学, 37(31): 15093~15094
    王忠江,李文哲,石铁,王丽丽. 2008.温度和料液浓度对牛粪高浓度厌氧水解酸化的影响.农业工程学报, 24(11): 212~216
    文新亚,李燕松,张志鹏,王璞. 2006.酶解木质纤维素的预处理技术研究进展.酿酒科技, 8: 97~100
    吴江,徐龙君,谢金连. 2006.碱浸泡预处理对固体有机物厌氧消化的影响研究.环境科学学报, 26(2): 252~255
    吴满昌,孙可伟,李如燕,孙艳,张海东. 2005.温度对城市生活垃圾厌氧消化的影响.生态环境, 14(5):683~685
    徐培,欧阳铭. 1993.厌氧流化床反应器处理啤酒废水的试验研究.中国沼气, 11(2): 13~17
    徐洁泉. 2000.规模畜禽场沼气工程发展和效益探讨.中国沼气, 18(4): 27~30
    徐洁泉,胡伟,汤玉珍,何捍东,吴修荣,张辉,连莉文. 1997.低温和近中温猪粪液厌氧处理的装置比较研究.中国沼气, 15(2): 7~130
    徐曾符. 1981.沼气工艺学.北京:农业出版社
    许惠英. 2010.我国“十二五”能源发展规划透视.中国科技产业, (8): 82~83
    徐维骝,李凤蠢,刘志峰. 2004.投加N、P提高草浆造纸废水厌氧发酵效果试验.湖南造纸, 2: 6~8
    徐忠,汪群慧,姜兆华. 2004.氨预处理对大豆秸秆纤维素酶解产糖影响的研究.高校化学工程学报, 18(6): 773~776
    颜丽,李景明,任颜笑. 2006.农村沼气工程的共生效应.农业工程学报, 22(增刊1): 89~92
    闫志英,袁月祥,刘晓风,廖银章,贺蓉娜. 2009.复合菌剂预处理秸秆产沼气.四川农业大学学报, 27(2): 176~179
    杨世关,李继红,孟卓,郑正. 2006.木质纤维素原料厌氧生物降解研究进展.农业工程学报(增刊1), 22:120
    杨淑蕙. 2001.植物纤维化学(第3版).北京:中国轻工业出版社
    杨玉楠. 2002.高效木质素降解菌处理秸秆类农业废弃物的资源化研究.[博士后论文].北京:中国科学院生态环境研究中心
    杨秀山,周孟津. 1995.上流式厌氧污泥床处理豆制品废水启动研究.中国沼气, 13 (1): 12~14
    叶子良,刘荣厚,郝元元,王远远,沈飞,武丽娟. 2007.沼气发酵接种物对沼气及沼液成分的影响.农机化研究, (6): 82~85
    叶小梅,周立祥,常志州,杜静,徐跃定,张建英. 2010.温度、接种量及微量元素对水葫芦产甲烷的影响.中国沼气, 28(2): 34~37
    尹雯,茹菁宇,刘士清,张无敌,王家强. 2006.蚕豆壳发酵产沼气潜力的研究.生物质能利用, 2: 57~58
    于晓章,彭晓英,周朴华. 2005.温度对厌氧嗜热菌群产甲烷能力的影响.湖南农业大学学报(自然科学版), 31(4): 422~426
    张安荣,吴力斌,温室鼎. 1997.我国沼气技术研究应用进展和发展前景.新能源,19(7): 29~34
    张翠丽,杨改河,任广鑫,楚莉莉,冯永忠,卜东升.2008.温度对4种不同粪便厌氧消化产气速率及消化时间的影响.农业工程学报, 24(7): 209~212
    张记市,张雷,王华. 2005.城市有机生活垃圾厌氧发酵处理研究.生态环境, 14(3): 321~324
    张克强,高怀友. 2004.畜禽养殖业污染物处理与处置.北京:化学工业出版社, 34~35
    张连慧,石力安,王体朋,李栋,毛志怀. 2008.蒸汽爆破过程麦秆木质纤维素的转化.农业工程学报, 2008, 24(10): 195~199
    张全国. 2005.沼气技术及其应用.北京:化学工业出版社, 29~85
    张顺喜,王文清,张剑,杨洁. 2010.中药浸膏药渣厌氧发酵产沼气研究.环境工程学报, 4(11): 2608~2612
    张婷,杨立,王永泽,王金华. 2008.不同接种物厌氧发酵产沼气效果的比较.能源工程, (4): 30~33
    张无敌,宋洪川,李建昌,韦小岿. 2002.水解酶提高猪粪沼气发酵产气率.太阳能学报, 23(5): 674~677
    张翔,刘金盾. 2007.接种物特性对牛粪高温厌氧发酵的影响.农机化研究, (6): 86~89
    张翔,余建峰,刘金盾,张浩勤,张绍东. 2007.不同接种物对牛粪高温厌氧发酵的影响.广西师范大学学报(自然科学版), 25(1): 78~81
    张雪松,朱建良. 2004.秸秆的利用与深加工.化工时刊, (5): 1~5
    张雪松,朱建良. 2005.稀酸处理对秸秆厌氧发酵产氢的影响.可再生能源, (4): 20~22
    郑敏,邱凌,王晓曼,冯茵菲. 2009.聚合草厌氧发酵产气潜力的试验.西北农业学报, 18(6): 365~368
    郑元景,杨海林,蔺金印. 1998.有机废料厌氧发酵技术.化学工业出版社, 6~40
    郑万里. 2004.热碱预处理对秸秆厌氧发酵的影响. [硕士论文].北京:中国农业大学
    赵洪,邓功成,高礼安,李静,马媛,李永波,俸才军,张林,杨世凯,黎娇凌. 2009.接种物数量对沼气产气量的影响.安徽农业科学, 37(13): 6278~6280
    赵红,张衍林,王媛媛,袁仪,张占峰. 2009.腐烂柑橘厌氧发酵产沼气适宜的接种率与料液浓度组合.中国沼气, 28 (1): 10~13
    赵明星,严群,阮文权,邹华,徐岩. 2008. pH调控对厨余物厌氧发酵产沼气的影响.生物加工过程, 6(4): 45~49
    赵由才,宋立杰. 2002.固体废弃物污染控制原理与资源化技术.北京:化学工业出版社, 482~503
    中国科学院成都生物研究所《厌氧发酵常规分析》编写组. 1984.厌氧发酵常规分析.北京:科学出版社
    周俊虎,戚峰,程军,谢斌飞,刘建忠,岑可法. 2007.秸秆发酵产氢的影响因素研究.环境科学, 28(5): 1153~1157
    周孟津,杨秀山,初一宁,张维来,汪洪杰. 1995.增设软纤维填料对升流式固体反应器(USR)性能的影响.中国沼气, 13(1): 8~110
    周孟津,张榕林,蔺金印. 2005.沼气实用技术.北京:化学工业出版社, 1~15
    周岭,李文哲,石长青. 2004.厌氧发酵接种物的特性研究.农机化研究, (3): 152~156
    周庆,严少华,宋伟,刘海琴,黄建萍,韩士群. 2009.悬浮载体对蓝藻厌氧发酵产沼气过程的影响.江苏农业学报, 25(6): 1305~1308
    周锐. 2010.中国已是世界上最大的户用沼气生产国和消费国. http://www.chinanews.com/ny/news/2010/05-11/2275689.shtml[2010-5-11]
    邹星星,郑正,杨世关,陈广银,李继红. 2009.汽爆预处理对互花米草厌氧发酵产气特性的影响.中国环境科学, 29(10): 1117~1120
    朱圣东,吴元欣,喻子牛,李慧,张霞. 2005.微波预处理稻草糖化工艺研究.林产化学与工业, 25(1): 112~114
    Speece R E,李亚新. 2001.工业废水的厌氧生物技术.北京:中国建筑工业出版社
    Angelidaki I, Ahring B K. 1993. Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Applied Microbiology and Biotechnology. 38(4):560~564
    Angelidaki I, Arhing B K. 1994. Anaerobic thermophilic digestion of manure at different ammonia loads: Effect of temperature. Water Research, 28(3): 727~731
    Ahring B K, Ibrahim A A, Mladenovska Z. 2001. Effect of temperature increase from 55℃to 65℃on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Research, 35(10): 2446~2452
    Alfani F, Gallifuoco A, Saporosi A, Spera A, Cantarella M. 2000. Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. Journal of Industrial Microbiology & Biotechnology, 25: 184~192
    Augenstein D C, Wise D L, Wentworth R L, Cooney C L. 1976. Fuel gas recovery from controlled landfilling of municipal wastes. Resource Recovery and Conservation, 2(2): 103~117
    Bolzonella D, Innocenti L, Pavan P, Traverso P, Cecchi F. 2003. Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste: focusing on the start-up phase. Bioresour Technol, 86(2): 123~129
    Braber K. 1995. Anaerobic digestion of municipal solid waste: A modern waste disposal option on the verge of breakthrough. Biomass Bioenergy, 9: 365~376
    Bujoczek G, Oleszkiewicz J, Sparling R, Cenkowski S. 2000. High solid anaerobic digestion of chicken manure. Journal of Agricultural Engineering Research, 76(1): 51~60
    Bou(?)kováA, Dohányos M, Schmidt J E, Angelidaki I. 2005. Strategies for changing temperature from mesophilic to thermophilic condition in anaerobic CSTR reactors treating sludge. Water Research, 39(8): 1481~1488
    Chi Y J, Annele Hatakka, Pekka Maijala. 2007. Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? International Biodeterioration & Biodegradation, 59(1): 32~39
    Eastman J A, Ferguson J F. 1981. Solubilization of particutate organic carbon during the acid phase of anaerobic digestion. Water Pollution Control Federation, 53(3): 352~366
    Excoffier G, Toussaint B, Vignon M R. 1991. Saccharification of steam-exploded polar wood. Biotechnology and Bioengineering, 38: 1308~1317
    Fernández B, Poirrier P, Chamy R. 2001. Effect of inoculum-substrate ratio on the start-up of solid waste anaerobic digesters. Water Science Technology. 44(4): 103~108
    Forster-Carneiro T, Pérez M, Romero L I. 2008. Thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresource Technology, 99(15): 6763~6770
    George Simons, Zhiqin Zhang. 2003. California continues push for dairy power. BioCycle energy, 7(44): 63
    Hansen R C, Hoitink H A J. 1989. Poultry manure composting: design guidelines for ammonia. ASAE meeting presentation paper. USA: American Society of Agricultural Engineers, No. 89–4075
    Hu Z H, Wang G, Yu H Q. 2004. Anaerobic degradation of cellulose by rumen microorganism at various pH. Biochemical Engineering Journal, 21(1): 59~62
    Hu Z H, Yu H Q. 2005. Application of rumen microorganism for enhanced anaerobic fermentation of corn stover. Process Biochemistry, 40(7): 2371~2377
    Isci A, Demirer G N. 2007. Biogas production potential from cotton wastes. Renewable energy, 32(5): 750~757
    Jeoh T, Agblevor F A. 2001. Characterization and fermentation of steam exploded cotton gin waste. Biomass and Bioenergy, 21: 109~120
    John Stumbos. 2001. Methane generators turn agricultural waste into energy. California Agriculture, 55 (5): 56~58
    Kitchaiya P, Intanakul P, Krairiksh M. 2003. Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. Journal of Wood Chemistry and Technology, 23(2): 217~225
    Kubler H. 2000. Full scale co-digestion of organic waste. Wat Sci Tech, 41(3):195~202
    Kumar S, Jain M C, Chhonkar P K. 1987. A note on stimulation of biogas production from cattle dung by addition of charcoal. Biological Wastes, 20(3): 209~215
    Lehtom(a|¨)ki A, Huttrnen S, Rinrala J A. 2007. Laboratory investigations on co—digestion of energy crops and crop residues with cow manure for methane production:E ffect of crop to manure ratio. Resources Conservation & Recycling, 51(3): 591~609
    Linping K, Willy V. 1998. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Applied and Environmental Microbiology, 64(11): 4500~4506
    Liu Tuanchi, Sambhunath Ghosh. 1997. Phase separation during anaerobic fermentation of solid substrates in innovative plug-flow reactor. Water Science and Technology, 36: 30~310
    Lynd L R, Elander R T, Wyman C E, Wyman C E. 1996. Likely features and costs of mature biomass ethanol technology. Applied Biochemistry and Biotechnology, (57/58): 741~761
    Madamwar D, Mithal B M. 1986. Absorbents in anaerobic digestion of cattle dung. Indian Journal of Microbiology, 25(1, 2): 57~58
    Mata-Alvarez J, Mace S, Llabres P. 2000. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(l): 3~16
    Martin D J, Potts L G A, Heslop V A. 2003. Reaction mechanisms in solid-state anaerobic digestion: 1. the reaction front hypothesis. Process Safety and Environmental Protection, 81(3): 171~179
    Matthew S, Mendis, Wim J, Vannes. 2006. The Nepal biogas support program. http://www. snvworld.org/cds/rgccre/Hyperlinks Energy/BSP Nepal[2006-09-06]
    Mshandete A, Kivaisi A, Rubindamayugi M, et a1. 2004. Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresource Technology, 95(1): 19~24
    Parawira W, Murto M, Zvauya R, Mattiasson B. 2004. Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renewable Energ, 29(11): 1811~1823
    Patel V, Patel A, Madamwar D. 1992. Effect of adsorbents on anaerobic digestion of water hyacinth-cattle dung. Bioresource Technology, 40(2): 179~181
    Pavlostathis S G, Gossett J M. 1988. Preliminary conversion mechanisms anaerobic digestion of biological sludges. Journal of Environmental Engineering, 114(3): 575~592
    Patel V, Patel A, Madamwar D. 1992. Effect of adsorbents on anaerobic digestion of water hyacinth-cattle dung. Bioresource Technology, 40(2): 179~181
    Rimkus P P, Ryan J M, Cook E J. 1982. Full-scale thermophilic digestion at the West-Southwest sewage treatment works, Chicago, Illinois. Journal of Water Pollution Control Federation, 54: 1447~1457
    Rvan Mansvelt E. 2006. Survey of plastic biogas digesters in Cambodia.First Meeting of Network of Experts on Domestic Biogas. Hanoi, Vietnam: SNV
    Raposo F, Banks C J, Siegert I, Heaven S, Borja R. 2006. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochemistry, 41(6): 1444~1450Scheidat B, Kasche V, Sekoulov I. 1999. Primary sludge hydrolysis under addition of hydrolyitic enzymes.
    Proceedings of the second International symposiumon anaerobic digestion of solid wastes. Barcelona: Mata-Alvarez J, 161~168
    Sendai Japan. 1997. Proceedings of the 8th International Conference on Anaerobic Digestion Biotechnology. Japan
    Singh S, Singh S K. 1996. Effect of cupric nitrate on acceleration of biogas production. Energy Conversion and Management, 37 (4): 417~419
    Somayaji D, Khanna S. 1994. Biomethanation of rice and wheat straw. World Journal of Microbiologyl & Biotechnology, 10 (5): 521~523
    Sossak, Alarcón M, AspéE, Urrutia H. 2004. Effect of ammonia on the methanogenic activity of methylaminotrophic methane producing Archaea enriched biofilm. Anaerobe, 10(1): 13~18
    Stumbos T. 1999. Anaerobic digestera success at dairy farm. BioCycle, 40(3):18
    Sundar B, ChristopherK. 2005. The strengths and weaknesses of private sector in the biogas support program in Nepa. Proceedings of International Seminaron Biogas for Poverty Reduction and Sustainable Development. Beijing: MAG & ESCAP-UN, 113~121
    Tanaka S, Lee Y H. 1997. Control of sulfate reduction by molybdate in anaerobic digestion. Water Science and Technology, 36 (12): 143~150
    Weiland P. 2000. Anaerobic waste digestion in Germany-Status and recent developments. Biodegradation, 11(6): 415~421
    Vrije D T, Haas G G, Tan G B, Keijsers E R P, Claassen P A M. 2002. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. International Journal of Hydrogen Energy, 27(11-12): 1381~1390
    Walsum G P, Helen S. 2004. Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover. Bioresource Technology, 93(3): 217~226
    Wim J. Vannes. 2006. Biogas from anaerobic digestion rolls out across Asia. http://www. unapcaem. org/Activities Files/A01/Asia Hits The Gas[2006-09-06]
    Zeikus J G. 1979. Microbial populations in digesrors anaerobic digestion. Applied Science Publisber, 66~89
    Zhang R H, Zhang Z Q. 1999. Biogasification of rice straw with an anaerobic-phased solids digester system. Bioresource Technology, 68(3): 235~245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700